MATRIX TRANSFORMATIONS OF SERIES
OF ORTHOGONAL POLYNOMIALS*

DaviD BORWEIN, PETER BORWEIN, AND AMNON JAKIMOVSKI

ABsTRACT. For a sequence of polynomials (P,,) orthonormal on the interval [—1,1],
we consider the sequence of transforms (gn) of the series > 77, apPr(u) given by
gn(w) := 377 o bnrar Pr(u). We establish necessary and sufficient conditions on the
matrix (b,z) for the sequence (gn) to converge uniformly on compact subsets of the
interior of an appropriate ellipse to a function holomorphic on that interior.

1. Introduction. Suppose throughout that 1 < P < o0, 1 < R < oo, and that
all sequences and matrices are complex with indices running through 0,1,2,... .
We make the following definitions:

C is the finite complex plane;

Vg is the ellipse with foci +1 and half-axes a := L(R+R™!), b:= (R—R™'). Note
that an ellipse with foci £1 having R as the sum of its two half-axes is necessarily

VR:
D7, is the interior of the ellipse yg, and DY, := C;

(P) is an orthonormal sequence of polynomials with respect to a fixed non-negative
weight function w on the interval [—1,1]. That is, P, is a polynomial of degree n,
and
1
/ P, (u) Py (uw)w(u)du = Oy, -
-1

We assume throughout that
w e L(—1,1) and w™° € L(—1,1) for some € > 0.

The first of these integrability conditions is standard, and the second is imposed
for the purposes of the present paper. The classical Jacobi polynomials, for which
w(u) = (u—1)*(u+ 1)° with a, 8 > —1, satisfy the conditions.

£ is the set of all sequences a = (a,,) such that lim |an|n_J1r1 = 0;
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1
n—+1 < [o'ol

&P is the set of all sequences a = (a,,) such that limsup |a,

o0
Er is the set of all sequences a = (a,,) such that Z |an|R™ < oo;
n=0

A is the set of all sequences a = (a,,) such that lim sup |a,,| =

The following lemma, the proof of which appears in [1], shows that £” is the 3-dual
of £.

Lemma 1. A sequence b has the property that Z bpay 1s convergent for each
n=0
a €& if and only if b € £P.

The following are the first three of eight theorems we shall prove concerning ma-
trix transformations of series of orthogonal polynomials. They are analogues of
Theorems 1, 2 and 3 in [1] concerning matrix transformations of power series.

Theorem 1. A matric B = (b,) has the property that whenever the sequence
a = (a,) € Er the sequence of functions (g,) given by

gn ankakpk 77::0,1,... ,

converges uniformly on every compact subset of D}, each series Z bpiarPr(u) of
k=0

orthogonal polynomials being convergent on D). if and only if

(i) im by =: by for k=0,1,...;

k
(il) M(p):= sup |buxl (£> < oo whenever 1 < p < P.
n>0,k>0 R

And then hm gn(u) = ZbkakPk on D}.

Theorem 2. A matric B = (byy) has the property that whenever the sequence
a = (an) € AR the sequence of functions (g,) given by

gn(u) := Z bukarpPr(u), n=10,1,...,
k=0
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o0

converges uniformly on every compact subset of D}, each series E bk Pr(u) of
k=0

orthogonal polynomials being convergent on D). if and only if

(i) im by =: by for k=0,1,...;

k
(ii) M(p) := sup |bpl (2) < oo whenever 1 < p < P.
n>0,k>0 R

n—oo

And then lim g,(u) = Z bparPy(u) on DY.
k=0

Theorem 3. A matric B = (byy) has the property that whenever the sequence
a = (ap) € € the sequence of functions (gn) given by

gn(u) :== Z bprapPr(u), n=0,1,...,
k=0

[e.e]
converges uniformly on every compact subset of C, each series Z burarPr(u) of

k=0
orthogonal polynomials being convergent on C, if and only if

(i) im by =: by for k=0,1,...;

n—oo

(ii) M= sup |bnp| 7 < 0.
n>0,k>0

And then lim g,(u) = Z brapPr(u) on C.

n—oo
k=0

These theorems show that if the series-to-sequence transform given by B is regular,

then it is necessary in each case that lim b, = by =1 for £ = 0,1,... , and this
n—oo

in turn implies that P < R in Theorems 1 and 2 (i.e., the sequence (g,,) cannot
converge uniformly in the interior of any ellipse vp with P > R). Regular sequence-
to-sequence transforms of power series have been considered by Peyerimhoff [8] and
Luh [7] among others. One of the novel features of our approach is that we deal
with series-to-sequence transforms rather than sequence-to-sequence transforms.

Let (B,) be a sequence of non-zero complex numbers. The associated Norlund
series-to-sequence matrix N p is the triangular matrix (b,) with

Bn—k

b'n.k: = n
0 otherwise.

if 0<Ek<n,

The following theorem is an immediate consequence of Theorem 1.
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Theorem N. The Norlund matriz N g has the property that whenever the sequence
a = (ay,) € Eg the sequence of functions (g,) given by

1

gn(u) == B ;Bn_kakPk(u), n=0,1,...,

converges uniformly on every compact subset of D}, , if and only if

B, _
"L — b with |b|:§.

lim
n—oo n

n—oo

And then lim g, (u) = ZbkakPk(u) on DJ,.
k=0

Note. In view of Theorem 2, Theorem N remains true if £ is replaced by Ag.

2. Orthogonal polynomials.

In this section we set out some of the properties of orthogonal polynomials required
in our proofs. Note that the function u = 3(z+ 27!) maps the region {z: |z| > 1}
bijectively onto the region { u: u ¢ [—1,1] }, and that each circle |z| = R is mapped
onto yg . The inverse of this function is z = u + vu? —1 . Here and elsewhere
in the paper the sign of the square root is chosen so that |u + vu? — 1| > 1 when
u ¢ [-1,1]. We then have, for z = u + vu? — 1, that |z| = R when u € g, and
2| < R when u € D},. The function v = 3(z + 27') maps both the top half and
the bottom half of the unit circle {z : |z| = 1} onto [—1,1].

Lemma 2. For e > 0 let the non-negative weight function w € L(—1,1) associated
with the orthonormal sequence of polynomials (Py,) be such that w=° € L(-1,1),
and let |z| > 1 and uw = (z+ z71). Then

|P(u)] < K(e)(1+n)* 22" forn=0,1,...,

where K (€) is a positive number independent of n.

Proof. By Bernstein’s inequality (see [5, Theorem 7))

P < P, (t)]|z]",
o] < max [Pu(0)]2]"

and by a result due to Erdéli [2, Theorem 5]
1
max |P,(t)] < K1(e)(1+ n)2+2/5/ | Py, (t)|w(t) dt.
—i<t<1 ' 1 '

Finally, by the Cauchy-Schwarz inequality,

/_11 e s </—11 Pt dt) | (/_11 w(t) dt) - </_11 w(?) dt> g

Combining the above inequalities we get the required result. O
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Lemma 3. (Expansion of a holomorphic function in terms of orthogonal poly-
nomials). Let the non-negative weight function w € L(—1,1) associated with the
orthonormal sequence of polynomials (P,) be such that w=¢ € L(—1,1) for some
€ > 0. Let f(u) be holomorphic on the closed segment [—1,1], and let yg denote
the largest ellipse with foci £1 on the interior of which f(u) is holomorphic. The
Fourier series expansion of f(u) on D}, the interior of yg, is given by

o]

f(u) = Z ar Py (u),

k=0

where
1
w= [ FOP (.

The Fourier series is absolutely convergent on D}, and is also uniformly convergent
on compact subsets of D},. It is divergent on the exterior of yg. Further, the sum
R of the semi-axes of the ellipse of convergence is given by

limsup Ja|*
— = limsu Qg .
R P |0k

k—oo

Proof. All but the statement about absolute convergence follows from Theorems
12.7.3 and 12.7.4 in [11], since the conditions on the weight w are more stringent
than those in the said theorems. To prove the absolute convergence part, let

1

— = limsup |a G
R k— oo |k| ’

and let w € D). Then R > 1 and u = 3(z + 27') with 1 < [z] < R. Let
|z] < Ry < R. Then |ag| < Ry~* for all sufficiently large k. Hence, by Lemma 2,

_ | arase (121"
|arPe(u)] = (Jar||2|*)[z~*Pi(u)] < K(e)(1 + k) i

for all sufficiently large k, and therefore Z |ag Pr(u)| is convergent. O
k=0

Lemma 4. (Cauchy-type inequalities for Fourier series). Let the non-negative
weight function w € L(—1,1) associated with the orthonormal sequence of poly-
nomials (P,) be such that w=° € L(—1,1) for some € > 0. Assume that the func-
tion f(u) is holomorphic on D}, and continuous on D}z, the closure of DY,. Let

Z apPr(u) be its Fourier series. Then
k=0

o(F) -max |f(u)| forn=0,1,...,

<
|(Ln| =~ Rn R
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where o(R) = % ( /_ 11 w(t) dt)

Proof. Suppose first that n > 1. By Lemma 3 we have

/ FOP 0O d = [ (50 = gua®) Pult ot

-1

[N

where ¢,,—1(t) is any polynomial of degree n — 1. It follows that

=

oal < Bacs(0) [ (a0t < Eua0) ([ wityar)”

-1

where, in the notation of Lorentz [5],

Ena(f) = inf max [f(t) = gua(t)]

Further, it is proved in [5, inequality (6), p. 78] that

2R
R-1 R»

Combining the above inequalities we obtain the desired result for n > 1. Finally,

the case n = 0 of the Cauchy-type inequality is easily seen to be true since, for

Py := Py(t), we have
1 3
| Py </ w(t) dt) = 1. O
-1

3. Proofs of Theorems 1, 2 and 3. In the proofs of Theorems 1, 2 and 3, u
and z are related by u = 3(2+271), z = u+Vu? — 1 with |z| > 1, the sign of the
square root being chosen so that |u + vu? — 1| > 1.

En1(f) < - max | f(u)].

Proof of Theorems 1 and 2. We prove these two theorems together.

Sufficiency. We assume that

lim b, =: b for k=0,1,... ;

n—oo

k
M(p) := sup |bngl (£> <oo for 1<p<P
n>0,k>0 R

P
LetaEAR,oraESR.Forl<p<PChoose7’sothat1<T<Randz—)< ik Now

choose p; so that p < p; < P and — b_ E Suppose u € DJ. Then u = %(2 +271)
with 1 < |z| < p, and therefore, by Lemma 2,

k
s ()] < K(@)ballanl (1 + )2/ = K@il (2 Jaxl(1 + )2/t

k
= K (O] (B lanl(1+ )F/er* < K ()M (pr)|agl(1+ 1)o7 < ox.
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Further, by (i) (of either Theorem 1 or Theorem 2),
lim bnkakPk(u) = bkakPk(u) .

o0

Since Z lag| (1 + k)?T2/%* < o0, and since p can be chosen arbitrarily close to P

k=0
in (1, P), it follows, by the Weierstrass M-test, that g, (u) exists for n = 0,1,...,
and

n—oo

lim g,(u) = lim Z bprarPr(u) = Z brag P (u)
k=0 k=0

on D}, and that the sequence (g,,) is uniformly convergent on compact subsets of
DY, . This completes the proof of the sufficiency of conditions (i) and (ii) both for
Theorem 1 and Theorem 2.

1
RE(k + 1)

of either Theorem 1 or Theorem 2 the series

Necessity. Let ay, := . Then a € A and a € £i. Under the hypotheses

gn(u) = Z bnrar Pr(u)
k=0

is convergent on D}, and the sequence (g,) is uniformly convergent on compact
subsets of D}, . Therefore, by the Weierstrass double-series theorem, (g,,) converges
to a holomorphic function on D},. By Lemma 3, we get, for the above sequence a,
that

1
bpiy, = / gn(t)Pr(t)dt for n=0,1,....

-1

Since g, (t) converges uniformly on [—1,1] to g(t) say, we get that

1
lim b,,a; = / g(t)Py(t) dt =: dy.

n— _1

Hence, for £ =0.,1,... ,

lim bnk = bk,
where by, = dj, R¥(k+1)2. This proves the necessity of condition (i) in both Theorem
1 and Theorem 2.

Suppose now that p and p are fixed with 1 < p < p < P. Since a satisfies the
hypotheses of both Theorem 1 and Theorem 2, the sequence (g,) is uniformly
convergent on Dg. Hence we have, for u € Dg and n = 0,1,..., that |g,(u)| <
M(p,a) < oo, M(p,a) being independent of n. By Lemma 4 we get that

\bnrard®| < c(p)M(p,a) for n,k=0,1,... .
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Since aj, := —————, it follows that

RF(Ek+ 1)
"1
| bk | (E) m <c(p)M(p,a) for n,k =0,1,...,
and hence that
k
p\F ~ ~ p 2
sup bkl | =) <c(@)M(p,a)sup [ = | (K+1)° ) < <.
n>0,k>0 R k>0 | \D

Therefore the condition

k
sup  |bnkl (%) < oo wheneverl <p< P,
n>0,k>0

is necessary. i.e., condition (ii) is necessary in both Theorem 1 and Theorem 2. O

Proof of Theorem 3.

Sufficiency. We assume that
lim b, =: by for k=0,1,... ;

n—oo

1
M := sup |bpi|FT < 0.
n>0,k>0

Let a € €, and let u € D). Then u = 3(z 4 27!) with 1 < |z| < R < o0, and so,
by Lemma 2,

|burar Pi(u)| < K (€)|burllar|(1+ &)>T/¢[2]* < K()|bur|ar| (1 4 k)*F/*R*
< K(e)Mlag|(1+ k)**/¢(MR)* < .

;From (i) we get
lim bnkakfﬂilﬂ ::bkakfk(u).

n—oo

Since Z lag|(1 4+ k)2t2/¢(MR)* < oo, and since R can be arbitrarily large, it
k=0
follows, by the Weierstrass M-test, that g, (u) exists for n =0,1,... , and

n—oo

lim g,(u) = lim Z bnrarPr(u) = Z brag P (u)
k=0 k=0

on C, and that the sequence (g,) is uniformly convergent on compact subsets of C.

Necessity. Let aj, := k%, so that a € £&. Then, by hypothesis, the series

gn(u) 1= bupayPe(u)
k=0
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is convergent on C, and the sequence (g,) is uniformly convergent on compact
subsets of C. By the Weierstrass double-series theorem, (g, ) converges to an entire
function on C. By Lemma 3 we have

1
T— / gn(t)Pr(t)dt forn=0,1,....
—1
Since g, (t) is uniformly convergent on [—1,1] to g(t) say, we get, for £ =0,1,... ,
that .
lim b,,a; = / g(t)Py(t) dt =: dy,

n -1

and hence that
lim bﬂk = bk,

n—oo

where by = dpk* for k =0,1,2,... . Thus condition (i) is necessary.

Suppose now that a is an arbitrary sequence in &, and that R > 1. Since the
sequence (g, ) is uniformly convergent on D},, we have, for u € D}, andn =0,1,...,
that |g,(u)] < M(R,a) < co. jFrom Lemma 4 we get that

lbnrar| < c(R)M(R,a)R™" for n,k =0,1,... . (1)
Hence Z bnray is convergent whenever a € £, and we have, by Lemma 1, that
k=0

M, = sup|bnk|ﬁ < oo forn=0,1,....
k>0

Assume now that
1
sup sup |by, | 7 = sup M,, = oc.
n>0 k>0 n>0
This implies that there exists a strictly increasing sequence of positive integers
(n;) such that M, — oo. This in turn implies that there exists a sequence of
non-negative integers (k;) such that

1 1 .
b g, |59 > 5 Mn; — 00 as j — . (2)
We show now that the sequence (k;) is not bounded. Assume that it is bounded.
Then there is a positive integer k* such that 0 < k; < k*. Since lim b, = by

n— 00

for k=0,1,... . k*, it follows that the set of numbers (bni)n>0,0<r<i- is bounded,

and hence that the set of numbers (|bnk|ﬁ) is bounded. But this
n>0,0<k<k*

contradicts (2). Therefore the sequence (k;) is not bounded. We can suppose

(by considering a subsequence if necessary) that the sequence is strictly increasing.

Choose

k+1
2

1
if k =k,
aj = (|bn].,k|> ! J

0 otherwise.
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We then have, by (2), that

k]+1
1 1 1 2
lag;| "t = <(1 ) — 0 as j — oo.
| "ljykj| §Mnj
Therefore a € &, but
|bnj,kj|a'kj - |b'n,]-,k:j| — 0 &Sj — 00,

which contradicts (1). Thus the condition

1
sup  |bpg|FT < o0
n>0,k>0

is necessary, i.e., condition (ii) is necessary. O

4. Additional Theorems. In this section we prove some theorems showing that
the ellipse of convergence D}, specified in Theorem 2 cannot be enlarged when the
matrix B satisfies conditions (i) and (ii) of that theorem together with certain other
conditions. Analogous theorems concerning matrix transformations of power series
appear in [1].

Theorem 4. Suppose that P and R are finite numbers greater than 1, and that
B = (bug) is a triangular infinite matriz (i.e., by, = 0 for k > n) satisfying

k
M(p) == sup |bnl (2) <oc for 1<p<P.
n>0, k>0 R

Then, for each a € Ar and each Ry > P,

i
n

n Rl
li by Py (s < —.
imsup max > bakarPr(u)| < =
k=0
1
Proof. Choose R; > P > 1, and suppose a € Apg. Let Iz < A <1, and take
1
p:=AP >1.Then 1 < p < P. Since limsup|ak|# =7 there is a positive

constant ¢(A) such that
c(A)
(AR)*

By Lemma 2, for u € yp, we have |Py(u)| < K(e)(1+ k)**?/*R;* and hence

; k
ankakpk Z'bnk|( ) |ak|Rk (%) (1+k)2+2/6

NN R\" (R \" 242/e
< K()M(p)e(N) ) (m) (ﬁ) (1+F)

k=0

lag| < for k > 0.

n k
< KM@+ 3 ()
k=0
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Ry Ry
Since 2P > N > 1, it follows that

1
n

) Ry
< Jm <Z_: </\2P> ) ~ P

lim sup max
n—oo UETR;

Z bnkakPk (u)
1:0

Letting A 7 1 we get

3=

lim sup max < —. O

n—oo UETR;

Z bnkakpk(u)
k=0

Remark. Assume that a triangular matrix B satisfies

k
M(p):= sup |bugl (Q) <ooforl<p<P.
n>0, k>0 R
Then
1 1
[ban| ¥ 75 < M(p)F = L asn — o,

and hence

lim sup |b,,,

n—oo

Letting p / P we get

1 R
w < — for each p € (1, P).
. .

3=

lim sup |by | ™ <

n—oo

<=

This suggests that it is not inappropriate to impose the condition

R
hm |byn| ™ = B’

as we do in the following theorem.

Theorem 5. Let B be a triangular matriz. Suppose that
R

hm |byn| ™ = B

where P and R are finite numbers greater than 1 . Then for each a € A g and each
Ry, > P we have

1
n

. Ry
lim sup max > —.
P

n—oo UYEVTR,

Z bkar Pr(u)
=0

Proof. Assume that the conclusion of the theorem is not true. Then there is an
a* € Arp and an Ry > P > 1 such that

3=

Ry
lim sup max < —.
n— oo UE’YRl P

> bukaj Pi(u)
<:0
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Therefore there exists a number R such that 1 < B < Ry and, for all n sufficiently

large,
bty Pr( < —, and hence max bnrar P — .
uémlkznkkk P “’th_:"kkk() (P)
Applying Lemma 4 to the function g,(u Z bpray Pr(u) we get in particular

that, for all large n,

[by||ay | BT < ¢(Ry) <F> , and therefore |b,,,|™ |ay,|™ "Ry < c(Rl)Fﬁ
i From the last inequality we get that
R 1 1 1 1 R
P > limsup (|byn|™|aks|* R1) = R1 lim |by,|™ - limsup|ak | = F]

But this is a contradiction since 1 < R < R;. Hence the conclusion of the theorem
must hold. O

The next two theorems are analogues of Theorems 6 and 7 (concerning matrix
transformations of power series) in [1], which in turn generalize results about regular
and non-regular Norlund matrices due respectively to Luh [6] and K. Stadtmiiller [9,
Theorems 6 and 7]. The first of these new theorems, which follows immediately from
Theorems 4 and 5, shows, inter alia, that the sequence (g,) specified in Theorem
2 cannot converge uniformly in the interior of any ellipse yp, with PP > P when
B is a triangular matrix satisfying condition (i) of Theorem 2 together with the
diagonal condition of Theorem 5.

Theorem 6. Suppose that P and R are finite numbers greater than 1, and that B
15 a triangular matrx satisfying

k 1 R
M(p):= sup |buil (%) <oo forl<p< P, and lim |b,,|» = B
n>0, k>0 n—o0

Then, for each a € A and each Ry > P,

3|

lim sup max
n—oo UEYTR,

Z bpiarPr(u)
=0

The next theorem shows that the ellipse yg, in the conclusion of Theorem 6 can
be replaced by any arc of that ellipse (provided condition (i) of Theorem 2 is also
satisfied when R; = P).
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Theorem 7. Suppose that P and R are finite numbers greater than 1, and that B
15 a triangular matriz such that

. R
M(p):= sup |bnk|(2)lC < oo forl<p< P, and lim |b,,|* = —=.
n>0, k>0 R n—00 P

(i) Then, for each a € Ar and each Ry > P,

3=

R
lim sup max nkakPk u) =1 ,
where I' 1s any closed non-trivial arc of yg, .
(i) If, in addition,
lim b, =: by for k=0,1,..., where by, 0 for k > k*,
then, for each a € Apg,
L
lim sup max ankakPk (u)] =1,
where I' 1s any closed non-trivial arc of yp.
Proof of (i). By Theorem 6 we know that
1
" R
lim sup max nkakPk < Fl
Hence it is enough to prove that, for every a € Ap,
1
" R
lim sup ma,x nkakPk > ?17 (3)

which we now proceed to do. Assume that (3) is not true. Then there exists a
sequence a* € Ar and a number R such that P < R < R; and

3=

lim sup max|gn(u a¥)|» <

n—oo uw€l

~| =

Hence given € > 0 we have, for z := u + vu2 — 1 and all sufficiently large n,

(R e (RN (2Y
“\P Ry Ry P

gn(ua a*)
Z'TL

max
uel
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Further, from Theorem 6 we get that, for all large n,

n Y " 2¢ "
max |90 | <_>

u€yp AL P

and

n ” * 26 "
max |9n(20)] <_>

uEYR, zn P

Let P < r < R;. Since the function z = u + v/u? — 1 is holomorphic and different
from zero on C\[-1,1], we have, by Nevanlinna’s N-constants theorem (see [3,
Theorem 18.3.3]), that there exist positive constants 61, 6,, 63 (depending on 7 but
not on €) such that 6; + 65 + 635 =1 and

~ néq né né ~ nb, n
< (B2 N (2N (R 2
“\R, P P P T\ Ry P

~ 91
R
for all sufficiently large n. Hence, choosing € > 0 so small that (R_) 2¢ <1, we

gn(ua a*)
Z’I’L

max
uEYr

1
get

n—oo U R]

~ 0
R
hmsupmeax|gn(u a )| (—) 9l L
Tr

Since > P, the last inequality contradicts the conclusion of Theorem 5. Hence (3)
must hold when R; > P.

Proof of (ii). By Theorem 6 we know in this case that

lim sup maX Z bprapPr(u)| < 1.
n—oo UE
k=0
Hence it is enough to prove that, for every a € Ap,
1
lim sup max k@ Pr(u)| > 1, (4)
n—oo Uu€l

Suppose (4) is not true. Then for some a* € Ar we have

3=

lim sup max nkakPk u) < 1.

n—oo U€l
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Write .
gnl(u,a") = Z bk ey Pr(u) .
k=0
: . Ry
It follows that there exists a positive number ¢ < = 1, such that, for all n

sufficiently large,

sup |gn(u,a™)| < ¢".
u€el

Given « > 0 we get from Theorem 6 that, for all n sufficiently large,

max |gn(u,a*)| < 29",
uEyp

By Nevanlinna’s N-constants theorem, there exists a positive number 6 < 1 (inde-
pendent of «) such that, for all large n,

. )| < 0o(1—0)c n.
_max [gn(u,a%)| < (¢720777)

Since we can choose a > 0 so small that ¢?20 =9 < 1, it follows that

s [ (a") = 0 s .

By Lemma 3 we have

1
T— / gn(t,a")Py(t)dt forn=0,1,....
-1

Since ¢, (t,a*) tends uniformly to 0 on [—1,1] as n — oo, it follows that
0= lim b,rar = bgay for k=0,1,....

Since a* € Apr we have that a; # 0 for some & > £*. Hence b, = 0 for such a
k. But this contradicts the assumption that by # 0 for £ > k*. Therefore (4) must
hold. 0

5. Chebyshev Polynomials. In this section we restrict (P,) to be the orthonor-
mal sequence on [0,1] of Chebyshev polynomials of the first or second kind, the

corresponding weight functions of which are respectively w(z) = 7(1 — %)~z and

s

w(z) = 5(1 - a:z)%. The special properties of these Chebyshev polynomials that
makes them amenable to the proof of Theorem 8 (below) are the familiar identities

1 .
2P, (§(z + z_l)) =z" 427" (5)
when P, is of the first kind, and
1
(z—2z"Y)P, <§(z + z_l)) =t (6)

when P,, is of the second kind.

The said theorem deals with the possibility of pointwise convergence of the sequence
(gn(u)) specified in Theorem 2 outside the convergence ellipse yp. It’s analogue
for power series is Theorem 8 in [1], which generalizes results due to Lejd [4] and
Stadtmiiller [9, Theorem 8] about regular and non-regular Noérlund matrices re-
spectively.
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Theorem 8. Suppose that P and R are finite numbers greater than 1, and that B
15 a triangular matriz such that

(i) lim by =: by for k=0,1,... where by, # 0 for k > k*,

k 1 R
(ii) M(p) :== sup |bnl (£> <oo forl<p< P; lim |b,,|» ==, and
n>0, k>0 R n—o0 P

n—k
3 P y
(iil) |bpk| < e(R)|byn| (E) forlT<R<Rand 0 <k<mn.

Suppose that a € Agr and that limsup |a,|R™ > 0. Let

n—oo

gn(u) = Z bnkakpkz(u):
k=0

where (Py) is the orthonormal sequence on [—1,1] of Chebyshev polynomials of the
first or second kind, and let Py > P. Then limsup |g,(u) v <1 for at most a finite

n—oo

number of points u outside the ellipse yp, and hence, in particular, the sequence
(gn) can converge at most at a finite number of points u outside the ellipse yp, .

Proof. Assume that u is a point outside the ellipse yp, for which

3=

lim sup g, ()| < 1. (7)

Let z := u+ vu? — 1, so that |z| > P;; and let

gn(2) = Z bpapz”.
k=0

Then, by (5),
20n (1) =2 bppar Po(u) = Gn(2) + Gu(27")
k=0
when the Chebyshev polynomials P are of the first kind; and, by (6),
(Z - Z_l)gn(u) = Zgn(z) - Z_lgn(z_l)

when the Chebyshev polynomials Py, are of the second kind.
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Since [2~!| < P! < P it follows from Theorem 2 in [1] that §,(z~!) tends to a
finite limit as n — oo, and therefore from (7) that, in either case,

lim sup |, (2)|* < 1. (8)

n— 00

Theorem 8 in [1] tells us that inequality (8) can hold for at most a finite number of
points z satisfying |z| > P;, and thus (7) can hold for at most finitely many points
u outside the ellipse yp, . a

Remarks. A Norlund matrix N g for which

B, .
lim — L — b with |b|:%

n—oo n

satisfies all the conditions on the matrix in Theorem 8. In this case, however,
the condition limsup |a,|R™ > 0 can be omitted since the corresponding version
of the theorem for power series has recently been proved by K. Stadmiiller and
Gross-Erdman [10, Remark 3.7].

An open and challenging question is whether Theorem 8 holds for other orthogonal
polynomials.
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