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Abstract

For a fixed algebraic number o we discuss how closely a can be ap-
proximated by a root of a {0,+1,—1} polynomial of given degree. We
show that the worst rate of approximation tends to occur for roots of
unity, particularly those of small degree. For roots of unity these bounds
depend on the order of vanishing, k, of the polynomial at a.

In particular we obtain the following. Let By denote the set of roots
of all {0,4+1,—1} polynomials of degree at most N and By (a, k) the roots
of those polynomials that have a root of order at most k£ at a. For a Pisot
number a in (1, 2] we show that

1
min |o - 8| X —,
BeBn\{a} at
and for a root of unity « that
1

la = 8] <

Illil'l .
BEBN(ak)\{a} NEFD[Fé(d)]+1

We study in detail the case of & = 1, where, by far, the best approxima-
tions are real. We give fairly precise bounds on the closest real root to 1.
When k£ = 0 or 1 we can describe the extremal polynomials explicitly.
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1 Introduction

We are interested in studying how well an algebraic number a can be approx-
imated by a root 8 # a of a {0,+1,—1} polynomial of a given degree. In
particular if we fix o (typically itself a root of a {0,41,—1} polynomial) and
plot the roots of all {0,+1,—1} polynomials of degree at most N how does
the size of the zero-free region around a vary with N. For example, Figure
1 shows the roots of all {0,+1, -1} polynomials of degree at most eight. We
give a related picture (Figure 2) for roots of all {—1,+1} polynomials of degree
twelve, showing some of the fractal behaviour visible for higher degrees. Similar
pictures have been produced for {0,1} polynomials by Odlyzko & Poonen [11],
and for polynomials of low two-norm by Yamamoto [14]. Barnsley and Har-
rington [2] consider the limiting case (as the bound N on the degree tends to
infinity) showing that every « in the annulus 1/v/2 < |a| < 1 is a root of some
{0,41,—1} power series (see also [1, §8.2] for pictures of the boundary of the
zero accessible region).

Let By denote the set of roots of all {0, +1, —1} polynomials of degree at most
N and By(a,k) the roots of those polynomials that have a root of order at
most k at @. Around points away from the unit circle that are themselves roots
of {0,+1, —1} polynomials or power series, we show that the distance to the
nearest root decreases exponentially with degree:

— min log|la— 3| < N.
BeBn\{a} gl |
For points on the unit circle which are not roots of unity but which have small
Mahler measure we show a similar exponential decrease. For Pisot or Salem
numbers in (1,2] we can make this fairly precise

— min log|a — 3| ~ (loga)N.
seimin gla —f| ~ (loga)

For a dth root of unity the growth rate is only subexponential,

— min logl|a — <<\/N10 N.
EEBI\’\{O‘} gl ﬁl g

For roots of unity the closeness of a root depends critically on the order of
vanishing k of the corresponding polynomial at « (off the unit circle the order
of vanishing is bounded and generally less significant). For fixed & we show that
the decrease is merely polynomial and give the correct order of growth (the
slowest growth occurring when d = 1,2,3,4 or 6):

1

o = 8] = NOEHD[ o]+

min
BeEBN(a,k)\{a}
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The most interesting case seems to be @ = 1 where the best approxima-
tions are overwhelmingly real, as is immediately apparent on looking at a
plot. For example, Figure 3 shows a detail of the plot of the roots of all
{=1,+1} polynomials of degree fifteen. This latter picture was generated by
the CECM Roots of Polynomials Interface developed by Loki Jorgensen (URL:
http://www.cecm.sfu.ca/organics/papers/odlyzko/support /polyform.html). Al-
though the region around 1 appears very similar in Figures 1 & 2 we show in
Theorem 10 that the limited order of vanishing at 1 possible in the {—1,41}
case actually leads to a significantly worse rate of approximation to 1.

In Section 3 we therefore concentrate on bounding the closest real root to 1 and
on making the k dependence of the implied constants in

1

It =A% oy

min
BEBN(1,k)\{1}
explicit. When the multiplicity & of the root at 1 is restricted to 0 or 1 we
determine the growth precisely

4 32

i 1- ~ — 1 1 — ~ —
ﬁeswl?llﬂ)\{l}l Al N?’ ﬂemn(jll,rf)\{l}l Al N3’

and in Section 4 give the extremal polynomial. Such explicitness seems inacces-
sible for higher orders.
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Figure 1: Zeros of all polynomials with {0,41,—1} coefficients and degree at
most eight.
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Figure 2: All zeros of all degree twelve polynomials with {+1, =1} coefficients.
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Figure 3: Detail around 1 showing zeros of all degree fifteen polynomials with
{+1, -1} coeflicients.
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2 Results for general points

We recall the definition of the Mahler measure M of a polynomial:

d d
M (ad H(x — ai)) = |ad| Hmax{l, |ai]}.

For an algebraic a we shall use M(«a) to denote the Mahler measure of the
minimal polynomial of a. We shall write d(F') for the degree of F' and F’(x)
for the jth derivative of F(z).

Theorem 1 Let « be a fized algebraic number. Let F be a {0,+1,—1} polyno-
mial of degree N with a root of order k > 0 at a, and (not necessarily distinct)
100ts B1,...,3m not equal to «.

Then, for fized k and m,

c1(m, k, )
M(a)éN(N + 1')02+me’

o= B+ = il 2

with
P 1 if a 18 real, — 0 f |a| #1,
' % if a 1s complex, 1 4 |a| =1,

and

c2 = ca(k, @) i=6(k+ 1)dy,

where dy denotes the number of conjugates of o (including «) that lie on the
unit circle.

Explicit expressions for the constant ci(m,k,a) can be found in the proof of
Theorem 1. In particular when « is a dth root of unity we obtain

cr(my k, ) = (k)[3e@]g=m,
where ¢(d) is the usual Euler phi-function.

For a fixed multiplicity £ we see in Theorem 1 a clear difference between the
roots of unity where the distance can decrease at most polynomially and non-
roots where exponential growth is allowed. Notice also that exceptionally good
approximations prevent the remaining roots of that polynomial from coming
too close. Taking m = 1 in Theorem 1 gives a lower bound

c(kva)
|C¥ - ﬂl > M(a)éNNﬁ(k—I—l)d1+€’
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for the smallest root, 3. Taking m = 2 it is clear that we can not hope to come
close to achieving this unless the remaining roots 3; satisfy |o — 3;| > N~}
when |a] = 1 or > 1 when |a| # 1. This strongly suggests that the best
approximations should occur as single roots and that for real a they should
probably be real rather than a pair of conjugate roots (it must certainly be the
case in Corollary 3 & 4 where we have sharpness in this lower bound). Note,
when 3 is a double root or « is real and 3 complex applying Theorem 1 with
m = 2 gives
c(k, a)
A{(a')%él\]j\r%é(k+1)d] +e’

oo = 8] >

Now if v is not a root of unity then the maximum multiplicity k of a root at «a is
bounded. To see this observe that for a to be a root of a {0, +1, —1} polynomial
it must be an algebraic integer and hence, by Kroneckers theorem, if not a root
of unity it must have a conjugate «; off the unit circle. It is straightforward to
see that away from the unit circle the multiplicity is necessarily bounded. In [3]
we gave explicit bounds on this multiplicity, Borwein-Erdélyi-Kés [5, Theorem
4.2] in fact show more precisely that

) 1
k<cmn ———
b TT— Jal
for some absolute constant c. It is not known whether the multiplicity for non
roots of unity is bounded by an absolute constant (independent of a). It is an
interesting problem to decide which non roots of unity « are multiple roots of
{0,+1,—1} polynomials. Of course any root of a {0,+1, —1} polynomial must
certainly lie in the annulus % < |a| € 2. Conversely we know from results
of Bombieri-Vaaler [4] that if the minimal polynomial of a has measure less
than 2'/% then o must be a kth order root of some {0,+1, -1} polynomial (in
particular as mentioned in [3] there are at least two Salem numbers which must
be a fourth order root and infinitely many examples with a triple root). It is
not known whether there exists a root of multiplicity five or more.

For a a dth root of unity Theorem 1 gives

(k1) [3e()]
(N + 1)(k+1) [$o(d)]+1"

o = 8] > e

Although for a fixed k this is only polynomial in N, it is easy to see that for
appropriately large N the multiplicity k can be made arbitrarily large. However
for a given N Borwein-Erdélyi-Kés [5, Theorem 2.4] have shown that

k< {?ﬁJ + 1.
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(From the above comments we readily deduce lower bounds independent of the
multiplicity k, which decrease exponentially with N when « is not a root of
unity but only sub-exponentially when « is a root of unity:

Corollary 1 For a fized algebraic o, any root § # o of a {0,+1,—1} polyno-
mial of degree N satisfies
| — 8] > exp(—c(a@)N + O(log N)), c(a):= §log M(a),

if a 18 mot a root of unity and
8
o= B > exp(=e(@)VNlog N + O(VX)), (0] = 2
if a s a dth root of unity.

For an « off the unit circle that is a root of a {0,+1,—1} polynomial or a
{0,41,—1} power series it is easily seen that we can construct roots exponen-
tially close to a. We shall assume that || > 1, otherwise we work with ™!
and the reciprocals of the polynomials, () f(z 7).

Theorem 2 Suppose that o is fized with |a| > 1.
(i) If there exist {0,+1,—1} polynomials F, G with a Toot of order ezactly
k>0 and s > k at a respectively, then, for fized F and G,
Hy(z):= foa(G)G(w) - F(z), N>9J(FG),

is a {0,4+1,—1} polynomial of degree N with a Toot of order k at o and
m = (s — k) roots 3; # o with

. _ cj(a) Nst2
ﬂ]_a_aN/nz (1+O<011V/m ?

a(G) Fk(a)/k!GZWji/m
G5(a)/s! ’

If a is real and m = 1 then the root s also real.

where

ci(a) == a j=1,...,m.

(i) If there exists a power series

oo

F(z)= Zcimi, c; € {0,+1,-1}

i=0
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with a oot of order exactly k > 1 at a™', then, for fived F, the polynomial
reciprocal of the truncations

N

Hy(z):= Z en—izt

i=0

are {0,4+1,—1} polynomials of degree N with k roots [3; (counted with
multiplicity and not necessarily distinct from «) such that

c(a)

la — ;] < a7

If a is real and k = 1 then the root 3 is also real.

For real @ in (1,2) truncations of the beta-expansion of 1 thus yield exponentially
good approximations:

Corollary 2 If « is a fized real in (1,2], then there exists a {0,+1,—1} poly-
nomial of degree N with a real Toot 3 # « such that

cla)
— 8 <
o -0 < 25,

for some constant c(a).
If @ is a Pisot number (that is a real algebraic integer a@ > 1 with all its
conjugates strictly inside the unit circle) in (1,2] we thus obtain the correct

order of growth for the minimal distance. We let By denote the set of roots of
all {0,+1,—1} polynomials of degree at most V.

Corollary 3 If a is a fized Pisot number in (1,2, then

) 1
pemin o =Bl % —%,

where the implied constants are allowed to depend on «.

Notice that from Theorem 1 any complex root 3 must have |a— 3| > c(a)a™N/2,
so that the approximations § in Corollary 3 will certainly be real (for large V).
For a Salem number (that is a real algebraic integer @ > 1 with one conjugate
a~! inside the unit circle and the remaining conjugates on the unit circle) in
(1,2) the dominant term is again o although a polynomial function remains

undetermined. Similarly if « is a complex Pisot number (that is « is a complex
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algebraic integer with |a| > 1, all of whose conjugates other than @ lie strictly
inside the unit circle) which is a single root of some {0,+1,—1} polynomial
(or ™! a single root of a {0,+1,—1} power series) then the correct order of
approximation is again precisely |a|=".

When « is an algebraic number (on or off the unit circle), that is not a root
of unity but whose Mahler measure is small, we show that there are roots
exponentially close to o:

Theorem 3 Suppose that o is a fized algebraic with
1< M(a)<2.

Then there exists a {0,+1,—1} polynomial of degree at most N with a root
B8 # « such that

3

9

Z

26 N/L(L+1)
o = 8] < (o) N1HESUL) <_M W) e

where L = L(«) is the highest order of a root at « possible for a {0,+1,—1}
polynomaal, d s the degree of a, and

-

For roots on the unit circle with M(a) > 2 the situation is less clear. From
Dirichlet’s Theorem we can at least say that for any fixed a = €2’ on the unit

if a 18 real,
if a 15 complex.

roj— =

circle that is not a root of unity there must certainly be infinitely many N such
that |# — p/N| < N~ for some integer p, and hence have
I
la = 8] < N
for some root 3 of (¥ — 1). Notice that if a is a dth root of unity we can only
obtain |a — 3| < ¢/dN from such polynomials.

There remains the case when « is a root of unity. For fixed k& we show the
following:

Theorem 4 Let « be a fized dth root of unity and k > 0 a fized positive integer.
For N sufficiently large there exists a {0,+1, =1} polynomial of degree at most
N with a root of order k at o and a Toot § # o with

cla, k)

gl < — 808
lor =Bl < NEFD[Eod]+1
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From the lower bound of Theorem 1 this is the optimal order of growth for fixed
k. We let By(a, k) denote the set of roots of all {0,+1,—1} polynomials of
degree at most N with a root of order at most £ at «.

Corollary 4 For a fized root of unity o, and fized integer k > 0,

1

o= Bl = NOD[e@]+1

min
BEBN(a,k)\{a}

where the implied constants are allowed to depend on o and k.

The bounds of Theorems 2 and 4, together with a variant of the construction
in Theorem 2 allowing the multiplicity of the root at 1 to grow as a function of
N, give us an upper bound analogue of Corollary 1:

Theorem 5 If a is a fized algebraic integer with M(«) < 2, then there is a
constant c(a) > 0 such that, for sufficiently large N, there is a {0,4+1,—1}
polynomaal of degree at most N with a root 3 # « satisfying

|o — 8] < exp(—c(a)N)
if a 18 not a root of unity, and
|a = 8] < exp(—c(a)(Nlog N)1/3)

if a 18 a root of unity.

We have here considered the rate of approximating a fixed @ by roots of {0, +1, —1}
polynomials of degree at most N. A somewhat similar question would be to ask
for the minimum separation of two distinct roots a, 3, of a {0,+1,—1} poly-
nomial F' of degree at most N. We observe that bounds of Mignotte [10] using
the discriminant A of the polynomial give

|A|1/2 1

|Oé - /Bl 2 AT(N+2)/2M(‘F’)]\*71 - (N + 1)(1V+1)

on observing that

1 .
M(F)=exp (/ log |F(ez’m)|dt> <||Flla £ VN + 1.
0

It is an old problem of Mahler [9] to determine whether this inequality for M (F')
can be significantly sharpened (Littlewood [8] asks a number of related questions
for the sup norm).
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3 Roots close to 1

We now concentrate on roots close to 1. From Theorem 1 we know that a
complex root, 3, of a {0,+1,—1} polynomial of degree N with a root of order
k at 1 satisfies
VE!
15 -1] > CNB/ZTE
Hence we restrict ourselves to real roots 3 where the rate of approximation is,
as we saw in Corollary 4, substantially better.

Let P(N, k) denote the set of polynomials of degree at most N, with {0,+1, -1}
coefficients, and a root of order exactly k at 1.

We define §(N, k) to be the largest real number 6 in [0,1) such that f(f) =0
for some f in P(N, k). Reversing the order of the coefficients we could plainly
equivalently define §( N, k)~! to be the smallest real root 6 > 1.

Corollary 4 tells us that for fixed k the growth in terms of N is precisely

1

For k > 2 the optimal constants in these bounds are not clear.

We give the following upper bound on §(N, k):
Theorem 6 For a fized integer k > 0 we have

. 4R (k4 1)! c3
BN R) S 1 - —m—+0 (55 )

where and c3 = c3(k) is independent of N.
We also give a similar lower bound:

Theorem 7 For a fized k and polynomial g(z) in Zlz], with g(1) # 0, such
that

G(o) = (v = 1)"g(x)
has {0,41,—1} coefficients,

. C2 C4
O(N.k) > 1~ NE+2 +0 (N2k+3>’

where
o = enfa ) e O(G) + DF
P el b= T

and ¢4 = ca(g, k) is independent of N.
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Some Notes
The polynomials G(z) = Hf:ll ($2i71 — 1) give us

o = 23 (k+1)(k+4)

which, as we shall see, is sharp for £k = 0,1 (but not for higher k). For example
when k = 2 the polynomial G(z) := (z — 1)(2? — 1)(2® — 1) gives ¢, = 71/6.

In general one expects there to be suitable G(z) of degree O(k?) (this would
be optimal). It can be shown (see for example [5, Theorem 2.7]) there is a
{0,+1, -1} polynomial of degree O(k?log k) with a root of at least, though not
necessarily exactly, multiplicity £ at 1. Hence, for infinitely many k, we can
take

c2 < exp(2klogk + O(kloglogk)).

This compares favorably with the constant
(k +1)14* ! = exp(klog k + O(k))
in the lower bound.

For k =0 and k£ = 1 we can determine the growth precisely:
o 4 1

o 32 1

For k = 2 our bounds give

384 . 4004
mﬁG(Z\r,?)(1+o(l))§ N46'

In the next section we describe the optimal polynomials explicitly in the cases

k=0orl.

4 Precise results for k=0 or 1

Let F(z;N,k) denote a polynomial of degree N with {0,+1,—1} coefficients
and a root at (N, k).
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Theorem 8 For k=0 and N > 2 the extremal polynomials F(x; N,0) take the

form

i($2nz+1_2$m+l) f]v 5
) =zn,
(1_1') s 3
22m+2 _  om+1 . om 1
G d " +1) N =2m+1.

(1-2) ’

For k=1 and N > 4 the extremal polynomials F(x; N,1) take the form

:l:(l,4m+1 _ 2‘,L.3m+1 + x2m+2 _ x2m+1 + 2l,m _ 1)
(z-1) ’
N (x4m+2 _ l.3m+2 _ l,3m+1 + l,m-l—2 _ l.m-i—l + 2x™m — 1)
(x—1) ’
(‘$4m+3 _ I3m+3 _ l.3m+2 + l.2m+3 _ $2n1+2 _|_ $m+1 + .Tm _ 1)
+- . ,
(z-1)

I4m+4 _ 2$3m+3 + $m+2 + l,m _ 1)

(
* @-1)

if N =4m,

if N=4m +1,

if N =4m +2,

if N =4m + 3.

It is perhaps more enlightening to instead write out the pattern of coefficients
agay ...ay of F(z,N,k) = E}N:o a;z* (we assume without loss of generality that

ag =1):

For k=0

1...1 -1...-1, if N =2m,
S~ ———
m m+1
1...10 —-1...-1, if N=2m+ 1.
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Fork=1
1...1-1...-10-1...—-11...1, if N =4m,
m m+1 m—1 m
1...1 =10 -1...-101...1, if N = 4m +1,
S—— —— =
m 2m—1 m
1...10-1...—-10-1...-101...1, if N =4m + 2,
m m—+1 m—1 m
1...100 —-1...—11...1, if N =4m + 3.
N~ ——
m 2m—+1 m+1

5 Some special subclasses

If we restrict ourselves to {—1,1} or {0,1} coefficients then much of the be-
haviour observed at =£1 still occurs at +1 in the first case and at —1 in the
latter. For example if we let 6*(N, k) denote the largest real root § < 1 of any
{—1,1} polynomial of degree at most N with a root of order k at 1, and 67(N, k)
the smallest real root # > —1 of any {0, 1} polynomial of degree at most N with
a root of order k at —1, then for fixed multiplicity k we still have:

Theorem 9 For a fized integer k > 0,

* A 1
|9 (N, k) — 1| = NEk+2°

. 1
0T(N k) + 1] = T

However the maximum order of vanishing at 1 is significantly less for a {—1,1}
or {0,1} than for a {0,+1,—1} polynomial. Consequently if By, By and BA‘LV,
denote respectively the zeros of all {0,+1, -1}, {—1,+1} and {0, 1} polynomials
of degree at most N, then the Corollary 1 and Theorem 5 bounds

_oaTl/2 . . _ _ \1/3
exp( a N logZV) < ﬁegjl\}r\l{l}lﬁ 1] < exp( c2(Nlog N) ) ,

must be drastically reduced in these special cases:
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Theorem 10

(log N’ | :
o, Hog V)7 “1 < exp (—ex(log N
eXp( “oglog V) = ﬁeg}\?{l{l}lﬁ | e (—ex(logN)%).

exp (—e1(log N)?) < ﬁeBr*niI{l—l}lﬁ +1] < exp(—c2(logN)?),
.

for some positive constants ¢y, co.

In the {0,1} case we actually obtain the explicit constants

er = (L+0(1)(410g3) ™", e = (1+0(1))(log2)™".

Although the rates of approximation at +1 or —1 are thus very different in
these special cases, since the polynomials with high multiplicity roots form such
a small proportion of the polynomials, it is not suprising that the pictures remain
similar in appearance (particularly for small degree).

Proof of Theorem 1

Suppose that F(z) = Z?Lo a;z' is a {0,41,—1} polynomial with a kth order
root at o and roots f1,...,0mn. We set

N
G(z) = (x=B1)...(x = Bm)’
so that i /
| FHa)/R!
Ia—ﬁll---la—ﬁml—‘m‘-

Suppose that ag H?zl (z — ;) is the minimal polynomial of a. Then, by inte-
grality,

d
e | F )
eV I || 2 1
=1
where if « is complex with o = ay = ag
FHa)| _ (|FHen) || FHas) [\
k! - k! k! )

Hence if

5= { 1 if « is real, { 2 if a is real,

1/2  if a is complex, F=13 ifais complex,
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we have
s\ !

F*(ay)
k!

G*(a)
!

Il

i=p

oo = ]+ o = Bin| > | faal" V"

For |a;| < 1 we use the trivial bounds

<

‘F'“(Oti)
!

(N + D)MUED i ] =1,
(1= Ja; )~ D if |oy] < 1.

For |ai| > 1 we make use of the vanishing of F' at «;. Let

F(z)

B = TG

so that _
FF(a;)
k!

i |*

= |H (ai)|-

Now the coefficients of H(z) = E;V:Bk hjzi plainly satisfy

l

) +k—-1 - . 1=

|l = Z(Jk—l )O‘i]al—j < (1= Jai| ™7,
§=0

and
|’V k+1

||~ |az
< 1- |a| DE Z Jeil? < (Jai| = DFFT

‘F’“(ai)
k!

It remains to estimate Gk(a)/k!. Set

() G(z) F(x)
K= o = G e =) (o= )

so that G*(a)/k! = K(a).

Notice that if

E”U szl
(1= (z/u)) =2

i+ 1)max{1, |u|["!}' for any u

1 —j < (Z+ ‘ s 3

|sil Z%rz ju Orgjlgllml{ (1= Ju~)" if Ju > 1.
=
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Now if |a| > 1 we can assume that all the |3;] > 1 (otherwise |a — §;] is greater
than a constant and we can omit those 3; and adjust the constant accordingly).

Hence the coefficients of K(z) = Z;V o k kjzd clearly satisfy

S G o e Rl ] N2 e G i

i=1
and
G*(a) < N Sl N—m—k+1 —(k+1) 1 |-1)"1
e R 1 (TR o e (YR y (TR
i=1 j=0 i=1

Hence when |a| > 1 and all the |3;| > 1 we obtain

Cl(aam’akaﬁ)
M(a)SN(N 4 1)80k+1ds”

o= ]+ o= ] 2
where

Ci(a,m, k, §) := By(a, k)™ [T 118:] = 1,

i=1

Bi(a, k) := |aal® M(a)?* D (EDD T a] = 1+,
loi|#1

with

The result follows since we can clearly assume |#;] — 1 > 1(|Ja| — 1) (or else we
can omit that term from the product). The result for |a| < 1 follows by working
with a~! and ﬁz_l

If |o] = 1 we similarly see that the coefficients of G(x) = Z;-V:_Om g;jx! satisfy

|91 < (G + 1™ [ [ max{1, |5 7'},
i=1

and hence
;k(a) < —1\N—m (N B m)k = - m
)] ¢ a5
=1 J=0
< —1Y\N—m ‘Nk+m+1
< [[max{L g 3" ———
i=1
Thus in this case
Cl(aam’akaﬁ)

o = fi] -+ la = Bm| 2

M(a)éN(N + 1)6(k+1)d1+m’
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where .
Ci(a,m, k,[;) = Bi(a, k) H min{1, |3}V ™,
i=1

with By(a, k) as above.

The result follows since we can assume that |3;| > 1 — (N 4+ 1)7! (otherwise
| = Bi] > 1/(N+1) and the result follows by simply omitting the term |a — 3]
from the product). W

(i)

Proof of Theorem 2

Observing that the derivatives of Hy satisfy
[ ()] = O(NTH!|a] V79),
expanding Hy around « gives

a), Fla
Hy(z) = (z —a)k (aNa(G)G—()(x —a)" - Fk—(') + E(:v))

s!
where, for N|z — a| < 1/2,
E(z)=0(z — a|) + O(NS+2|a|N|x —a™).

The result follows at once from Rouchés Theorem.

We write
N

Fn(z) = Z ezt
i=0
for the Nth truncation of F'.
Observing that
Fy(a™)

= < afay .

and
Fi(a )= Fi(a™) + O(N/a V(1 —[a|)~0*Y),
expanding Fi(z) around a™' gives
L FH )

) =(@—a 0D g
where

E(z)=0 (OFN) + O (|z - a71|k+1) ,
for | —a™'| < Tmin {N "', (1 —|a|™")}. The result is plain (with the
Bi denoting the reciprocals of roots of FN) |
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Proof of Corollary 2

We first recall the definition [13] of the beta-expansion {c,} (of 1) for o;
Cp 1= Laﬁ/n—lJ ) Yn = XYn—1 — Cn, Yo = 1.

Notice that for « in (1,2) all the ¢; =0 or 1.

For a # 2 we write
oo

F(z):=1- Z et
i=1
so that F(a™!) = 0 (the beta-expansion of 1 for o). Moreover by Descartes
Rule of Signs a™"' is a simple root (the only real root in (0,1)).

If the sequence {c;} terminates in zeros (that is « is a simple beta number)
then o~ is a simple root of the {0,+1, —1} polynomial F and the result follows
from Theorem 2(i). If the sequence {¢;} is infinite then by Theorem 2(ii) the
polynomial reciprocal of the Nth truncation of F has a real root § # « suitably
close to a.

We should remark that Parry’s proof [12, Theorem 5] of the denseness of the
simple beta-numbers in (1, 00) shows that the 3 converge to a.

For a = 2 we similarly take F =1 — 37, xl,

Corollary 3 follows at once from the upper bound of Corollary 2 and the lower
bound of Theorem 1 on observing that for a Pisot number M(a) = a. B

Proof of Theorem 3

We assume that || < 1. Suppose that L is the maximum multiplicity at o
possible for a root of a {0, 41, —1} polynomial. We are assuming that M(a) < 2
so that L > 1 but that « is not a root of unity so that L = L(«) is finite. We first
use the box principle to show the existence of a {0,+1, —1} polynomial F' with
FL(a) =0 and F/(a) small for all j < L. The vanishing of the Lth derivative
at « is to ensure that at least one of the earlier derivatives is non-vanishing.
Suppose that aq,..., @, are the real conjugates and Q1,011 ... Qpts,Qpts
the complex conjugates of a. We write d = r 4 2s for the degree of a.

For a polynomial of the form f = EL_OI a;z', with coefficients a; in {0,1}, we

consider a vector (f) in R2I+4 with components consisting of

Ref'(a) ifj=2+1i=0,..,0-1,
Imfi(a) ifj=2+2 i=0,...,L—1,
u(f)j=9 ) ifj=2L+i, i=1,...,r,

Refl(appivi) ifj=2L+r+2i+1, i=0,...,5—1,
ImfL(aptiy1) ifj=20L4+r+2i+2, i=0,...,5s— 1.
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When « is real we ignore the Imfi(a) entries. We set

9 —26N/L(L+1)
— NT1H(26d/L) » — 1+4(6d/ L)
A:=N (—M(a)> .= (4V2) ,

and assume that cA <1 (if cA > 1 then Theorem 3 is immediate). Observing
that each of the 2V polynomials have

()] < N5 (as)] < NP max{L s},

the box principle shows that we must have two @(f), #(f2), with

V4

. 1
lu(f1); —u(fa2);] < 7 j>2L,

and
. . . (& —3
luf1)2ie1 = w(Fo)zipls [u(fr)aive = u(fo)aiya] < —= A",
V2
for = 0,...,L — 1 (these restrictions requiring the product of
d L-1 ) ) 1/6
Q\/E ONLH! max{1, |ai|}NJ + 1) II Qﬁc—lAJ—LzNJ“J n 1) <2V

i=1 j=0

boxes). Hence F = f; — fo will be a {0,+1,—1} polynomial of degree at most
(N — 1) with

|Fi(a)| < AT, j=0,...,L -1, |Fla)|<1, i=1,...,d.
Since H?:l |FL(a;)| is an integer we must certainly have FL(a) = 0. Moreover,
since F' cannot have a root of order (L + 1) at a, we must have F/(a) # 0 for
some 0 <J < L-1.
Suppose that G(x) is a fixed polynomial with a root of order L at o and consider
H(z) = 2%9DF(x) + G(x).
Then H is a {0,+1, -1} polynomial with

FJ(!a) * GL(!Q') (=)t + EM)

H(z) = (z - )’ (aam)

where

L—-1
E(.l) — O(NL+1|.1' _ alL_J+1) + Z O(AL_J(A_ll.r _ al)j_J)v
j=J4+1
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for N|J; — oz| < 1/2.

Hence by Rouché’s Theorem H has (L — .J) roots in the disc |z — | < CA for
a sufficiently large constant C' = C'(L). B

Proof of Theorem 4

Suppose that a is a dth root of unity. We first construct {0, 41, —1} polynomials
of degree N, with specified vanishing at «, whose first non-vanishing derivative
is large:

For a constant ¢ and fixed k we set

Gr(z) = 2™gp(2%), m:= N - (2" 4 1)deD.

Hence Gr(z) is a {0,+1,—1} polynomial of degree N with a root of order k at
a and

G*a) _

o Q%k(k‘—l)Dk—l—l(dc)kam—k.

We next show the existence of {0,+1, —1} polynomials with a prescribed order
of vanishing at a whose first non zero derivative at « is small.

We first suppose that ¢(d) # 1,2. Let B be a set of positive integers with b < B
for each of the b in B, then, by the box principle, there are certainly integers

a; =b; — b;, bl,bl S B,

2

not all zero, such that

¢(d)—1
: | 2v/2¢(d)B
) Z
0< ; ajal| < B

The non-vanishing is immediate since the a; are integers (not all zero) and the
degree of @ over Q is ¢(d).

We set M = |D/25T1(k + 1)] and take
B:={b:0<b< M"'}, B:.=M"

Now for any 0 < b < M**! we can write

k
b= biM, 0<b <M,
=0
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and hence construct a {0,+1, —1} polynomial

ko fk—1-1 ol k-1 . .
F(x;b) := Z H ¥ =1 <Z o' ) M) M

t=0 j=k—1

of degree

O(F(x;0)) < 2¥(k 4+ 1)M =: L,
with a kth order root at 1 and
k!

With the integers b;, b: from the box principle we set

#(d)—1
Fy(x)= Y (F(a%b)) — 2™ F (2% ) o/
j=0
Then Fj(z) is a {0,+1,—1} polynomial of degree
9(Fy) < 2Ld < Dd,

with a kth order root at o and

. é(d) -1
Fk .
‘ k(‘a) = |gkd=1) g E (b — b)a
! =
22¢(d)d*

Jw(kﬂ)(%é(d)q) )

For ¢(d) = 1 or 2 we simply set Fj(z) = Hf;ol (mzi -1).

Hence in each case Fj(z)is a {0,41,—1} polynomial of degree at most Dd with
a kth order root at o and

Dk+1

Fl(a)] < C(ky0)—————.
[Fi(e)] < € ’Q)D(Hl)f%qﬁ(dﬂ

We set
Hi(x) = Fule) + Gin (2)

and observe that

N
Hy(z) = (s — a)* (F,f by L o el ”<m—a>+E<x)>
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with

. N . 1
E(z) = O((Dd)* 3|z — a|?), for |z —a| < 2N

Since |F]f+1(a)| < (Dd)#*? it is clear by Rouché’s Theorem that for a suitably
large constant ¢ = ¢(d) the polynomials Hy(z) have a root §j, with

e = o B+ DF) ( (;))
i (G ) + FfY(a)) L+ D+ [36(d)]

0 (—{ ) .
D[] +1

Proof of Theorem 5

When « is not a root of unity the result follows from Theorems 2 & 3.

It is plainly enough to show the existence of a {0,4+1,—1} polynomial G' of
degree at most N with a root 3 # 1 satisfying

|3 — 1] < exp(—c(Nlog N)/?),

the result for a general dth root of unity then following from considering the
polynomial G(z?).

Suppose that we have a {0, +1, —1} polynomial F of degree (M — 1) with a root
of order exactly L at 1. Then

r—1

G(z) = 2™ (aMP — 1)F(2) <"”D - 1) _ F(a)

is a {0,+1,—1} polynomial with a root of order L at 1 and degree N < 3M D.

Expanding G around 1 and using the trivial bounds
|G7(1)] < (3BMD)’*,
it is easy to see that for (3M D)|z — 1| < 1/2 we have
G(z) = (z — 1)Lw (-1+ MD™**(z — 1) + E(z))
L!
where, since |F*(1)|/L! > 1,

E(z)=0 (%u - 1|> +0 (%u - 1|2> :
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Observing that the choice

3eM
D = 1
Rk

(L Jlr 1)! <%) " o)

gives

and hence
E(z)=0 ((Ml—D)(MDL“u — 1|)> +0 (%(MDH% - 1|)2> ,

it is easily seen that G has a root 3 # 1 with
1 1.

Now we can assume (see for example [5, Theorem 2.7]) that

M
L 9
N\ Tog M1

for some absolute constant ¢y, so that
M? . .
N < c2—7~ < 63JM3/Z(log M)l/2

and

|8 — 1| < exp(—csLlog(M/L)) < exp(—cs+y/Mlog M) < exp(—ce(N log N)l/&),
as required. H

Proof of Theorem 6

We need a preliminary lemma:

Lemma 1 Suppose that the polynomial F has bounded coefficients |a;| < A.
Then for a fized positive integer k we have

k—1
A 1 o
PO < 8 (140,0()) + X Opa (N IFID)

§=0
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Here Op ; denotes that the implied constant in the order result is permitted to
depend on p and k.

Proof: Setting
Qi) = ][z =) Q)=

it is readily seen that the Q;(z) can be written

j—1
r) = + Z%‘j@i(w)
i=0
for appropriate constants -;;.

. . . N
Hence in particular, if F(z) =Y., asz®,

wm==2%@@

s=0

2

= a537 +Z%JF (1).

EIJ

Thus for a fixed polynomial p(z) = z* + Ef;& bjz/ we have

N
S = NkZaSp(s/N)
s=0
k . . jil .
= Y b NF(RI(1) = > i Fi(1))
j—O i=0
= ZFJ Y NFTT =3 "y NE
i>]
= PO+ Y 0(CU k) NHIFI (1))
j=0

It is easily seen that
al s 1
s < e yh() (4

- ([ o) 0. (3)
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The result follows on observing that, by a classical result of Korkin & Zolotarev

[7],
1
inf/ lp(z)|de = 47%,
P Jo
achieved for )
p(e) = 7 Us(22 - 1)
where U,, denotes the nth-Chebyshev polynomial of the second kind

sin(n arccos z)

Un(z) := [ |

sin(arccosz)

Proof of Theorem 6:

Taking the Taylor expansion of F' around 1 we have

_Fk(l) — Z F](l)(g _ 1)j*k (1)

N TR
k! i 7

We may clearly assume that

c(k) 1

|€ - 1| < Nk+2 < N’

for some suitably large c¢(k) else there is nothing to show. Hence, from the trivial
bound
|F7(1)] < N7H

we have
N

Fi(1), .
> J(, S - 14| <

j=k+2

6 — 1P N*3 = O(|6 — 1|N*H1),
Il (I — 1IN+

where the implied constant in the O is allowed to depend on k. From the above
lemma we have

R0 Al ! |F*(1)]
(k+1)!‘ s (k + 1)1k +T <1+O(ﬁ)> +0 (N o > _

So (1) becomes

F*(1 1 NF+2 1
5| (ot < e (o) -1
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and the result follows on observing that |Fk(1)| /k! is an integer and hence at
least 1. W

Proof of Theorem 7

The lower bound is completely constructive:

Lemma 2 Suppose that f(z) and g(x) are integer polynomials, with f(1),g(1) #
0, such that the polynomsials

F(r)=(z=D)"f(z), G(x):=(z—1)"g(x)
have {0,41,—1} coefficients.
Then for
N> (0(F)+9(G) +1)
the polynomaial
H(z) = G (L) 4 F
(x) == 2°G(2") (m) + F(x),
where

— _8(F) — N _ N _
d:= {WJ e:=N—dd(G)— (d—1),

is a {0,+1, =1} polynomial of degree N with a kth order root at 1 and a Toot of

s1ze o
1- 577+ 0

N2k+3)
where

f(1) k42
rlf.0.8) = D000+ 14,

and ¢y = c2(f, g, k) is independent of N.

Proof: From the Taylor expansions about 1 we have;
H(z) = (z - 1)* {f(1) —1)d**?g(1) + E(z)}
where, for |z — 1| < 4,
E(z) = O(|z = 1]) + O(d* |z — 1%).

(From examining sign changes, H must have a root at

= o)
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as claimed. Il

To show Theorem 7 there remains only to justify that for any k£ we can always
find a suitable polynomial f with f(1) = 1. This is immediate from the following
simple construction:

Let ny,...,n; and my,...,my be two sets of integers satisfying
(nl...nk’ml...mk) — 1

and
ng>ny 4+ +ng_q, my >my 4+ my_q

forallt =2,..,,k.
Let A and B be two positive integers such that
Any---np—Bmy---mp=1
then, writing
wui=14+n+---+ng, vi=1l4+my+- -+ my,

the polynomials

F(z):

(l;u__;) lj(w" - 1) = (@ - D),
k

Clo) = <va ~1\

v —1

) TJ(™ — 1) == (= — D¥g(a).

i=1
have {0,+1, —1} coefficients and
U(z) = O P(2) = Gla) == (2 - 1u(e),
is a {0,+1,—1} polynomial with »(1) = 1. H
Proof of Theorem 8

Suppose that
F(T) = Z aimi
i=0
is a {0,+1,—1} polynomial with the extremal root (N, k) in (0,1). We shall

use simple perturbation ideas to show that the coefficients must have the stated
patterns.

The Case k = 0:
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We assume (taking £F(x) as necessary) that F(1) < 0.
Suppose that n > 0 is such that
a,=—-1or0, a,=17frallmc<n,

then
antt = —1, forallt > 1,

since otherwise

F(z) = F(x) 4+ 2"(1 — 2"
would be a {0,+1, —1} polynomial with
F(l)=F(1)<0, F(8)=6"(1-6") >0,
and hence would have a root in (f,1) contradicting the maximality of 6.

Clearly to have any positive real roots F'(z) must have at least one sign change,
and thus the coefficients must take the form;

1...1{0or1} —1...—1.

Now F(1) = —1 otherwise, taking an n with a, = 0 or —1,

would have {0, +1, —1} coefficients,

F(1)=F(1)+1<0, F(§)=6">0,
and a larger root in (0,1). The form given follows immediately.
The Case k = 1: We suppose (taking +F as needed) that

F(a)=(a—1)f(a), (1) >0.

Now if n > 1 is such that
an=1 an—1=0o0r —1,

then
an+t=1, OStSN—n

To see this suppose that for some r > 1

ngr=00r =1, ani;=1, 0<j5<r,
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then
F(z) = F(z)+a™" — g1 _gn 4 gnl
= (z=D(f(@)+2" (" = 1)) = (z — 1)f(a),
has {0,+1, -1},
fW)=f1)>0, f(o)=-6"""(1-6") <0,
contradicting the maximality of §.

In the same way if
am =1, amy1 =0o0r —1,

then
am-t=1, 0<t<m,

using the perturbed polynomials
F(zr)=F(z)+ 2™ " (2" — 1)(z — 1).

By Descartes Rule of Signs the coefficients of F' must have at least two sign
changes, and therefore must take the form

1...1{0or —1}...{00r —1}1...1.

Further we cannot have the configurations
ar—1=0o0r —1, ar =0, arys =0, arps+1 =0or —1,
else the polynomial
F(z)=F(z)+ 2" "z - 1)(«*t" = 1)

would have a larger root than §. Hence the coefficients of F' take the form

1...1{0or =1} —-1...=1{00or =1} —=1...=1{0o0r —1}1...1.
Finally we must also have

(1) =f(1)=1,
since if f(1) > 2 then, taking an n such that a, = 1, a,—; =0 or —1, we could
perturb ~
F(z) = F(x) +.’En_1(1 —z)=(z - 1)(f(z)- ;L'"_l),

to obtain a larger root.

There remains only to show algebraically the exact form of F":
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We know from the above that F' must take the form
F(.L‘) — 1+ . _+‘,L_m—1_l_m__ . __'I_m+k—1+wm+k+_ . _+$m+k+l—1+}\1wm+j+A2l_m+)\3wm+k—l
for some Ay, A2, A3 = 0 or 1, and positive integers m, j,k,l > 1 such that
F(1)=0, F'(l):l.
Thus, writing
A=A+ A2+ As,
we have
l=k—m-—2\
giving
E>24 A

and, after some rewriting,

F'(1) = (k— %)\) (k —2m — g/\+/\3) + %(2— A)(A = 2X3) + Ayj = L.

If Ay =0 then

(A2, A3) = (1,0)
(A27)‘3) = (071)
(A27A3) = (171)
(A2,A3) = (0,0)

(2k —1)(2k —4m —3) =3, k > 3,
(2k = 1)(2k —4m — 1) =5, k > 3,
(k—=1)(k—2m—2)=1, k > 4,
k(k—2m) =1, k >2,

el

and plainly the only solution is given by (A2,A3) = (0,1), k=3, m=1,1=1,
corresponding to N = 4.

Hence we can assume that Ay = 1. Now from the bounds

1 1 Ny 1
1<Aj<k-2 —=<=2=-MA=2\3) < =
<Ay < ; 4_4( ) 3)_4,
it is not hard to see that if (k—Zm—%)\—i—)\g) Z%then
1 1 1 1 1 3
Flly> (k==X =->41>=(24 =) ->2
()_2( 2> 4+ _2(+2)+4_

while if (k — 2m — %)\ + A3) < =1 then

F’(l)g—(k—%)\)+%+(k—2)§—%.
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So k= [Zm + %)\ — )\3J and

(A2, A3)=(1,0) = k=2m+3,j=1,1l=m+1, (N=4m+3),
(A2;A3)=(0,1) = k=2m+2,j=1,1=m, (N=4m+1),
(A2, A3)=(L,1) = k=2m+3, j=m+2,l=m, (N=4m+2),
(A2, A3) = (0,0) = =2m+1,j=m+1, l=m, (N=4m),
giving the polynomials of the stated forms. ll
Proof of Theorem 9
The lower bound is immediate from Theorem 6. For the upper bound we use

the {—1,4+1} and {0,1} polynomials

k—1 ) k—1 _
Fi@)= 16 -1, Flw)= [[E 41,

to form the {—1,+1} and {0,1} polynomials

x4 —1

r—1

@)= i o) (557 ) 4 Fi)

and
221d/2] _

R k N
Hi(z) = 2" F} (2% < -

) + Fl(z), dodd,
and proceed just as in Lemma 2.

As regards the implied constants in these bounds notice that the lower bound
constant 4k+1(k' + 1)! still holds in these cases, while in place of Theorem 7 the
above polynomials readily yield

k41 k42
o < ok +2k+2 of (3 4 1) *
2 = ’ 2 = 2k+13k ’
(although we have made no attempt to obtain optimal constants here). ll

Proof of Theorem 10

The lower bounds follow from Theorem 1, a result of Boyd [6] showing that the
order of vanishing of a {—1,+1} polynomial at 1 satisfies

(log N')?

loglog N’
and a simple observation of Borwein-Erdélyi-Kés [5] that for a {0,1} polynomial
the order of vanishing at —1 satisfies
Lo log(V+ 1)
- log 2
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For the upper bounds we follow the Proof of Theorem 5.

In the {—1,1} case we take F' to be the {—1,1} polynomial

L-1

F .= H(chi -1), M=2"
=0
and log(NN/18e) 3eM
og(N/18e e
Li=|—=— D= 1
P 2=
so that

is a {—1,1} polynomial of degree at most N.

In the {0,1} case we take

L-1
F=J]G"-1), M
=0

Il
PR
w
h
N+
_
N

choose

I.—9 log(N/27¢) . D=2 3eM b1,
2log9

and set
22lD/2] _q

G(z) = M (@MP - 1)F(z”) <ﬁ> — F(x).

Hence M and D are odd and —G(—=z) is a {0,1} polynomial of degree at most
N.

It is readily checked (in the manner of the proof of Theorem 5) that in both
cases G(z) has a root § # 1 with

|6 — 1| = O(exp(—(14o(1))Llog D)) = O(exp(—cz(log N)Z)),

for some constant cy, > 0. H
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