On the Irrationality of £, ¢~ [T'_o(1 + ¢ 7r +¢~%s)

Peter B. Borwein and Ping Zhou

Abstract. We prove that if ¢ is an integer greater than one, r and s
are any positive rationals, then
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is irrational and is not a Liouville number.

61. Introduction and Result

By using the the residue theorem and functional equation methods, we have
proved the irrationality of various multivariate functions whose univeriate
versions have been extensively investigated (see [2], [3], [5], [6], [7], [8], [9]-
[10]), namely [T20(1+q77r+q7s); 3020 ram—grss Dosgmo got—y and
Z;im’jmzo q“ﬁ:—]rg’fl_l, where ¢ is an integer greater than one, r,s and
r1,-+-, Ty, are any positive rationals, see Borwein-Zhou [4], Zhou-Lubinsky
[11] and Zhou [12] for details. The general approach has been to examine
the Padé approximants to the appropriate functions and to show, with some
modifications, that they provide rational approximations that are too rapid
to be consistent with rationality. In this paper, we use similar techniques to
prove a new irrationality result:

Theorem 1.1. If q is an integer greater than one, r and s are any positive

rationals, then
[es) 7

Yoat [ +a7r+a7Ys)

i=0 §=0

is irrational.
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We refer to Borwein [2] to the concepts of standard ¢ analogues of facto-
rials [n]! and binomial coefficients [}]. We note that (see Zhou [12])

n

[T (% —q") = (=1)rq MED2OFDRENEN (L - ¢, (1)
h=0,h#k

and for || < |q|7",

1 X 41 .
_ = (—1)ntignint1)/2 { ]t . 1.2
[Tizo(t —4q7%) ; l (12)

We prove some properties of approximants to the function
Fzy)=> ¢ [[(0+q7z+q Yay) (1.3)
1=0

=0

in section 2, and use those properties to prove Theorem 1.1 in section 3.

§2. Some Results On the Relevant Function

Theorem 2.1. Let |q| > 1, and F(x,y) be defined by (1.3), then F(x,y) is
entire in C x C. If we write

F(Z’y) = Z Cijxiyja (21)
2,7=0
and
[T+ ¢7e+ g %ay) = > aya'y’, (2.2)
=0 i,j=0
then
r+s .
[I(@ -1 ar €Zlg, r.s=0.12---, (2.3)
=1
and
r+s ‘
1@ -1 e € Zlg). r.s=0.1.2-. (2.4)
=1

where 7Z[q] is the set of polynomials in ¢ with integer coefficients.

Proof: See Section 2 of Zhou-Lubinsky [11] for a proof of (2.3) and (2.4)
follows immediately from (2.3). O
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Theorem 2.2. Let g > 1 be an integer, and F(x,y) be defined by (1.3). Let

n > 0 be integer and
1 F(tz, ty)dt

I n ] 2.5
(ZC y) 27” T ( k:O(t _ q—k))tn-l-l ( )
where I is a circular contour containing 0,q~™,---,q~%,¢". Let
k—1
Ry(z,y) = [[(¢¥ + ¢z + zy), (2.6)
3=0
Si(w,y) =gy gD T (@Y + x4 ay), (2.7)
=1 j=k—1
Q(w y) _ n(n-{—l)/’) z”: k(n+k)+k(k+1)/9R (ZC y) (2 8)
’ (1—q)"[n]! & ’ '
and
n(n+1)/2 n n 5
Plavy) im (o S [ ettt 25,
e 1 dam { F(tz,ty) }
ntdtr | izt —a7%) f 10y
Then
i)
I(z,y) = Qz,y)F(z,y) + P(z,y); (2.10)
ii)
1+73>2n+1
iii)
q—n(n-l—l)/2 H(qj — 1) Rn(:c,y)Q(xj y) S Z[anay]; (212)
=1
iv)
g = 1) | Pley) € Zlg, =, y); (2.13)
J=1
v) For any integer [, 0 <[ < n, we have
—n(n - ] J ry r Yy
q (n+1)/2 ]‘_[(Q'7 - ]-) . ql(H—l)Rn(?ﬁ ?)Q(q_ q_) € Z[q* 7y]

=1

(2.14)
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n

g "] - 1) -qan(% %) € Zlq,z.y}; (2.15)
j=1
vi) For n € N fixed and
(z,y) eP:=(z,y) e C x C:0< |z|,|y| <1/2}, (2.16)
[I(z,y)| < cq- %7 (2.17)
where cy is a constant depending only on ¢, and
vy = max{|z|, |y|}. (2.18)

Proof: Proof of (i). From (1.3), we have the functional relations for F(z.y)
for integers £ > 1:

00 t—k
Fg ™ e, y) =Y q [[A+ a7 e+ g7 ay)
=0 =0
koo [k , . (2.19)
=Y " [] O+q7z+q Yay)
=1 j=k—1

= ¢*" R Y, y) F (2,y) — Sk(z,y).

By the residue theorem and the functional equation (2.19), and (1.1), we have

I(z.y)
_ z": F(g "z, q %) 1 dn { F(tz, ty) }
- n . ol g n _ g—k
Pt (Hh=07h;élc(q_k _ q—h)) gkt nbdt LTIzt —a7) f

n(n+1)/2 n

q ;| T n —

T (T o)[n]! (1" L] g DR B (5, y) F (2, )
" k=0

n(n+1)/2 n 1 d» F(tl’t )
q k|| nk+k(k+1)/2 { , 1Y }
- -1 q Sk(z,y) + —— -

gy 2=V M o) o \ T =0

= Q(z,y)F(x,y)+ P(z,y).

Proof of (ii). From (2.5) we observe that the denominator in the integral
defining I(z,y) is a polynomial of degree 2n + 2 in ¢, and any terms in

F(te, ty) = Z cijti+jxiyj

i,j=0

of order less than 2n + 1 in ¢ vanish on integration, so (2.11) holds.
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Proof of (iii). From (2.6) and (2.8), we have

qn(n+1)/2 n

R, (x, )Q(:U, ):—”
(e 9)Q ) = =y 4

L (2.20)
x || (@7 + ¢’z + zy)
=k
As [}] is a polynomial in ¢ with integer coefficients, (2.12) holds.
Proof of (iv). From (1.2),
F(tz, ty) 1 D2 N |t
7 — = (=D Croay et . (221
Hk;:o (t —4q k) r,;l:O l ( )
and
n(n+1)/2 n
p 1)k+1
() = = gy 27 H
qu(n—z)—z(kz—z)+(k +4i—3k)/2 H (q23 + q]$‘|‘37y)
1=1 j=k—1
" 2n — u
-1 n+1l n(n+1)/2 - r s )
P S (5 gy P
p=0 \rd+s=p
(2.22)
As
k(n —1d) —i(k — i)+ (k* + 4i — 3k)/2 > 0, (2.23)
for 0 <k <mnand1<i<k, with (2.4), we have (2.13).
Proof of (v). For 0 <1 <mn—1,
T y l
R, (—=,= g~ P Pt e fay) | 2.24
() l;[ ) (2.24)
So
Ty
¢ VR, (q— ?) € Zq, v, y]. (2.25)

iFrom (2.12), (2.20) and (2.25), we have (2.14) and (2.15) follows from (2.22).
Proof of (vi). See the proof of (vi) of Theorem 2.2 in Zhou [12].
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§3. Proof of Theorem 1.1

The proof is similar to the proof of (3.1) in Zhou [12], we note that for z,y > 0,

I(z,y) >0, (3.1)

where I(x,y) is defined by (2.5). Now let 7, s be any fixed positive rational
numbers, then u := s/r is also a positive rational number such that

oo

F(r,u) = Z g " (1+ g Ir+ q_Zj'r'u) > 0.
1=0 7=0

We now use the estimate (2.17) in (vi) of Theorem 2.2 to prove the main
result. Let n > 0 be chosen so that n is a multiple of 4, and

Uu

X = 1/2 and Y = 7 <1/2, (3.2)

<
qn/4 -

(now (X,Y) is in the set IP defined by (2.16)) and let

Uy i= max{r, u}; (3.3)
vx,y = max{X,Y}. (3.4)
Then o
uxy = —o (3.5)
Now let "
Hy,(q) := ¢ """V (¢ - 1), (3.6)
j=1
then
0 <[Hn(q) <1 (3.7)

;From the functional equation (2.19) and (3.2), and from (2.6), we have

F(r,u) = q_("/‘l)anM(r, u) [F(X, Y)+ Sn/4(’r, u)] , (3.8)

n—1
R (X.Y)| <[]+ ¢ +¢%) < ag™Y, (3.9)
=0

<.

where a := [['Z(1+¢~7 + ¢~%/) is a constant depending only on ¢. Now in
order to get integer coefficient approximants to F(r,u), let

Q*(r,u) = ¢"C D/ H, () R (X, Y)Q(X,Y); (3.10)

P*(?“, u) — qn(5n+4)/16Hn(q)Rn/4(T, U)Rn(X, Y)

x (P(X,Y) = S, u(r,u)Q(X,Y)) . (3.11)
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Then from (v) of Theorem 2.2, (2.14), (2.15) and (3.6),
Q*(r,u), P*(r,u) € 7[q,r, u], (3.12)
and from (3.8), (3.10) and (3.11),
A= |Q*(r,u)F(r,u) + P*(r,u)|
= O, (g)] [Ru(X.Y) | Ropalr) 1YY O
Then A > 0, and from (2.17), (3.5), (3.7), (3.9) and the fact that

‘q_(n/‘})an/{t(fr, /u)

< g MM\ TT (14 g 97 + g~ ru)
i=0

=: bq_”/4,

where b := ‘H;io(l +q7r + g% ru)
and ¢, we have

is a constant depending only on 7, u

1)1}2""'1 (n + 1)v2ntl
3n?/8+4+n(n—1) (n + XYy . ru .
A S q abcq—qn2 - = fq,r,u qn(n+10)/8 ) (3 14)

where f, .. 1= abc, is a constant depending only on ¢,r and w. Finally, if

ro=<  and uw=-L (3.15)
[ m
with ¢, 7,1, m positive integers, then
Q™ (r,u) := (lm)4n Q" (r,u), (3.16)
and
P (r,u) == (Im)*™ P*(r,u), (3.17)
are integers, and
1
Vp oy = %Umi,lj = %max{mi,lj}. (3.18)
Then by (3.14) to (3.18),
4 p2ntl
0 < QT (ryw)F(ru) + P (ru)| < ()™ fara(n +1) ooy
2n+1
= f ( + 1)(l )2n—1 Y 15
= Jqrull? m gn(nF10)/8”

which tends to zero as n — oo, This shows that F(r,u) is irrational. This
completes the proof of Theorem 1.1. O

Now by the standard methods (as in chapter 11 of Borwein-Borwein [1]),
the estimates in the proof of Theorem 1.1 gives that, under the assumption
of the theorem,

1
o]

for some constant « and all integers s and ¢, and hence F'(r, u) is not a Liouville
number.
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