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Abstract

The principal result of this paper is a Remez-type inequality for Miintz
polynomials:

n
p(z) = Z aiz™,

i=—n

or equivalently for Dirichlet sums:
n
P(t) := Z aie_Ait,
i=—n

where (\;)§2_ . is a sequence of distinct real numbers. The most useful
form of this inequality states that for every sequence (\;)$2_,, satisfying

(o]

1
E_:OQW<OO

=
A;#0

there is a constant ¢ depending only on (\;)2_ ., 4, a, and B (and not
on n or A) so that the inequality

1Pl 51 < cllplla

holds for every Miintz polynomial p, as above, associated with (A;)2_ .,
for every set A C [0, 00) of positive Lebessgue measure, and for every

[, B] C (ess inf A ess sup A).
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Here || - ||a denotes the supremum norm on A.

This Remez-type inequality allows us to resolve several problems. Most
notably we show that the Miintz-type theorems of Clarkson, Erdds, and
Schwartz on the denseness of

span{z™ :i € Z}, Ai € R distinct

on [a,b], a > 0, remain valid with [a,b] replaced by an arbitrary compact
set A C (0, 00) of positive Lebesgue measure. This extends earlier results
of the authors under the assumption that the numbers A; are nonnegative.

1 Introduction
Miintz’s classical theorem characterizes sequences A := (\;)$2, with
0=X <A <A<
for which the Miintz space
span{z?0 2 ...}

is dense in C[0,1]. Here, and in what follows, span{z*°,2*1,...} denotes the
collection of finite linear combinations of the functions z*,z*1,... with real
coefficients, and C(A) is the space of all real-valued continuous functions on
A C [0,00) equipped with the uniform norm. Miintz’s Theorem [11, 18, 27, 30]
states the following.

Theorem 1.1 Suppose (X\;)32, is an increasing sequence of nonnegative real
numbers with \g = 0. The Miintz space span{z*° z*1 ...} is dense in C[0,1]
if and only if > .2, 1/X; = 0.

The original Miintz Theorem proved by Miintz [18] in 1914, by Szdsz [27]
in 1916, and anticipated by Bernstein [3] was only for sequences of exponents
tending to infinity. The point 0 is special in the study of Miintz spaces. Even
replacing [0, 1] by an interval [a, b] C (0, 00) in Miintz’s Theorem is a non-trivial
issue. This is, in large measure, due to Clarkson and Erdés [12] and Schwartz
[24] whose works include the result that if Y2 1/X; < oo, then every function
belonging to the uniform closure of span{z*°, z*1,...} on [a, b] can be extended
analytically throughout the region

{z € C\ (—00,0]: |z] < b}.

There are many generalizations and variations of Miintz’s Theorem [1, 4, 5,
6,7, 8,9, 16, 17, 19, 24, 26, 28, 29]. There are also still many open problems.
For example, the proper generalizations to many variables are still open.

Schwartz [24] extended the results of Clarkson and Erd&s to sequences (A;)$2_ .,
of arbitrary real numbers. His main results in this direction are formulated by
the next two theorems.



Theorem 1.2 Suppose (\;)2 is a sequence of distinct real numbers. Sup-

i=—00

pose 0 < a<b, and g € (0,00). Then
span{z :i € Z}
is dense in L1[a,b] if and only if

=1
Z oW = 00.

i=—00
Ai#0

The same conclusion is valid with Li[a,b] replaced by Cla, b].

Theorem 1.3 Suppose (A\;)2_ ., is a sequence of distinct real numbers satis-
fying
oo
<o
2
i=—o00
Ai#0

with A\; <0 for i <0 and \; > 0 for i > 0. Suppose 0 < a < b, and q € (0,0).
Then span{z*i : i € Z} is not dense in Li[a,b].
Suppose the gap condition

inf{)\,’ —Xi_1:1 € Z} >0
holds. Then every function f € L%[a,b] belonging to the Li[a,b] closure of
span{z :i € Z}

can be represented as

fz) = Z a;z, z € (a,b).

i=—00

If the above gap condition does not hold, then every function f € L%[a,b]
belonging to the Li[a,b] closure of span{z*i : i € Z} can still be represented as
an analytic function on

{z€C\ (~00,0]:a < 2] < b}.

The same conclusion is valid with L?[a,b] replaced by Cla,b].

In [8] the authors extended Theorem 1.1 and other related results by replac-
ing [0,1] by an arbitrary compact set A C [0,00) of positive Lebesgue measure.
The main results of this paper, Theorems 3.6 and 3.7, extend Theorems 1.2
and 1.3 to arbitrary compact sets A C (0,00) of positive Lebesgue measure.
Moreover, Theorems 3.6 and 3.7 extend to weighted LY (A) spaces, where w is
a nonnegative integrable weight function on A with [ 4w >0.



Theorems 3.6 and 3.7 can be proved fairly simply, once one has established
the bounded Remez-type inequality of Theorem 3.1 for non-dense Miintz spaces

span{z™ :i € Z}.

This is the central result of the paper, and is a result we believe should be a
basic tool for dealing with problems about Miintz spaces.

Let P,, denote the set of all algebraic polynomials of degree at most n with
real coefficients. For a fixed s € (0,1) let

Pn(s) == {p € Pn:m({z € [0,1] : [p(2)| < 1}) > s}

where m(-) denotes linear Lebesgue measure. The classical Remez inequality
concerns the problem of bounding the uniform norm of a polynomial p € P,, on
[0,1] given that its modulus is bounded by 1 on a subset of [0,1] of Lebesgue
measure at least s. That is, how large can ||p[|p,1) (the uniform norm of p on
[0,1]) be if p € P,(s) ? The answer is given in terms of the Chebyshev poly-
nomials. The extremal polynomials for the above problem are the Chebyshev
polynomials +T,,(z) := =+ cos(n arccos h(z)), where h is a linear function that
scales [0, s] or [1 — s,1] onto [—1,1].

For various proofs, extensions, and applications, see [13, 14, 15, 22, 23].

Our bounded Remez-type inequality of Theorem 3.1 states the following. If
(Ai)2_, is a sequence of distinct real numbers satisfying

i—=—00
> <o
A~ ’
1=—00
Xi£0
then there is a constant ¢ depending only on (A;)°_ ., 4, o, and 8 (and not

on the number of terms in p) so that

[Pl < cllplla

for every Miintz polynomial p € span{z* : i € Z}, for every set A C [0,00) of
positive Lebesgue measure, and for every [a, 3] C (ess inf A4, ess sup A).

This extends the Remez-type inequality of the authors [8], where the expo-
nents \; are nonnegative. One might note that the existence of such a bounded
Remez-type inequality for a Miintz space span{zi : i € Z} is equivalent to the
non-denseness of span{z* : i € Z} in C[a,b], 0 < a < b.

The key to the proof of Theorem 3.1 is Theorem 3.2. This theorem states
that for the “positive and negative parts” p* and p~ of a p € span{zi : i € Z},
the inequalities

Ip*lLa < clplla
and
o 14 < cllplla

hold with a constant ¢ depending only on (\;)$°

* o and A (but not on the
number of terms in p).



Yet another remarkable consequence of the bounded Remez-type inequal-
ity of Theorem 3.1 is that the pointwise and locally uniform convergence of a
sequence (p,)S%,; C span{z*i :i € Z} on (0,1) are equivalent whenever

> <
A '

1=—00

Ai#0
See Theorem 3.5. In fact, one can characterize the non-dense Miintz spaces
within the Miintz spaces span{z* : i € Z} as exactly those in which locally
uniform and pointwise convergence on (0,1) are equivalent.

2 Notation

The notations
lIpll 4 1= sup,¢4 [p(2)],

Ipllzg ey = (f, [p(@)|1w(z)dz) "/,

1/q
Il = ( / |p(x)|de)

are used throughout this paper for measurable functions p defined on a measur-
able set A C [0, 00), for nonnegative measurable weight functions w defined on
A, and for g € (0,00). The space of all real-valued continuous functions on a set
A C [0,00) equipped with the uniform norm is denoted by C(A). If A := [a, b]
is a finite closed inerval, then the notation Cfa,b] := C([a, b]) will be used.

The space L% (A) is defined as the collection of equivalence classes of real-
valued measurable functions for which [|f[[Lg (4)) < 00. The equivalence classes
are defined by the equivalence relation f ~ g if fw = gw almost everywhere on
A. When A := [a,}] is a finite closed interval, we use the notation L [a,b] :=
L1 (A). When w := 1, we use the notation L?[a,b] := L%[a,b]. Again, it is
always our understanding that the space L% (A) is equipped with the L% (A)
norm.

The nonnegative-valued functions z*¢ are well-defined on [0, 00). For a fixed
sequence (A;)$°,, the collection of Miintz polynomials

and

A

p(x) = Zaix’\", a; €ER, neN

is denoted by
span{z*, 2™ ... }.

Similarly, for a fixed sequence ();) the collection of Miintz polynomials

(?O
i=—007

p(z) = Z a;z™, a; €ER, neN

i=—n



is denoted by
span{z™ :i € Z}.

The above spaces are called Miintz spaces.
For a measurable set A C R, we use the notation

ess inf A :=sup{z € R: m((—o0,z]N A) = 0}

and
ess sup A :=sup{z € R: m([z,00) N A) = 0}

where m(-) denotes the one-dimensional Lebesgue measure.

3 New Results

The central result of this paper is the following theorem.

Theorem 3.1 Suppose (\;)2_ ., is a sequence of distinct real numbers satis-
fying

> <o

A~ A '

i=—00

Ai#£0

Then there is a constant ¢ depending only on (A\)2_ ., A, a, and 8 (and not
on the number of terms in p) so that

1Plla,01 < ¢llplla

for every Miintz polynomial p € span{z™i : i € Z}, for every set A C (0,00) of
positive Lebesgue measure, and for every [a, 8] C (ess inf A, ess sup A).

Theorem 3.2 Suppose (\;)2_ ., is a sequence of distinct real numbers satis-
fying
(e}
> <
= Il
i=—o00
i #0

with A\; <0 for i <0 and A\; > 0 for i > 0. Associated with

n
p(x) :== Z a;z™ n=0,1,...

i=—n
let
_1 n
p (z):= Z aiz™  and pt(z):= Zaiw’\".
i=—n =0

Let A C (0,00) be a set of positive Lebesgue measure. Then there erists a
constant ¢ depending only on (X\;)2_ . and A (and not on the number of terms
in p) so that

lp*lla < cllplla



and
lp~lla < cllplla

for every p € span{z?i :i € Z}.

Theorem 3.3 Suppose (\;)2_, is a sequence of distinct real numbers satis-
fying
[ee)
> <
= A
1=—00
Ai#0

with A; < 0 fori <0 and A; > 0 for i > 0. Suppose A C (0,00) is a compact
set of positive Lebesgue measure. Let a := essinf A and b := ess sup A. Let
f € C(A), and suppose there exist p,, € span{z>i :i € Z} of the form

kn
pa(@) = D ainz®,  n=12..

i=—kn
so that lim ||p, — f|la = 0.
n— 00
Suppose the gap condition
inf{/\i —Ai_1: 1 € Z} >0

holds. Then f is of the form

flz) = i aiz,  z € (a,b),

where
(@) =302, aiz™, z €10,b),
f @) ="."_az™, z € (a,00), lim, o f (z) = 0.

i=—00

Furthermore, f can be extended analytically throughout the region
{z€C\ (-00,0]: a < |2| < b},

and

lim A n = Qj, 1 € 7.
n—00

If the above gap condition does not hold then f can still be extended analyt-
ically throughout the region

{z€C\ (—00,0]: a < |2]| < b}.

Theorem 3.4 Suppose (X\;)2_ . is a sequence of distinct real numbers. Sup-

pose A C (0,00) is a compact set of positive Lebesgue measure. Then

span{z :i € Z}



is dense in C(A) if and only if

Y gy
N '
1=—00

Ai#0

Theorem 3.5 Suppose (\;)2_ ., is a sequence of distinct real numbers satis-
fying

> e

sl LT
Xi#£0

Let A C [0,00) be a set of positive Lebesque measure, and let a := ess inf A and

b:=ess sup A. Assume (p,)32, C span{z*i :i € Z} and

pn(z) = f(2), T € A.

Then (pn)S2, converges uniformly on every closed subinterval of (a,b).

Theorem 3.6 Suppose (X\;)52__ is a sequence of distinct real numbers satis-
fying
o
> <
= A
i=—00
i 70

with A; < 0 fori < 0 and \; > 0 for i > 0. Suppose A C [0,00) is a set of
positive Lebesgue measure with inf A > 0, w is a nonnegative-valued, integrable
weight function on A with wa >0, and g € (0,00). Then

span{z? :i € Z}

is not dense in L1 (A).
Suppose the gap condition

1nf{)\, —Ai_1:1E Z} >0
holds. Then every function f € L1 (A) belonging to the L1 (A) closure of
span{z? :i € Z}

can be represented as

flz) = Z a;iz™, z € AN (aw,bw),

i=—00

where

Gy = inf {y € [0,00) : / w(z)dz > 0}
AN(0,y)



and

by, 1= sup {y € [0,00) : / w(z) dz > 0} .
AN(y,00)

If the above gap condition does not hold, then every function f € L3 (A)
belonging to the LI (A) closure of

span{z :i € Z}
can still be represented as an analytic function on
{z€ C\ (—00,0] s ay < |2] < by}

restricted to A.

Theorem 3.7 Suppose (X\;)°_ ., is a sequence of distinct real numbers. Sup-
pose A C (0,00) is a bounded set of positive Lebesgue measure, inf A > 0, w
is a nonnegative-valued integrable weight function on A with [ 4w > 0, and
€ (0,00). Then
span{z* :i € Z}

is dense in LY (A) if and only if

4 Tools

In this section we collect various previously known results concerning Miintz
spaces with exponents of the same sign. In Section 5 the proof of the new
results from Section 3, which deal with Miintz spaces with arbitrary exponents,
will be reduced to the results of this section. Our most important tool is the
following Remez-type inequality established in [8].

Theorem 4.1 Let (A;)2, be a sequence of distinct nonnegative exponents
satisfying

o0

> 5 <

i=0 )\Z
#

Then there exists a constant ¢ depending only on (A;)$2
not on A or the number of terms in p) so that

Ai

[=)

&,

—os S and sup A (and

=

Ill10,inf 4] < cllplla

for every p € span{z*®,z* ...} and for every compact set A C (0,00) of
Lebesgue measure at least s > 0.

By the substitution y = £~! Theorem 4.1 implies the following.



Theorem 4.2 Let (A\;)2, be a sequence of distinct nonpositive exponents sat-
isfying

> <
i |Ail '
1=0);#£0
Then there ezists a constant ¢ depending only on (X)X ., s, and inf A (and

not on A or the number of terms in p) so that
||p||[supA,oo) S C”p“A

for every p € span{z*o z*1 ...} and for every compact set A C (0,00) of
Lebesgue measure at least s > 0.

The following Bernstein-type inequality for non-dense Miintz spaces is also
established in [8].

Theorem 4.3 Let (A)2, be a sequence of distinct nonnegative exponents
satisfying > o0 1/Ai < oo. Suppose A\g = 0 and A\ > 1. Then for every
€ € (0,1), there is a constant c. depending only on € and (A\;)2_ . (but not on
the number of terms in p) so that

12'lj0,1—¢] < cellpllo,
for every p € span{z*c 2 ... }.
Theorem 4.4 Let A := (\;)52, be a sequence of distinct nonnegative exponents

satisfying

o0

1
—.<OO.

Let 0 < a < b. Suppose
(pn)p2y C span{z*,z™,...}

and ||pnllia) < 1 for each n. Then there is a subsequence of (pn)p>, that

converges uniformly on every closed subinterval of [0,b).

Proof: Note that the assumptions of the Arzela-Ascoli Theorem are satisfied
by Theorems 4.1 and 4.3.

By the substitution y = z~! Theorem 4.4 implies the following.

Theorem 4.5 Let (X\;)2, be a sequence of distinct nonpositive exponents sat-

isfying
— 1
Y <o
|Adl

i=0
A #£0

Let 0 < a < b. Suppose

(pn)p>y C span{z®,z™,...}

10



and ||pnllas) < 1 for each n. Then there is a subsequence of (pn)p>, that

converges uniformly on every closed subinterval of (a, o).
The following theorem is from Schwartz [24].
Theorem 4.6 Let (A;)2, be a sequence of distinct nonnegative exponents

satisfying

> f <o
— X\ '
=0
Ai#0
Let 0 < a <b. Suppose the sequence
(pn)2; C span{z*® z* ...}

converges to a function f uniformly on [a,b]. Then f can be extended analyti-
cally throughout the region

{z € C\ (=00,0]:|2| < b}.

By the substitution y = £~! Theorem 4.6 implies the following.

Theorem 4.7 Let (X\;)2, be a sequence of distinct nonpositive exponents sat-

isfying
> <o
|Ail '

i=0
A0

Let 0 < a <b. Suppose the sequence

(pn)y C span{z,a™,...}

converges to a function f uniformly on [a,b]. Then f can be extended analyti-
cally throughout the region

{z€C\ (=00,0]:a < |2|}.

The following two results are also from Schwartz [24].

Theorem 4.8 Let (A)2, be a sequence of distinct nonnegative exponents
satisfying

11



Let 0 < a < b. Suppose f € Cla,b] is a function so that both of the sequences
(pn)22, Cspan{z?o, 2™ ...}

and
(Qn)fzo:1 C span{m”o, ',L.FYI )t }

converge to f uniformly on [a,b]. Then f =0 on [a,b].

Theorem 4.9 Suppose (\;)2

X o 15 a set of distinct real numbers satisfying

> <o
N
i=—o00

Ai F#0

with A; <0 for i <0 and A\; > 0 for i > 0. Suppose 0 < a <b. Let f € C[0,1],
and suppose there exist p,, € span{z*i : i € Z} of the form

kn
po(@) = Y ainzt,  n=12,...

i=—kn

so that lim ||pn — f|lja,5) = 0.
n—oo

Suppose the gap condition
inf{)\i —Xi_1 11 € Z} >0

holds. Then f is of the form

flz) = i aiz,  z € (a,b),

i=—00
where

fHa) =Y ez,  z€[0,b),

[ (@)= az, z € (a,0), lim, o f~(z) =0,

f can be extended analytically throughout the region
{z€ C\ (-00,0]: a < |2| < b},
and

lim a;, = a; i € 7.
o Gin iy

If the above gap condition does not hold then f can still be extended analyt-
ically throughout the region

{z€C\ (—00,0]: a < |2| < b}.

12



5 Proofs

Proof of Theorem 3.2 It is sufficient to prove only the first inequality, the
second inequality follows from the first one by the substitution y = 2~'. If the
first inequality fails to hold then there exists a sequence (p,)32; C span{zi :
i € Z} so that

||p:||A =1, n=12,..., and lim ||p,|la=0.
n—o0

Since p = p* + p—, the above relations imply that
Ipilla< K <oo, n=12....

For the sake of brevity, let a := ess inf A and b := ess sup A. By Theorems
4.1, 4.2, 4.4, and 4.5, there exists a subsequence (p;} )32, that converges uni-
formly to a function f on every closed subinterval of [0,b), while (p,,)32, con-
verges uniformly to a function g on every closed subinterval of (a,c0). Now
Jim |pn;[la = 0 and pn, = pj;, + pp, imply that f+¢ = 0on AN (a,b). By
Theorem 4.6, f is analytic on (0, b). By Theorem 4.7, g is analytic on (a, 0). So
f+gis analytic on (a,b). Since f+¢g = 0 on AN(a, b), and since m(AN(a, b)) > 0,
we conclude by the Unicity Theorem that f + g = 0 on (a,b). Now Theorem
4.8 implies that f = g = 0 on (a, b).
Hence, for every y € (a,b),

. s —
Jim {lpi,[[fine 4,47 = 0
and
. + I P — —
zl—lglo 1P7: iy, sup 41 = ,liglo IPn: — Pl aniy, sup 4] = 0
Therefore

lim lp;;.[la =0
1—00
which contradicts the fact that ||ptlla=1, n=12,....

Proof of Theorem 3.1 The result is a straightforward consequence of Theo-
rems 4.1, 4.2, and 3.2.

Proof of Theorem 3.3 The result is a straightforward consequence of Theo-
rems 3.1 and 4.9.

Proof of Theorem 3.4 Suppose

Let f € C(A). By Tietze’s Theorem there exists an f € Clinf A, sup A] so that
f(x) = f(z) for every x € A. By Miintz’s Theorem there is a sequence

(pn)o2, C span{z™ :i € Z}

13



so that ~
lim ||f — pallo,1 = 0.
n—oo
Therefore
lim ||f —palla =0,
n— oo
which finishes the trivial part of the theorem.

Suppose now that
oo

>

i=—o0

A #£0

< oo.
|Ail

Then Theorem 3.3 yields that
span{z :i € 7}
is not dense in C(A).

Proof of Theorem 3.5 Let [, 3] C (a,b). Egoroff’s Theorem and the defini-
tion of a and b imply the existence of sets By C AN(0, «) and By C AN(B, 00) of
positive Lebesgue measure so that (p;)$2; converges uniformly on B := B; N By,
hence it is uniformly Cauchy on B. Now Theorem 3.1 yields that (p;)$2, is uni-
formly Cauchy on [a, 8], which proves the theorem.

Proof of Theorem 3.6 Suppose f € LY (A) and suppose there is a sequence
(pn), C span{z™ :i € 7}
so that
lim ||f — pallzg 4y = 0.
n—oo

Minkowski’s Inequality (if ¢ € (0,1), then a multiplicative factor 2'/9-! is
needed) yields that (p;)$2, is a Cauchy sequence in L7 (A). The assumptions
on w imply that for every (a, 8) C [a, b] there exists a § > 0 so that the sets

B, :={x € An(B,0) : w(z) > d}
and
By :={z € An(0,a) : w(z) >}
are of positive Lebesgue measure. Note that
lpllzec:) < 671||p||L$,,(B,-) < 571||p||L$,,(A)7 1=1,2,

for every p € LY (A). Therefore, (p,)%%, is a Cauchy sequence in L7(B), where
B := B; N By. So, by Theorem 3.1, (p,,)$2, is uniformly Cauchy on [a, 8]. The
theorem now follows from Theorem 3.3.

Proof of Theorem 3.7 Suppose

i 1 =
N '
i=—o00

Ai#0



Let f € LY (A). It is standard measure theory to show that for every e > 0
there exists a g € C[inf A, sup A] so that

varepsilon
1f = gllzga) < o

Now Miintz’s Theorem implies that there exists a p € span{z*i : i € Z} so that

1/q
lg = llosa < llg - plla ( /A w) <

Therefore span{zi : i € Z} is dense in L4 (A).
Suppose now that

i=—o0
A; Z£0

Then Theorem 3.6 yields that span{z*i : i € Z} is not dense in L% (A).

| M

|Aql
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