ON CYCLOTOMIC POLYNOMIALS WITH +1 COEFFICIENTS
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Abstract.

We characterize all cyclotomic polynomials of even degree with coefficients re-
stricted to the set {+1,—1}. In this context a cyclotomic polynomial is any monic
polynomial with integer coefficients and all roots of modulus 1. Inter alia we char-
acterize all cyclotomic polynomials with odd coefficients.

The characterization is as follows. A polynomial P(z) with coefficients +1 of
even degree N — 1 is cyclotomic if and only if

P(.CL') = iq)l)l (im)@m (iajpl) U (I>pr (inIPZ...pT_l)a

where N = pyps - - - pr and the p; are primes, not necessarily distinct. Here ®,(x) :=
””;:11 is the pth cyclotomic polynomial.

We conjecture that this characterization also holds for polynomials of odd degree
with £1 coefficients. This conjecture is based on substantial computation plus a
number of special cases.

Central to this paper is a careful analysis of the effect of Graeffe’s root squaring

algorithm on cyclotomic polynomials.
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1. INTRODUCTION.

We are interested in studying polynomials with coefficients restricted to the set
{+1,—1} . This particular set of polynomials has drawn much attention and there
are a number of difficult old questions concerning it. Littlewood raised a number of
these questions and so we call these polynomials Littlewood polynomials and denote
them by £ [6]. A Littlewood polynomial of degree n has Ly norm on the unit circle
equal to v/n + 1. Many of the questions raised concern comparing the behavior
of these polynomials in other norms to the Ly norm. One of the older and more
intriguing of these asks whether such polynomials can be “flat”. Specifically, do
there exist two positive constants C; and C5 so that for each n there is Littlewood
polynomial of degree n with

Civn+1<|p(z)| < Covn+1

for each z of modulus 1. This problem which has been open for more than forty
years is discussed in [1] where there is an extensive bibliography. The upper bound
is satisfied by the so called Rudin—Shapiro polynomials. It is still open as to whether
there is a sequence satisfying just the lower bound (this problem has been called
one of the “very hardest problems in combinatorial optimization”).

The size of the L, norm of Littlewood polynomials has been studied from a
number of points of view. The problem of minimizing the L4 norm (or equivalently
of maximizing the so called “merit factor”) has also attracted a lot of attention.

In particular can Littlewood polynomials of degree n have L4 norm asymptoti-
cally close to v/n + 1. This too is still open and is discussed in [1].

Mahler [7] raised the question of maximizing the Mahler measure of Littlewood
polynomials. The Mahler measure is just the Ly norm on the circle and one would
expect this to be closely related to the minimization problem for the L4 norm above.
Of course the minimum possible Mahler measure for a Littlewood polynomial is 1
and this is achieved by any cyclotomic polynomial. In this paper a cyclotomic poly-
nomial is any monic polynomial with integer coefficients and all roots of modulus
1. While ®,,(x) denotes the nth irreducible cyclotomic polynomial (the minimum
polynomial of a primitive nth root of unity).

This paper addresses the question of characterizing the cyclotomic Littlewood
polynomials of even degree. Specifically we show that a polynomial P(x) with
coefficients £1 of even degree N — 1 is cyclotomic if and only if

P(z) = £, (£2)®,, (£2P1) - - - &, (FaPrP2Pr-1),

where N = pip2---p, and the p; are primes (not necessarily distinct). The “if”
part is obvious since ®,, (z) has coefficients +1.

We also give an explicit formula for the number of such polynomials.

This analysis is based on a careful treatment of Graeffe’s root squaring algorithm.
It transpires that all cyclotomic Littlewood polynomials of a fixed degree have the
same fixed point on iterating Graeffe’s root squaring algorithm. This allows us to
also characterize all cyclotomic polynomials with odd coefficients.

Substantial computations, as well as a number of special cases, lead us to conjec-
ture that the above characterization of cyclotomic Littlewood polynomials of even
degree also holds for odd degree. One of the cases we can handle is when N is a
power of 2.
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It is worth commenting on the experimental aspects of this paper. (As is perhaps
usual, much of this is carefully erased in the final exposition). It is really the ob-
servation that the cyclotomic Littlewood polynomials can be explicitly constructed
essentially by inverting Graeffe’s root squaring algorithm that is critical. This al-
lows for computation over all cyclotomic Littlewoods up to degree several hundred
(with exhaustive search failing far earlier). A construction which is of interest in
itself. Indeed it was these calculations that allowed for the conjectures of the paper
and suggested the route to some of the results.

The paper is organized as follows. Section 2 examines cyclotomic polynomials
with odd coefficients. Section 3 looks at cyclotomic Littlewood polynomials with a
complete analysis of the even degree case. The last section presents some numerical
evidence and other evidence to support the conjecture in the odd case behaves like
the even case.

2. CycLoToMIC POLYNOMIALS WITH ODD COEFFICIENTS.

In this section, we discuss the factorization of cyclotomic polynomials with odd
coeflicients as a product of irreducible cyclotomic polynomials. To do this, we first
consider the factorization over Z,[x] where p is a prime number. The most useful
case is p = 2 because every Littlewood polynomial reduces to the Dirichlet kernel
142+ -+zV"!in Zyz]. In Z,[z], ®,(z) is no longer irreducible in general but
®,,(z) and ®,,(x) are still relatively prime to each other. Here, as before, ®,(x) is
the nth irreducible cyclotomic polynomial.

Lemma 2.1. Suppose n and m are distinct positive integers relatively prime to p.
Then ®,(z) and ®,,(x) are relatively prime in Z,y[x].

Proof. Suppose e and f are the smallest positive integers such that
p°=1 (modn) and pf=1 (modm).

Let F,. be the field of order p*. Then F,. contains exactly ¢(n) elements of order
n and over Z,, ®,(z) is a product of ¢(n)/e irreducible factors of degree e and
each irreducible factor is a minimal polynomial for an element in Fpe of order n
over Zp, see [5]. So ®,(x) and &,,(z) cannot have a common factor in Z,[z] since
their irreducible factors are minimal polynomials of different orders. This proves
our lemma. O

The following lemma tells which ®,,(z) can possibly be factors of polynomials
with odd coefficients.

Lemma 2.2. Suppose P(x) is a polynomial with odd coefficients of degree N — 1.
If ®,,(z) divides P(x), then m divides 2N .

Proof. Since ®,,(x) divides P(z), so ®,,(z) also divides P(z) in Zy[z]. However,
in Zo[z], P(z) equals to 1+ z + -+ + 2V ~! and can be factored as

(2.1) P(z) = &,(2)" [] 23 (=),
d|M

where N = 2¢M,t > 0 and M is odd. In view of Lemma 2.1, &4, (z) and &4, (z)
are relatively prime in Zs[z] if di and ds are distinct odd integers. So if m is odd,
then ®,,(x) is a factor in the right hand side of (2.1) and hence m = d for some
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d|/M. On the other hand, if m is even and m = 2'm’ where I > 1 and m/ is odd,
then

-1

Qp(z) = Do (372 )
1—
= ()
= (Pm/ (,’1}')21_1
in Zs[z]. Thus in view of (2.1), we must have m' = d for d|M and | < t+ 1. Hence
in both cases, we have m divides 2IV. [l

In view of Lemma 2.2, every cyclotomic polynomial, P(x), with odd coefficients
of degree N — 1 can be written as

(2:2) P(z) = [] /")
2N
where e(d) are non-negative integers.
For each prime p let T}, be the operator defined over all monic polynomials in

Z[x] by

N

T,[P(2)] = [[ (@ - o)

i=1
for every P(z) = Hfil (x — o) in Z[z]. By Newton’s identities (see [3], p.5),
T,[P(x)] is also a monic polynomial in Z[z]. We extend T}, to be defined over the
quotient of two monic polynomials in Z[z] by T,[(P/Q)(z)] := Tp[P(z)]/Tr[Q(x)].
This operator obviously takes a polynomial to the polynomial whose roots are the
pth powers of the roots of P. Also we let M, be the natural projection from Z[z]
onto Zp[z]. So,

My[P(z)] = P(z) (mod p).

Lemma 2.3. Let n be a positive integer relatively prime to p and ¢ > 2. Then we
have

() Tp[@.(0)] = (@),

(11) Tp[Ppn(z)] = ()P,

(iii) Tp[®pin(x)] = Bpi-1,(x)P.

Proof. (i) is trivial because if (n,p) = 1 then T}, just permutes the roots of &,(x).
To prove (ii) and (iii), we consider
N
T[P@")] = T[] —a)]
j=1

N p 41
= B[ [J@-e% o)
j=li=1
N p
= HH(HJ—%’)
j=11=1
= P(z)".

Thus (ii) and (iii) follow from (i), ®pn(z) = q:}"n(f:)) and @i, (z) = Ppi-1,(2P) (see

[8], §5.8). O
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When P(z) is cyclotomic, the iterates T;'[P(z)] converge in a finite number of
steps to a fixed point of T, and we define this to be the fixed point of P(z) with
respect to T),.

Lemma 2.4. If P(z) is a monic cyclotomic polynomial in Z[x], then
(2.3) My[T,[P(x)]] = Mp[P(z)],
in Zy[x], where M, is the above natural projection.

Proof. Since both T}, and M,, are multiplicative, it suffices to consider the primitive
cyclotomic polynomials ®,,(z). Let n be an integer relatively prime to p. Then
(2.3) is true for P(z) = ®,(z) by (i) of Lemma 2.3. For P(z) = ®,,(z), we have

Mp[Tp[@pn(2)]] = Mp[q’n(m)pil]
= MO (@)
by (ii) of Lemma 2.3. However,

Mp[@pn(z)] =

= M,

in Zpy[x]. This proves that (2.3) is also true for P
®,i,(x) then

[

(z)
(z) = ®pn(x). Finally, if P(z) =
Mp[Tp[®pin()]] = Mp[Ppi-1,(2)"]

Mp[q)p"—ln(xp)]

= Mp[q’p"n(x)]

by (iii) of Lemma 2.3. This completes the proof of our lemma. O

Lemma 2.4 shows that if T,[P(z)] = T,[Q(z)] then M,[P(z)] = M,[Q(z)]. The
next result shows that the converse is also true.

Theorem 2.5. P(z) and Q(z) are monic cyclotomic polynomials in Z[x] and M,[P(x)] =

Mp[Q(x)] in Zyz] if and only if both P(z) and Q(x) have the same fized point with
respect to iteration of Tp.

Proof. Suppose
H (I)e(d) €(Pd)( ). (I)G(Ptd)(m)

ptd
deD
and
d (pd td)’
H (I)e( ) P )’ (z)-- ‘I’;Sﬁ ) (z)
deD

where t,e(5),e(j)’ > 0 and D is a set of positive integers relatively prime to p. Then
using (i)-(iii) of Lemma 2.3, we have for [ > ¢

24)  THP@) =[] ®a@)’@ and  TQ()] = [] ®a(x) @
deD deD
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where

and

(From Lemma 2.4, we have

My[T,[P(@)]) = Mp[P(x)] = M,[Q(2)] = My[T,[Q(=)]],
for any ! > ¢. From this and (2.4),
I1 Mp2a(@)/ D = T] Mp[@ala)’ "
deD deD

However, with Lemma 2.1, M,[®4(z)] and M,[®4 (x)] are relatively prime if d # d'.
So we must have f(d) = f(d)' for all d € D and hence from (2.4), P(z) and Q(x)
have the same fixed point with respect to 75. O

(From Theorem 2.5, we can characterize the monic cyclotomic polynomials by
their images in Z,[z] under the projection M,. They all have the same fixed point
under 7T},. In particular, when p = 2 we have

Corollary 2.6. All monic cyclotomic polynomials with odd coefficients of the de-
gree N —1 have the same fized point under iteration of Ty. Specifically, if N = 2tM
where t > 0 and (2, M) = 1 then the fixed point occurs at the t + 1-th step of the
iteration and equals

@M - 1) (z-1)""

Proof. The first part follows directly from our Theorem 2.5 and the fact that
My[P(z)]=1+z+---+a"!

in Zo|[z] if P(z) is a monic polynomials with odd coefficients of degree N — 1. If
N = 2tM, then from (2.2),

e(d e(2d e(2tt1qg
P(z) = [] 25 (@)257" (z) - -- @52, ¥ ().

M
Over Zs[z],
]_—}—:1;—{——}—.7]1\]_1 = (1)1(.'13)_1 H (I)gt(w);
d|M
SO
t+1 t

) ) 2 for d|M,d > 1
2.5 d) =e(d) + S 2 le(2id) = o
(2.5) f(d) = e(d) ; e(2'd) {zt—l for d = 1.

Therefore, from (2.5) and Lemma 2.3,

T3 [P@) = [ 2/ @) = 1@ [] 87 (@) = " - )* @@ - )7
d|M d|M
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Corollary 2.6, when N is odd (¢ = 0) shows that T>[P(z)] equals to 1+ = +
.-+ 4+ N1 for all cyclotomic polynomials with odd coefficients and from (2.2) and
(2.5), we have the following characterization of cyclotomic polynomials with odd
coefficients.

Corollary 2.7. Let N = 2!M with t > 0 and (2, M) = 1. A polynomial, P(z),
with odd coefficients of degree N — 1 is cyclotomic if and only if

e e e t+1
P(z) = [] 25" (2)257" (2) -~ #52,, ¥ (@),
dlM

and the e(d) satisfy the condition (2.5).
Furthermore, if N is odd, then any polynomial, P(x), with odd coefficients of
even degree N — 1 is cyclotomic if and only if

e(d
Pz)= ] @"(xx)
d|N,d>1
where the e(d) are non-negative integers.

Corollary 2.7 allows us to compute the number of cyclotomic polynomials with
odd coefficients. Let B(n) be the number of partitions of n into a sum of terms of
the sequence {1,1,2,4,8,16,---}. Then B(n) has generating function

Fz)=(1-2)"' J[a-2*)"
k=0

It follows from (2.5) and Corollary 2.7 that

Corollary 2.8. Let N = 2!M with t > 0 and (2, M) = 1. The number of cyclo-
tomic polynomials with odd coefficients of degree N — 1 is

where d(M) denotes the number of divisors of M. Furthermore,
2 (log(2* — 1))
(2.7) log C(N) ~ (5 log 2)(d(M) — 1) + T'

Proof. Formula (2.6) follows from (2.5) and Corollary 2.7. To prove (2.7), we use
de Bruijn’s asymptotic estimation for B(n) in [4]:

B(n) ~ exp((logn)?/log4).
Now (2.7) follows from this and (2.6). O

3. CycLoTOMIC LITTLEWOOD POLYNOMIALS.

We now specialize the discussion to the case where the coefficients are all plus
one or minus one.

One natural way to build up Littlewood polynomial of higher degree is as follows:
if P;(x) and Py(z) are Littlewood polynomials and P (z) is of degree N — 1 then
Py(z)Py(2) is a Littlewood polynomials of higher degree. In this section, we are
going to show that this is also the only way to produce cyclotomic Littlewood
polynomials, at least, for even degree.

To prove this, it is equivalent to show that the coefficients of P(z) are “periodic”

in the sense that if P(z) = 252—01 an,x™, then there is a “period” ¢ such that
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ajiyn = ai foralll1 <n <i—1and 0 <! < N/i—1. This is our Theorem 3.3
below.

Suppose P(z) = Eﬁ:_ol anx™ is a cyclotomic polynomial in £ and let Sy be the
sum of k-th power of all the roots of P(z). Since P(z) is cyclotomic, we have
zN~1P(1/z) = £ P(x). Thus it follows from Newton’s identities that

(3.1) Sk +a1Sk_1+---+ag_1S1 +kar =0

for k < N — 2. We may further assume that ag = a1 = 1 by replacing P(z) by
—P(z) or P(—xz) if necessary. We now let

a=a=--=a;_1=1 and a; = —1,
for some integer ¢ > 2. From (3.1), we have
S1=—-a =-1L
We claim that

(3.2) Si=8=---=8;,_1=-1 and S;=2i—1.
Suppose S; =---=8; = —1for j < i — 1. Then from (3.1) again,
Sjg1=—a18;— - —ajS1 — (j+ Vajy =j— (j+1) = —1.
So Sy = --- = 8;—1 = —1. Similarly, from (3.1)
Si=—-a18;-1—---—a;—151 —ia; =2i — 1.

Lemma 3.1. Let 2 < k < ¥ — 1 and suppose aji4n, = aj; for 1 <n <i—1 and
0<1<k—2. Then we have

k-2
(3.3) Z a1 {Stk—1)itjt1 — Stk—1-1)itj+1} + (ki + j + 1)(@rigjs1 — Qkits)
1=0
i1
+ Z a(k—1)itn(Sitj—nt1 — Sitj—n) =0
n=0

for0<j<i-—2.
Proof. Suppose 0 < j <i—2. From (3.1) and (3.2) we have

k=1 i—1 j—1
0 = D> ) @wirnSt—yitj—n+ P hitnSj—n + (ki + f)aris;
=0 n=0 n=0

k=2 -1 i1
= Z az; Z Stk—t)itj—n t Z A(k—1)itnSitj—n
=0 n=0 n=0

J
(34) - Z Akit+n + (kl +j + l)ak,'+j.
n=0
Similarly,
k-2 i1 i1
(3.5) 0= Z aii Z Sk—tyi+j—n+1 T Z A(k—1)i+nitj—n+1
=0 n=0 n=0

J
- Z Afitn + (kl +J5+ l)aki+]’+1.
n=0
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Hence, on subtracting (3.5) from (3.4), we have

k—2
0= Zali {S(kfl)z’+j+1 - S(kflfl)z'+j+1} + (ki + j + 1)(akitjt1 — Qrits)
1=0
i1
+ Z a(kfl)i+n(si+j—n+1 — Sitj—n)-
n=0
This proves (3.3). -

Lemma 3.2, Let 0 < k < % — 1. Suppose ajjtn, = ay; for 1 <n <i—1 and
0<1<k. Then

(3.6) Stitn = —1
foril<n<i—1and0<I<Ek.

Proof. We prove this by induction on k. We have proved that (3.6) is true for
k = 0. Suppose (3.6) is true for k — 1. Then for any 0 < j <i—2,

i1
0 = ao{Skitrjt1 — Sk-vyitjt1} +ag 1) ) (Sitj—nt1 = Sitj-n)
n=0
Skitj+1 + 1+ ag—1)i(Sitj+1 — Sjt1)
= Skitjr1 +1,
by (3.3). Hence Spiyj1 = —1for0<j <i—2. O
Theorem 3.3. Suppose N is odd. If ap =a1 =+ =a;—1 =1 and a; = —1, then

Qli+n = Q14
for1<n<i-1 andOSlSTN—

Proof. We first show that Sy, = —1 for 1 < k < N — 1 and hence ¢ is odd because
S; = 2i — 1. Since N is odd, from Corollary 2.7,

P(r) = [] 21" )25, (2)
4N
where e(d) + e(2d) =1ifd >1and e(1) =e(2) =0. If 1 <k < N — 1, then

Sor = Z(e(d)cd@k)+e(2d)c2d(2k))
dN

= Y (e(d) + e(2d))Ca(k)

AN
= ) Ca(k) - Ci(k)
dN
(3.7 = -1
where the Ramanujan sum, Cy(k), is the sum of the kth powers of the primitive
dth roots of unity and hence 3, y C4(k) is the sum of kth powers of the roots of
[1yn ®a(z) = 2™ — 1 which is equal to zero when 1 <k < N — 1.
We then proceed our proof by using induction on k. Suppose

Qlitn = QA4
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for1<n<i—1and0<I<k—1wherel<k<2%=_1. From Lemmas 3.1
and 3.2 we have
(3.8) Ski+j+1 +1+ (kl +7+ 1)(aki+j+1 — akiﬂ') =0

and hence from (3.3) again

0 = aO(S(k+1)i+j+1 - Ski+j+1) + az’(Skz’+j+1 - S(kfl)z'+j+1) + Qkitj (Sit1 = Si)
+akitj+1(Si = Si—1) + (B +1)i + j + 1) (ks 1)itit1 — Qrt1)its)
= (Stht1)itjrr = 2Skitjr1 — 1) + 2i(Akirjr1 — Qkitj)
+((k 4+ 1)i+ j + 1)(a(k+1)itjr1 — Akt1)its)
= Stkt)itjr1 T 1+ 2((k+1)i + j + D) (apitjr1 — aritj)
(3.9) +((k+1)i + 7 + 1)(a(kt1)ititr — O(k+1)its)
for 0 < j <1i—2. Suppose k is even. Then in view of (3.7), Skipjp1 = —1if j is
odd and S(;41)itj41 = —1if j is even. So from (3.8) and (3.9), we have
Akitj+1 = Qkitj

for j=1,3,---,i — 2 and

(3.10) —2(@kitj+1 = Qhitj) = Qr1)ititl — Ukt 1)its

for j =0,2,---,i — 3. However, since the a}s are +1 or —1, (3.10) implies that

Akitj+1 = kit and  Qry1)ipjtl = O(h41)itj

for j =0,2,---,i— 3. Hence agjtn, = ag; forn =1,2,--- i —1. The case k is odd
can be proved in the same way. O

Theorem 3.4. Suppose N is odd. A Littlewood polynomial, P(z), of degree N — 1
is cyclotomic if and only if

(3].].) P(_{Ij) = :I:@pl (ix)@p2 (:tml’l) . @pr(ixplpg---pr_l),
where N = p1ps --- pr and the p; are primes, not necessarily distinct.

Proof. Tt is clear that if P(z) is in the form of (3.11), then P(z) is a cyclotomic
Littlewood polynomial. Conversely suppose P(z) is a cyclotomic Littlewood poly-
nomial. As before we may assume that a9 = a; = --- = a;—1 = 1 and a; = —1.
Then we are going to prove our result by induction on N. ;From Theorem 3.3, we
have P(z) = P, (z)Py(2%) where Pi(z) = 1+xz+---+2' ! and P;() is a cyclotomic
Littlewood polynomial of degree < N — 1. By induction, P;(z) and P(z) are in
the form of (3.11) and hence so is P(z) because the degree of P;(z) is ¢ — 1. This
completes the proof of our theorem. O

Corollary 3.5. Suppose N is odd. Then P(x) is cyclotomic in L of degree N — 1
if and only if
t N e+i
™+ (-1)
Plz) =4+ || o——"—SF—
(z) 11;[1 xNi-1 (—1)eti

where ¢ = 0 or 1, Ng = 1,N; = N and N;_1 is a proper divisor of N; for i =
1,2,---,t.
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Proof. Without loss of generality, we may assume that P(z) =1+ + a2® +---.
So from Theorem 3.4, P(z) is cyclotomic in £ if and only if

P(z) = &, (x)®,,(+2P)- -, (+aP Pr-1)
(I>p1 (:L‘) e <I>p"1 (;L-Pl---IJm—l)q) (—;L-pl"'l’m) B

(_;L-pl'"an—l)

Pnq+1 Prno

(312) (1)) By, (1))
where N = p; -- - py,. Since ®,(z) = “;%11, (3.12) becomes
t N; i
Vi 4 (_1)2
P =]
(-73) zlle 2Nio1 + (_1)17

where No =1 and N; = p; ---pp, for i = 1,--- ,¢. This proves our corollary. [l
Using Corollary 3.5, we can count the number of cyclotomic Littlewood polyno-
mials of given even degree. For any positive integers N and ¢, define
r(N,t) := #{(N1,No,--- ,N¢) : Ni|Na|--- [N, 1 < Ny < Np < --- < Ny = N};
and for ¢ > 1,
(3.13) di(N) = di_1(n)
n|N

where do(N) = 1.

Lemma 3.6. Forl,t > 0 and p prime, we have

(3.14) () = (l : t).

Proof. We prove the lemma by induction on ¢. Equality (3.14) is clearly true for
t = 0 because do(IN) = 1. We then suppose (3.14) is true for ¢ — 1 where ¢ > 1.
Then

) =S diat =S dia6h) =3 (T,
n|pt i=0 i—0

So dy(p') is the coefficient of 2!~! in

(z+ 1) + (x

Il
—~

8

+
—
N
Bl
L

—N

(x+ 1) — (z+ 1)1
- )
Hence d;(p') is the coefficient of z! in (z + 1)+t — (z + 1)~ 1. Therefore, d;(p')
(1)
).

Since di(N) is a multiplicative function of N, we have

O

Corollary 3.7. If N = pi* ---pls where r; > 1 and p; are distinct primes, then

aw-i("1)
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Lemma 3.8. For any positive integers N and t, we have
0 if N=1,

(3.15) r(N,t) := {2221(_1)t—i(2)di_1(]\7) if N > 1.

Proof. We again prove by induction on ¢. It is clear from the definition that r(1,t) =
0 and r(N,1) = 1 for any t, N > 1. We then suppose N > 1 and (3.15) is true for
t — 1 where t > 2. Then

r(N,t) = > r(N/Ny,t—1)

Ni|N
Ni>1
= > r(N/Ni,t-1)
Ni|N
N>N1>1
t—1
> {Z(—l)t—i—l (' 1)di_1<N/N1)}
NN Ui=t
t—1
- ;(—1)“'—1 (t B 1) {di—1 (1) + i (N)}
t
= (i)
t—1
S (7 o
t
it
= en()anw
from (3.13) and the fact that (f:i) + (tzl) = (). O

Corollary 3.9. The number of cyclotomic polynomials in L of degree N —1 where
N =pit---pts.r; > 1 and the p; are distinct odd primes, is

Sy e (I ()
=1 j=1 J k=1 j-1

Proof. ;From Corollary 3.5, the number of cyclotomic polynomials in £ of degree
N —1is
r1t-+Ts

4x Y r(N,i).

i=1
The corollary now follows from Corollary 3.7 and Lemma 3.8. O

4. CYCLOTOMIC LITTLEWOOD POLYNOMIALS OF ODD DEGREE.

We conjecture explicitly that Theorem 3.4 also holds for polynomials of odd
degree.
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Conjecture 4.1. A Littlewood polynomial, P(x), of degree N — 1 is cyclotomic if
and only if

(4.1) P(z) = £&,, (£2)®,, (£aP) - - - &, (£aP1P2Pr=1)
where N = p1ps --- pr and the p; are primes, not necessarily distinct.

We computed up to degree 210 (except for the case N —1 = 191). The compu-
tation was based on computing all cyclotomic polynomials with odd coefficients of
a given degree and then checking which were actually Littlewood and seeing that
this set matched the set generated by the conjecture. For example, for N —1 = 143
there are 6773464 cyclotomic polynomials with odd coefficients of which 416 are
Littlewood. For N —1 = 191 there are 697392380 cyclotomic polynomials with odd
coefficients (which was too big for our program).

We can generate all the cyclotomics with odd coefficients from Corollary 2.7
quite easily so the bulk of the work is involved in checking which ones have height
1. The set in the conjecture computes very easily recursively.

Some special cases also support the conjecture. Most notably the case where N
is a power of 2. The proof is as follows. From Corollary 2.7, we have

P(z) = o{V ()85 (@) - 253 ().
Again, we assume ap = a; = 1. Since ®;(z)®2(z) = 22 — 1 and
2l—1
‘1321 (.73) = CI)Q (.73 )
for [ > 2, we have e(2) — e(1) = 1 and hence
P(z) = ®3()Q(z*),

for some cyclotomic Littlewood polynomial Q(z). Therefore, by induction, P(x)
satisfies (4.1).
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