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Abstract

n
We estimate the maximum of [] |1 — 2% on the unit circle where
7=1

1 < a1 < az <is a sequence of integers. We show that when «a; is 7% or
when a; is a quadratic in j that takes on positive integer values, the max-
imum grows as exp(cn), where c is a positive constant. This complements

results of Sudler and Wright that show exponential growth when a; is j.

In contrast we show, under fairly general conditions, that the maxi-
mum is less than 2" /n", where r is an arbitrary positive number. One
consequence is that the number of partitions of m with an even number
of parts chosen from a;,as...,a, is asymptotically equal to the number
of such partitions with an odd number of parts when a; satisfies these

general conditions.

AMS-MO classification numbers: 11 P76, 11C08

1 Introduction

Let A = {am}55—_1, a1 < az < --- denote a sequence of positive integers. Let

q% ,(m) denote the number of solutions to
m=aj +aj, +---+aj , (1SJ1 <Jp << gy Sn)

where 7 is an even natural number and let ¢9 ,(m) denote the number of
such solutions with r odd. We consider the generating function for g4 ,(m) =

¢4, (m) = ¢4 ,(m)

Fan(z)= H(l —x%) = Z an(m)z™ .

j=1 m>0

The case of a; = j has received a very careful analysis by Sudler [16] and Wright



17], [18]. Sudler shows that if a; = 7 and
[ j

MA,n = mrgx | q_An(m) |

then
log Man = Kn+ O(log n)
where K is explicitly given (K = .19861...). The fact that M,, grows exponen-

tially is perhaps surprising since Euler’s pentagonal number theorem states,

o0

[la-ah= 3 (yma
k=1

m=—oo

See Hardy and Wright [9].

Let A, denote the sequence formed by taking the integers not divisible by the

prime p. P. Borwein [3] has determined the corresponding K for the sequences

Ay forp =3,5,...,17.

In this note we first derive upper bounds on M4, (see Theorem 2.1) under
the general conditions of Roth and Szekeres [14]. We then derive asymptotic
estimates for ¢4 ,,(m) ~ ¢4 ,,(m) for m sufficiently near the maximum of ¢ ,,.
We next consider lower bounds for M, ,,. There is a close analogy between this

problem and the following problem of Erdos and Szekeres [8]: Estimate M (n)

where
n
M(n) = min max 1— ki .
(n) {k1 ks, kn} |2|=1 H | |
J=1
Here ky, ks, ..., k, may be any positive integers, not necessarily the first terms

of a given sequence A.
The best upper bound for M(n) is that of Belov and Konyagin [2]
M(n) < exp(O((logn)")).

Previously Atkinson [1] and Dobrowolski [3] proved the upper bound of

exp(O(n? logn)), and Odlyzko [12] proved the upper



bound of exp(()(n%(log n)g)).M.N.KolountzakiS [10] proved the upper bound
exp(O(n'/?logn)) for M(n).

The strongest lower bound /2n is due to Erdds and Szekeres [8]. Erdos [7] has
conjectured that for all large n, M(n) > n* | k any constant. There has been
little progress on this old conjecture. The only non trivial results are due to
Maltby [11]. These concern the norm of products of length n for n = 7,9, 10,11

and show that the L norm of these products exceeds 2n.
Define
| 2(2) [|loc = lgllg’l h(z) |
Clearly any lower bound for M(n) is a lower bound for || Farn () ||cc-

We exhibit families of polynomials, p(j), such that if a; = p(j) then M4, > ",

¢ a positive constant greater than 1. We also exhibit sequences A such that

Man < exp(O(n% logn)).

We further conjecture that M, ,, grows exponentially if a; is a polynomial that
takes integral values for integral j. (Such a polynomial p(j) is an integral com-

bination of binomial coefﬁcients).

2 Theorems and Proofs

We shall use the following two conditions of Roth and Szekeres [14]. on a

sequence A = {ay}

(I) limp— o0 %;—k’“ = s exists, s > 0.

&k .
(ID) ¥ Jr =info,,)1 <0 <1 Togk 2_)1 || aa; ||?, then

Jp — o0 as k — oo (here ||z|| denotes the distance of z from the nearest

integer).



Roth and Szekeres [14] showed that the following sequences satisfy (I) and (II).

(i) The sequence a; = f(j), where f(z) is a polynomial which only takes
integral values for integral x and has the property that corresponding to
every prime p there exists an integer z such that p [ zf(z).

(ii) The sequence a; = f(pj), where f(z) is a polynomial as in (i) and p;

denotes that j-th prime.

Note that (ii) includes the case a; = pj. Also note that each of the above f(z)

is an integral combination of binomial coefficients (Z)

Theorem 2.1 Suppose A is a non-decreasing sequence of positive integers, in
which infinitely many members of A are even, and infinitely many members are
odd. Let A, = {a;,}72,,aj, < aj, < --- be the subsequence of A formed by
taking all the elements of A that are odd. Moreover, suppose that A and A,
satisfy (1) and (II) above. Then

|| Fan(2) |l <2"n™", for any constant r > 0 .
In [8] Erdés and Szekeres show that ||F4n(2)||s = 0(2") for a certain A. The-
orem 2.1 shows that this is true for a quite general class of A.

Proof: We suppose that loga; ~ tlogj, loga;, ~ slogk, where s, and ¢ are

positive contants.
Now notice that if x = exp(wi + 2mif), —% <6< % and a; € A, then
|1 —z%| =1+ e2maje| = 2|cos(27raj 9)|

< 2exp(=c ||a;60 )

Letting a dash indicate a product over elements of A,, we combine (I) and (II)

to obtain,

H (L—z%)| <2™ m]", for each r > 0,my = thenumberof factors
j<m



provided |0| > (2a,,)”!. Thus if
AMl :Ml(n):| {CL] | 1S]STL, aj EA—A()}l
we have

| Fan(z) ||oo <27 M (n—M)™" 2™ forallr > 0.

Since n — My = [{a; | aj € Ao, a; < an}|, and since A and A, satisfy (I) we

a=¢) —e .
have n — My > ap ® > n(ls*) , for [0] > ai’ and
| Fan () 2% 07", for cach 7 > 0.

This gives Theorem 2.1 when [0] > 2.

Suppose now || < 2. If a; € A — A, then

- am
|1—x“j|§cﬁ.

am

Thus if A, = {aj | aj € A— A, a; < am%}, and My = |Ac|. Then

c Mo
S H ar <_’> 21’7‘—1’\42

a
a; €A, m

H (1—a%)

(-0

and since a,, > n = we again have if M;(n) — oo as n — oo

<2™n~", foreach r >0,

H(l —z%)

proving Theorem 2.1.

Now Odlyzko and Richmond [13] prove that.

Theorem 2.2 Suppose A satisfies (I) and (II) above. Let

n

N=> aj B:ia'j..
j=1

=1



Let L > 0 be any constant. Then if | m — & | < Ly/Blogn and

H(l +a%) = Z gan(m)z™

m>1

we have

Qmﬁ (N2
QAm(WU’” _T;E; e 2( g)/B

We now give an example to show that we cannot in general expect exponential
growth of ||Fy, x(2)||co. This is in Borwein and Ingalls [4] but it is very simple

and we reproduce some of it here.
Lemma 2.1 Let 1 < 31 < B2 < ... and let

Wa(z) = H (1_2/61-—&)
1<i<j<n
then
[[We(2)||le = max [W,(z)| < nt .

|z]=1
Proof: We explicitly evaluate the Vandermonde determinant
1 25 .. DA

D= [ 17—

1<i<j<n 1 2Be e

As each entry of the matrix has modulus < 1 in the unit disc, by Hadamard’s

inequality, we have ||D(z)||s < n%. Thus

I TI @=2% )l = [IDn(2)llse < ¥ .

1<i<j<n



Observe, as Dobrowolski did in [6], that if we take §; = ¢ we have that

n—1
T =)l <n¥
i=1
a result first proved by Atkinson [1] using Fourier series:

Theorem 2.3 Let A= {3}, be the sequence formed by taking the set

{2" = 2™ | n > m > 0} in increasing order. Then for all n

| Fan(@)lloo < (320)V3E

Clearly, any a > 2 could play the role of 2 in the construction of the 3;’s with

the same conclusion. Indeed we have

Theorem 2.4 Let {6;} be any sequence of integers and let {B;} be the sequence

of differences in the following order

{81 = 80,82 — 61,60 — 80s-ry Oy —Op_1,-rybn = b0,...}

(So the n—th block is {6, — 6pn—1,..., 6n — 61,6, —80}). Then

I TI =27 lle < 20)VE

We now turn to the study of lower bounds for || Fa n(x) ||oc-

Let A = {a;}32, be a sequence of positive integers. For p a prime let I, , =

14, p be defined by

I,,={a; : plaj, 1< j<n}.



Lemma 2.2 (Szekely). Let A= {a;}32, be a sequence of positive integers. For

1<a<p-—1,let

2ma; o

Glap)= T[ (-e7")

a; 1y, p

Define no = |Inp|. Then there is an a such that,

n—mng)

(
| Gla,p) |2 p @ .

Proof: Note That

1 p-l 2mia; o
max | G(a,p) | > - l—e 7
1<a<p—1 P
a=1 a; €I, ,
p—l 27rzaJa plfl
> l—e" 7
a=1 a;€I, ,
p71 1

2mim | =T
- T e

Since the inside product is

. 1— 2P _
ml—>ml 11—z =P
the Lemma follows.

We now give a demonstration of the fact that given a positive integer k, the
maximum value of the product H;nzl |1 - 2" |, as = takes on values on the unit
circle, grows at an exponential rate with respect to m, as m grows large. From
this fact, it follows in a straightforward manner that the maximal coefficient of
this product (when considered as a polynomial in z) grows at an exponential

rate with respect to m. It is known that the product being considered grows at



an exponential rate with respect to m, when k = 1 (see Sudler [16] and Wright
[17] [18]). Thus we will restrict our attention to the case when k is an integer
that is at least two. In order to obtain the desired results, we will have to appeal

to some results from basic group theory and introduce some notation as well.

First, note that if k is an integer that is greater than or equal to 2, and p is
a prime with p = 1 (mod k), then the set {]k + pZ | 0<y< p} forms
a subgroup of (Z/pZ)* of index k. We denote this group by Ry, as it is the
subgroup of k’th power residues. Note that if ¢ : (Z/pZ)*i—) Ry, is given by
the assignment j + pZ — j* + pZ, then ¢ is a group homomorphism, and hence
Card (¢~ ({j* + pZ}))= k. Also note that if (p — 1)/k is even, then —1+pZ is

an element of R;. We now proceed to prove the result mentioned earlier.

Lemma 2.3 Suppose k € N, and p = 1+ 2kM 1is prime. Then there 1s an
integer q such that

p—1 X

[Ti-e=71> ()

s=1

Proof: Choose integers 1, 32, ..., Bk such that 81 + pZ, B2 + pZ,..., B + pZ
gives a complete set of representatives of the k cosets of R} in (Z/pZ)*. As
% is even, it follows that we can choose integers ay,as,...,ap, such that
o1 +pl, —ay +pZ, s +pZ, —as+pZ,...,an +pZ, —ap +pZ forms the complete

set of elements of Rj. Thus we have

pl ariskg M 27iajq —2miajq k
TTh-e= = (TI0-c -7
s=1 j=1
M 2miagq —27ia;q k
= (a-0-) @
j=1

Now let R(z) € Z[z,z~"] be given by Hjjvil(l —z%)(1—2~"). It follows easily

10



2mig
P

from (%) that R(e”» ) > 0if 1 < ¢ < p—1, and that R(1) = 0. Moreover, it

is easily shown that for any Laurent polynomial, L over Z and any prime, p,

one has the fact that E?;& L(ezﬂTij') is an integral multiple of p. Hence from

_ a7wij
our previous remarks we have, Z];:ll R(e P]) = ps, for some positive integer
s. Notice
k X p—1
2mif; k 27is ksp
Rle77 )=——>» R(er )= *%
SR = AT R = M (e
j=1 s=1

2miB; |
Also note that Ele R(e ’ ) is an algebraic integer. From (*%), we see that

this sum is also rational. Thus this sum is in fact an integer, and so % must

Tig;

divide s. It follows that Z;‘le R(e_ » ) > p. In particular, there exists some [

with 1 <1 < k such that R(e.HTfﬁl) > (p/k) And so from (*) we see that

pt 2migik k
[T - > ()

For some integer ¢, as required.

Lemma 2.4 Let M > 2 and let p =1 (mod k) be prime then given q € Z,

¢#0 (modyp), we have

p_l T —k7log?
H(l_ll_—‘az\ll)z (pe/2) brlog

s=1 |1 —€e P

Proof: Notice that

L—e|  |L—e% 1
omigh < 2xi, e i S 1/2
L—e 7 |1 —e7 | |1 +e2r +e7 +e2r

11



for 1 < s < p—1. Furthermore, it is easy to see that 1—z > 4 % for 0 < < 1/2.

Thus
pl |1 - e;_l‘jf
H 1- 2rigsk
SN et

_mi_ .k -1
g1z et )

v

> g/ (S22 sz ) g

Now let 31, 32,..., 3, be integers such that 81 +pZ, 3> +pZ, ..., Br +pZ forms a
complete family of representatives of the k cosets of Ry in (Z/pZ) ". Then there

is some ¢ with 1 < ¢ < k such that

p—1 p—1 -1

. mqsk ! 5w 7Bist .
S s = 3 pein(

s=1 s=1

Hence

1

L ™ Sk B
3 [2sin(TE)
s=1 b

k p—1

Vs 'Sk,
SO J2sin ﬁ; )

j=1s=1

-1

INA

p—1lp—1 1

= TS ™y

j=1 s=1

p—1 1
= k Z |2 sin(mﬂ (by changing the order of summation)
I
m=1

(p—l)/Z am. —1
= k Z (sin(—))

m=1 p
(p—1)/2
k Z_l % (by Schwarz's inequality)

INA

(k/2) (1 +1og(2 )

IN

IA

ep
pk 108‘(7)/2

12



By Schwarz’s inequality we mean the inequality z/2 < sinw < @, for 0 < & <

/2.

Thus by (1), we have

p-l |]__6;Tf1| ep. —kmlog?
I <1 _ —> > 4 (/oM phloB($)/2) — (D) 755
= A= 2

as required.

Theorem 2.5 If k 1s an integer greater than or equal to two then there exists

a constant ¢ > 1 such that

m

. k.
max (I=2a™ ) >c™
=1

z€ST

n

for all m sufficiently large.

Proof: Choose a prime p with p = 1 (mod 2k) and p > é(k3e4/8)k. By

lemma 2.3, we can choose an integer ¢ € Z such that

p-1 pih .
jl;[l|1—€ 1z (3)

Let ey = and let Oy = £ 4+ = for all N € N. Notice that

_ 1 q
Tp(pN)k> P

N—-1p—1

Np 2mi k N
H |1_e2ﬂ'i@1vnk| _ H H |1_e27ri(pj+nz)’°aj\ve-71§m | H |1_e21riEN(Ps)k| (1)
n=1 m=1

j=0 s=1

Now

N N
H |1 . eZTriEN(pS)kl = H |2 Sin(ﬂi":N(ps)k)l
=1 s=1

vV

2ren(ps)k (by Schwarz's inequality)

Ao

N
s=1

13



(4pk')NAT!kN
7NpN (pl\r) kN

4N
TN NN (by Stirling’s approximation)

Thus by (1), we have

Np 4 N-1p—1 ok
T 1= erom z () T T e e emontem’|
n=1 j=0 m=1

Now

2rimPq

|1—e ? eZWifi\'(Pj-Fm)kl

2 |1 . 6271;71 q | _ |e27rizmk ||627,.i;mk eZWieN(pj+m)k|
2mimbq |1 - GQWiEN(pj+m)k
- |1 e |<1 - 2mimkq
[1—e 7 |

(A4
—
|
o
\
3
2
3
N
/N
=
|
ey
|
e
= ~J|
EF =[3
N
\/

N-1pzl 2rimb g . . I3
|1 —e »  elmien(pitm) |
j=0 m=1
e »qu trd 1—e7|
> [ ITn- (e )
=0 m=1 =0 m=1 [1—e" 7 |
y e —kNmlog?2
2> (%)kw(%) T (by lemma 2.4)

Thus by (2), we have

Np N _mlog2 \ kN
- Q2miONnt | 4 P 2
outet - pek k e

kN log 2
7



4]\/ kaN/S <2>kN/3

pNelcN kkN e

4p1/3 9 k/3 %PN
() )]

1
Now let C' = (4p1/3 (g) k/3> . NoteC'>1,asp > 61_4 (k364/8)k' Now let e > 0.

ekkk \e
Choose ¢ satisfying C' > ¢ > 1. Then notice that given m € N, we can find a
positive integer N such that (N — 1)p < m < Np. Then

m Np Np
H |1 _ ezmeNj’cl — (]._.[ |1 . ezmeNjkD/( H |1 _ ezmeNj’cl)
j=1 j=1 j=m+1

2 Cr]Vp/QNp—m

> 27rPcm

> " (for sufficiently large m)

We now consider sequences {m;}, in which m; = aj* + bj + ¢ for all j € N,
where a,b, and c are elements of Q such that m; € N for all j € N. We show
that for such sequences, the maximum obtained by H?:o |1 — 2™i| on the unit

circle of the complex plane grows at an exponential rate with respect to n, as n
tends to infinity. Note that it is no loss of generality to assume that {m;} forms
an increasing sequence of natural numbers, as our sequence must be eventually

increasing.

Lemma 2.5 Let p =61 (mod 120) and let k be a quadratic non-residue mod-
uwlo p and let € > 0, then

p—1
2mi(ks?42) P
H|1 —e | >eP
s=0
ks?Z—2 (mod p)
for all sufficiently large primes, p.

15



Proof: As p = 61 (mod 120), it follows that £1,43,+4,+5 are quadratic

residues mod p. Thus if ks? # +2  (mod p), then |1 — e B | >|1-ce Pi|,

and so
27i(ks?42) i
|1—C (’Cp+)| |1_e4p
—— 2 |1l 21/2
2miks? 12
[1—e" > [1—e7 |

Recall that 1 —z > 4% for 0 < z < 1/2, and so we have

be? .s:1
s*#Z+2 (mod p)

p—1 4mi )

I o mer LY S gty
27rik:52|
e

Notice that given an integer 7, as s runs through the values 1,2,... p, the con-
gruence ks> = j (mod p) has at most 2 solutions. We may use this fact, and

equation (%), to obtain

4G5 SR (sin( )|~ sin(=22)| )

p—] 4mi
1-—
I (1 _ Q) >
2miks® -
s=1 |1 —€e 7 |
ks?Z+2  (mod p)
L.d ( 1)/ \
> 4~ E55 (%) (Schwarz’s inequality)
> 4—47r(10g(p/2)+1)

pe\ —4awlog4
()7 (=)

Notice that the congruences ks> = 0 (mod p) and ks> = 2 (mod p) have
respectively 1 solution and 2 solutions mod p. Thus
p—1

H |1 _ e27ri(k.52+2)/p|

s=0
ks?Z—2 (mod p)

vV

47i
2miks? |]. —er |
pen ) in 2 T -7 (1- L)

1 —e >

k §2§E:|:2 (mod p)

|2s1n )||251n(47r |2

|2sin (37 )|2|2sm(—2”)|2

(pe) 4rlogd H |1 - ermpks by (#x)

16



pe 4”1054M sin(— 1
> (2) (47 /p)? (47T/P)2< ,;Hl ? )> "
(==

Where the last step again follows by the Schwarz inequality.

Let L(s, xp) denote the sum Z, 1 ; for ®s > 1. It is known from the work

of Dirichlet (see Davenport [5]) that for p=1 (mod 4) that,

1

(] H suin(2) / ( H 2sin(X)) = (VL) (D)

(2 )——1

We also note the classical identity:

H "szn(—) H 25m HQsm =p (i)

noly (%):1

‘cl:

Combining (7) and (4i) yields,

VPL(1 Xp)

H 25111(—) = /pe ? forp=1 (mod 4)

(% )——1

Moreover Siegel [15] was able to show that given ¢ > 0, that L(1,x,) > p~°
for all primes p sufficiently large. Combining these two fact with (1) gives the

result.

Theorem 2.6 Let f(x) = ax? + bx + ¢ be a quadratic polynomial, such that
{f(n)}neN forms a non-decreasing sequence of positive integers. Then there

exists some ¢ > 1 such that

n
1 — 2 f n

for all n sufficiently large.

17



Proof: As the restriction of f to Z gives a map from the integers into itself, it
follows that 2a, 2b, and ¢ must all be integers. In light of the previous theorem,

we may assume that b — 4ac # 0. Notice also that lim, . fif) =a > 0, and

as f(n) > 0 for all n € N, it follows that there exists some positive constants

C1,Cy such that Con? > f(n) > Cyn? for all n € N.
By lemma 4.1 we may choose a prime p, p =61 (mod 120) such that

p Ti(ak?42
H |1—62(;+U)|>ew

2y !
ak*Z—2 (mod p)

Whenever « is a quadratic non-residue mod p. We also insist that

C?eVP

pey —wlog2 2
W(_) > 1, and p # a,b” — dac (mod p)

2
Let a™ be the multiplicative inverse of @ mod p. Then we have

1..: -1,
an® +bn+c=a(n+ ba” 1%))2 + (pT)bza* +c¢ (mod p)

It follows that there is some integer d, with pfd, such that the sets

{d,a+d,4a+d,9a+d,...,(p— 1)’a+d}

and

{£(0),£(1), £(2),.... fp = 1)}

are just permutations of one another when considered mod p. Now, notice that

if (d%*): —1, then f(z) has no roots mod p, and so by appealing to lemma 2.2

we can see that the result will hold. Thus we may assume that (d%) = +1.

Now choose ¢, such that gd =2 (mod p). Note

()= ()59 ()= G)-

18



S 1 Q) — B -
Let ey = IC5NT and let Oy = > + £n. Then we have

Np
H |1 _ 621ri®Nf(s)|
s=1

Np Np . 2mif(k)en
e . 2migf(k) |]_ —e |
2 H |1 _ 627!'2 J'Vf(])l H |]_ — € P |(1 — W)
j=1 k=1 — e P
f(])E(‘)g (mod p) f(k)0 (Ilnod p)
Np L rig(ak?+d) 1— 2miCy(Np) ey N
> ]I |2sin(7rf(j)gN)|< T o5 <1 1 o |>>
Jj=1 k=1 |1 - efl
f(7)=0 (mod p) ak®z—d (mod p)
Np P g 27wiCo(Np)len N
B 27i(qak?+2) |1 —e 2(Np) 1\|
2 H (4f(])6N) < ]._.[ |1 —¢ ’ |<1 - 27i(gak2+2) ))
=l L k=1 [1—e 7 |
f(j)=0 (mod p) qak?Z—2 (mod p)

Np p 2miCy(Np)e N
R 1—e 2(Np)Ten| L
2 H (4f(])6N) <€ v H <1 - |1 2mi(gak?+2) | (1)
j=1 k=1 —e 4
f(])Eg (mod p) qak®#—2 (mod p)

Where the penultimate step follows from Schwarz’s inequality. Now notice that

|1 _ eZﬂ'ng(Np)zswl |1 _ e;’—}f
2mi(gak?42) = = < 1/2
1—e » | [1—e7 |

And so we may again appeal to the fact that 1 —z > 47 for 0 < z < 1/2 and
the fact that for any given integer, r, the congruence qak* + 2 = r (mod p)
has at most two solutions mod p, and use the same type of argument that was

employed in deriving equation (*#) in lemma 4.1, to obtain

p 27iCo(Np)len
1—e 2(Np)Ten| DE. rlox2 .
II (1 - e ) 2 ()T (2)
9 k:} ) |1 — € P |

qak®#Z—2 (mod p)

19



Substituting the information from (2) into (1), we obtain

Np Np e \N
Hll—ez""i@Nf(S)l > H (4f(.])€N) (e%(%)—rlogz> (3)
s=1

j=1
F)=D (mod p)

Finally, notice that f(z) has at mod 2 roots mod p, and so

Np N-1

T “4£G)en) (4en)®™ TT (C1(1 +pn)?)”

j=0 n=0
f(j)=0 (mod p)

v

=

2 (4C16N)2N(p—21\/v—4) (pm)4
m=1
) ) p4N]V4N
> (4C1en)"M(p’N ') (——5—) (Stirling’s fmla)
e
012 N _2,7—4
- (C§p264) v

C? N
- (166'22p3e4) )
Where the last step follows from the inequalities p=2 > p~2~, and 2V > N.

We define

C = Cf@% (]E)fwlogZ %
~ \16C2p3et * 2

Notice p has been chosen so that C' > 1. Choose some c satisfying C' > ¢ > 1.

We now Combine (3) with (4) to obtain

C"fe VP

Np e 1\ pN

2710 n f(5) —mwlog2\* _ pN
Hll_e I | 2 ((166;2]7364 (7) ) ) _Cp
s=1

Let m be a given positive integer. Just as with theorem 3.3, it is easily shown

that

maXH |1 — zf(s)| >27PC™ > ™
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For all m sufficiently large, as required.
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