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Abstract

We prove that if ¢ is an integer greater than one, r and s are any positive rationals
such that 1 4 ¢™r — ¢*™s # 0 for all integers m > 0, then

i 1

—
= 14+ q'r—q*s
is irrational and is not a Liouville number.

AMS Class: Primary 11J72.
1 Introduction and Results

For ¢ a positive integer greater than one and r a non-zero rational (r # —¢™ for all
integers m > 0), the irrationality of the series

=1

>

n=1

was proved by Borwein [3] in 1991. This generalized the result of the irrationality of the
series

> 1 _Ood(n)
;2"—1_; on 7

where d(n) is the divisor function, which was proved by Erdos [5] in 1948. It also makes the
unresolved claim, by Erdos and Graham [6] in 1980, of the irrationality of

= 1
Z2n—3

n=1

resolved. The technique employed in [3] to prove the above result is to examine the Padé
approximants to an appropriate function, and to show, with some modification, that they



provide a rational approximation that is too rapid to be consistent with rationality. This is
a general approach that has been explored to prove irrationality by Mahler [8], Chudnovsky
and Chudnovsky [4], and Walliser [9]. But it is not often the case that one can explicitly
construct or completely analyze the Padé approximants or rational approximants that are
required. The situation becomes more complicated when we deal with two variable functions.
By using a similar but more technical method, the second auther generalized in [10] the
irrationality of the infinite product

[T+,
n=1 q

to the two variable case -

H(l +q 7 +q7Ys)
j=0

where ¢ is an integer greater than one, and r, s are any positive rationals. In this paper,
we use the general approach to generalize the previously mentioned results of [3] to the two
variable case:

Theorem 1.1: If g is an integer greater than one, r and s are any positive rationals such
that 14 ¢™r — ¢>™s # 0 for all integers m > 0, then

i 1

—
j=0 I+ q¢r—q¥s
is irrational.

We need here the standard g analogues of factorials and binomial coefficients. The g—factorial

° (1— (1= g™ (1-q)
(1—q)n ’

(1.1)

[n]g! = [n]! :=

where [0],! := 1. The ¢g—binomial coefficient is

mq = m = ﬁ (1.2)

We note that .
[1(" =" = ()" 5D 2 — KR (L - )", (1.3)
h=0
h#k

and (see Gasper and Rahman [7]) for |t| < 1,

1 \n —n(n-41 2 - n+l —n
Ty (t — ¢F) = (-1)"*g (/2 Z [ i ]q i, (1.4)
=0 =0

and (the Cauchy binomial theorem)

— [n k(k+1)/2, k _ - k
—0 [k]‘-’ 22k = T(1 4 ¢*a). (1.5)

k k=1



We prove some properties of approximants to the function

= 1
Flag) =3 —————. lg|>1
= 1+ q¢lx —q¥ay

in section 2, and use those properties to prove Theorem 1.1 in section 3.

2 Some Results On A Relevant Function

Let |g] > 1,
= 1
Flz,y):=)Y_ : > (2.1)
iz 1+ q¢lx — g2y
and
= 1
Fuei)= 3 o (2.2
j=n

Then for k£ > 0 integer,

| o 1
F(q"z, q"y) > :

14 githy — 2it2k gy

j=0
k—1 1
- F -+
(l'?/ Jz%l-l-q]l'—qz]l'y
= : F(z,y) — Sk(z,y), (2.3)
and for 0 < k < n integer,
Folq*a,q7ry) = i :
n ’ ) 1+ qj—km _ qzj—%xy
Jj=n+1
N z:: 1+q’~v—q2Jwy
= ( 7y) - n7k+1 (lay)v (24)
where
E—1
S —_— 2.5
e(@y) = +q1x—q21vy (25)

From (2.3) we can see that for rationals ¢,z and y, the irrationality of F(q*z,¢"y) is equiv-
alent to the irrationality of F'(z,y). So we assume ||, |y| > 2 throughout this paper, as we
can replace x and y by ¢z and ¢™y respectively for some integers m > 1. Now let

—x+ /2?2 + 4zy and =z —/z?4day (2.6)

Z9 1=

2 2

Z1 =

Then
min{|z|, |22} > 1, (2.7)



as we assume |z|, |y| > 2.

Theorem 2.1: Let F(xz,y), Fn(x,y) be defined by (2.1) and (2.2) respectively, n > 2 be an

even integer, and

1 Fn/Z('T/tay/t)dt
I(z,y) == — - .
() 27 /|t|:qn/z+1 (HZizo(t _ qk)) /241
Let
. 1 L e [7/2] ke—1y2—nk
Qlq) == W};(—l) [ k ]q ;
and
n/2
. 1 n/2 . S
" k=0
n 1 da? | F(z/t,y/t)
(n/2)! dtn/2 Hzfo(t —a ) )
Then
(i)
I(z,y) = Q(¢)F(xz,y) + P(z,y);
(ii) )
n/2
g T - 1) | Qo) € Z[gl,
j=1

where Z[q] is the set of polynomials in ¢ with integer coefficients;

(iii) If we let
n/2

Rypo(w,y) = [[(1+ ¢z — ¢ ay),

=0
then

n/2
qn(3n+2)/8$n/2yn/2Rn/2(Ly) (H(qJ — 1)) P(z,y) € Z[q, z,y];
j=1
(iv) For n € N fixed,
c
|I(l’7 y)l S qn(an—l)/Z 3

where ¢, is a constant depending only on q.

Proof of Theorem 2.1: Proof of (i). As

. . - t2
Fopp(x/ty/t) = Z 5 . ST
j=n/2+1 F+grt—q2ay

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)



the poles of F,, j»(z/t,y/t) are
t=31qj and t=zij, forj_ +1 +2

where z1,2y are defined in (2.6). From (2.7) we can see that the integrand in (2.8) has
simple poles at t = 1,¢%,¢2,---,¢"/2, and a pole of order n + 1 at ¢t = 0, inside the circle
{t:|t| = ¢"/**'}. By the residue theorem and the functional equation (2.4), and (1.3), we
have

Ioy) = L/ Fopp(x/t,y/t)dt
T o ) n/2 2
=g (TILg (E = g)) /2
_ s Fn/Z(quaqky) 1 dn/z {Fn/Z(w/tvy/t)}
- n/2 n/2 A
k=0 ( 2/220 (qk — qh)> qk(”/2+1) (n/Q)‘ div/ Hkio(t - qk)
h=k

n/2

= WZ( 1) [n/2] k(k—1)/2—nk (F(;L"y)_sn/Q_k+1(;L',y))
k=0

1 dn/z{ Fopa(z/t, y/t)}

T \ T2 (= o)
:Q(q)F(z,y) + P(x,y).

Proof of (ii). As ["/2] is a polynomial in ¢ with integer coefficients, and the lowest power
of ¢ in EH/Q [n/2] gFk=1/2=1k i when k = n/2,—n(3n + 2)/8, (2.12) holds.

Proof of (iii). For |¢| < g/t

oo

. | t2
Frpa(a/t y/ft) > 2+ giat — Py

j=n/2+1

oo _p
= j_nz/ﬁl Py (1 — (2 + gixt)/(¢¥zy))

S —t2 (P + giat i
) j_nz/;+1 q2j$y§< ¢y >
5 S

Jn/2+1zoq zy) ¢

tit+2 k

) j= %;sz; gt gyt Z< > <qﬁaz)

tz+k+2

j= %ﬂ ;g ( )qﬂ (i+k+2) pht1yitl
[oe] i i t2+k+z qfn(l+k+2)/2

-2 ( ) Ryt gitk+2 _ 1 (2.17)
i=0 k=0




and from (1.4),

1 n —n(n n/2+h| _,.,
771/2 S = (—1)/2+tgn( +2)/82[ / ] hn/24h (2.18)

Combining (2.17) and (2.18), we have

Bupplaltiy]t) - (_yyoszgenomenss Xi:[n/zhf h] (Z)

Hn/2 t—q*) ' i h=0 k=0
thtitk+2 q—n(_h+i+k+2)/2 )
Rty gitk2 ] (2.19)
and then
Dy : =—— d"/ | Fup(x/t,y/t)
’ (n/?)!dt”/2 Hn/z (t—q ) o
_ 1 n/2 —n(n+2)/8 G n/2 +h i 1 q_n(h+i+k+2)/2
= (-1)"%q Z h k) aktlyitl  gith+2
htitk+2=n/2
0<h,i<n/2—2
0<k<i
_ n/2 —n(3n+2)/8 N n/2+h, i 1 1
= (_1) / q )/ Z [ h k) phtiyitt gith+z _ 1'(2‘20)
htitk+2=n/2
0<h,i<n/2—2
0<k<i
So
n/2
q"(3"+2)/8(1‘y)"/2 1_[(41J —1) | D(z,y) € Z]q, z,y]. (2.21)
j=1

So (2.14) holds by viewing (2.10), (2.12) and (2.21).

Proof of (iv). For R := ¢"/?*!
maxjyj=p | Fnja(/ty/t)|

[I(z,y)| < (2.22)
’ Rn/2 H"/Z (R — %)
Now from (2.17), we have
s x i i pitk+2
f}llaX|Fn/z(l’/tay/t)| T R Z Z (k) GIGHRF2) phF Ty i+l
j=n/24+11=0 k=0
< 00 o i i q(n/2+1)(i+k+2)
< DX k) qiGHh+2) ghtiyitt
j=n/2+1 i=0 k=0
o
- b | qi(iHE+2) p k1041
=0 i=0 k=0 k) ¢t iy
(o]
1
< Xy
J=0
< 2 (2.23)



Now

n/2 n/2
Rn/'z H(R _ qk) — RTH—I H(l _ q—n/Z—k—l)
k=0 k=0
> R2n+1 H(l
j=0
2 an(2n+1)/2’ (224)

where ¢ := H';io(l — ¢77). Putting (2.23) and (2.24) into (2.22), we have

. Cq
[I(z,y)| < prICT==yeR

where ¢ := 2/c is depending only on g. O
3 Proof of Theorem 1.1

We first prove that for z,y > 0,

[(z,y)| >0, (3.1)
where I(z,y) is defined by (2.8). In fact, from (2.17),
1 E,o(x/t,y/t)dt
I(z,y) = py . /Z(n/z o/
e, [t|=qn/2+1 $n+2 (Hk:O(]‘ _ qk/t)
. : n/2 i
1 E,o(z/t,y/t
- = Ry T(F) )«
T Jt|=gr/2+2 ing2 >0 k=0
_ Z . m2 i L/ {_71)
. n-+2 ot in
Jo "'jn/2>0 2mi lt|=qr/241 1 F2H ot dn,
oo i tz+k+2 7n(i+lc+2)/2
>y ( ez
ghHTyitl qz+k+2 1
=0 k=0
- —n(i+k+2)/2
RIP It D SR (Bt
k) pktlyitl gith+2 _q
Jaysjn 20 itk—(n+jot jn)=—1
0<i< 00, 0<k <4
)
as all z,y,¢ > 1. So (3.1) holds. Now let r, s be any fixed positive rational numbers, then
u:= s/r is also a positive rational number such that

R 1 .
F(r,u) = 2% s P v (3.2)



Again we can assume 7,u > 2 because of (2.3). Now let Q(q), P(z,y) and Rn/z(z,y) be
defined in (2.9), (2.10), (2.13) respectively, and

n/2
H,(q) := gnBnt2/8 H(q’ - 1), (3.3)
j=1
then
0 < |Hn(g)| < hygq" "7, (3.4)
where hg := H';o:()(l —¢77), and
Now let
Q7 (r,u) := r"/2u"/an(q)Rn/2(r,u)Q(q), (3.6)
and
P*(r,u) := r”/zu”/zﬂn(q)Rn/z(r,u)P(r,u). (3.7
Then
Q*(r,u), P*(r,u) € Z[g,r,u], (3.8)
and
A =|Q(ryu)F(r,u) + P (r,u)|
= (ru)""? |Ho(q)|| B ja(r,u)| [I(r,u)]. (3.9)
Now A > 0 and by (2.15),
n/2
A< (ra)"TH HN (" T+ 77 +¢7%) | 1 (r,w)
j=0
n+1l n(n n(n—+2 ¢
< hyfy (ra)"T gD g qn(an—l)/Z
n+1 C
= hqfq (T’LL) qn(2nil)/4 ) (310)
where f, := H;czo(l +q 7 +q %) is a constant depending only on g. Finally, if
roi= % and  w:= % (3.11)
with ¢, j,[, m positive integers, then
Q" (ryu) = (Im)" Q*(r,u), (3.12)
and
P**(r,u) := (Im)" P*(r,u), (3.13)

are integers, and by (3.10),
0

A

|Q™" (r,u)F(r,u) + P™(r,u)]
(Im)" |Q(r,u) F(r,u) + P~ (r, u)]|

n n+1 C
(Im)" hyfq (ru) qn(2n+1)/4’

INA



which tends to zero as n — oo, This shows that F(r, ) is irrational, that is

— 1
is irrational for ¢ > 1 integers and r,s positive rationals. This completes the proof of
Theorem 1.1. O

Now by the standard methods (as in chapter 11 of Borwein and Borwein [1]), the estimates
in the proof of Theorem 1.1 give that, under the assumption of the theorem,

1
> —,
to

‘F(r,u) - %

for some constant a and all integers s and ¢, and hence

o0 1
> Tr o=
j:01+qu q*s

is not a Liouville number.
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