THE ARC LENGTH OF THE LEMNISCATE $\{|p(z)| = 1\}$

Peter Borwein¹

Department of Mathematics Simon Fraser University Burnaby, B.C Canada B3H 3J5

ABSTRACT. We show that the length of the set

$$\{z \in \mathbb{C} : |\Pi_{i-1}^n(z - \alpha_i)| = 1\}$$

is at most $8\pi en$. This gives the correct rate of growth in a long standing open problem of Erdös, Herzog and Piranian and improves the previous bound of $74n^2$ due to Pommerenke.

In 1958 Erdös, Herzog and Piranian [2] raised a number of problems concerned with the lemniscate

$$E_n := E_n(p) := \{ z \in \mathbb{C} : |p(z)| = 1 \}$$

where p is a monic polynomial of degree n, so

$$p(z) := \prod_{i=1}^{n} (z - \alpha_i)$$
 $\alpha_i \in \mathbb{C}$.

One in particular, Problem 12, conjectures that the maximum length of E_n is achieved for $p(z) := z^n - 1$. (Which is of length 2n + 0(1).) The best partial to date is due to Pommerenke [7] who shows that the maximum length is at most $74n^2$. This problem has been re-posed by Erdös several times, including recently at a Budapest meeting honouring his 80th birthday. (See also [3].) It now carries with it a cash prize from Erdös of \$250.

This note derives an upper bound of $8\pi en$, which gives the correct rate of growth.

¹⁹⁹¹ Mathematics Subject Classification. 31A15, 26D05.

Key words and phrases. Capacity, arclength, Erdös, Lemniscate, polynomial.

¹Research supported in part by NSERC of Canada.

Theorem. Let $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{C}$. Then the length of

$$E_n := \{ z \in \mathbb{C} : |\prod_{i=1}^n (z - \alpha_i)| = 1 \}$$

is at most $8\pi en (\leq 69n)$.

The proof relies on two classical theorems. One due to Cartan and one due to Poincaré.

Cartan's Lemma. ([1, p174]) If $p(z) := \prod_{i=1}^n (z - \alpha_i)$ then the inequality

holds outside at most n circular discs, the sum of whose radii is at most 2e.

Poincaré's Formula. [8, 9] Let Γ be a rectifiable curve contained in $\mathbb S$ (the Riemann sphere). Let $v(\Gamma,x)$ denote the number of times that a great circle consisting of points equidistant from the antipodes $\pm x$ intersects Γ . (If this is infinite set $v(\Gamma,x)=0$.) Then the length of Γ , $L_{\mathbb S}(\Gamma)$, is given by

$$L_{\mathbb{S}}(\Gamma) = rac{1}{4} \int_{\mathbb{S}} v(\Gamma, x) dx$$

where dx is area measure on \mathbb{S} .

We need the following corollary of this result.

Corollary. Suppose Γ is an algebraic curve in \mathbb{R}^2 of degree at most N and D is a disc of radius R. Then the length of $\Gamma \cap D$ is at most $2\pi RN$.

Proof. By an affine scaling it suffices to prove this for D a disc of radius 1 about the origin. Now any conic intersects Γ in at most 2N points by Bezout's theorem. It follows that the projection of Γ in the Riemann sphere is intersected by any great circle in $\mathbb S$ in at most 2N points. Thus the length of the projection of Γ in S is at most $2\pi N$ by Poincaré formula. Since the projection back to the unit disc doesn't increase arclength the result is proved.

We can now prove the theorem.

Proof of Theorem. Fix $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$. By Cartan's Lemma there exist circles D_1, \ldots, D_m with radius r_1, \ldots, r_m so that

$$E_n \subset \bigcup_{i=1}^m D_i$$

and

$$\sum_{i=1}^{m} r_i \le 2e.$$

Observe that E_n is an algebraic curve in \mathbb{R}^2 of degree at most 2n in x and y where z = x + iy. So by the Corollary each disc D_i contains a portion of E_n of length at most $4\pi r_i n$. On summing over i we deduce that the length of E_n is at most $8\pi e n$.

The constant 2 in the Corollary can be removed with some effort, so a sharpening to $4\pi en$ is possible. The constant e in Cartan's Lemma is probably unnecessary, but this is open. Even with these improvements we would only get a bound of $4\pi n$ which still isn't sharp. Indeed it seems likely that this type of method is too blunt to yield an exact result.

There are a number of interesting related results. See for example Pommerenke [4,5,6,7]. In Pommerenke [6] it is shown that if the roots in the Theorem are all real then the length is at most 4π .

In Pommerenke [5] it is shown that if the set E_n is connected then the length is at least 2π , with equality only for z^n . When E_n is connected one can find a disc of radius 2 that contains it [5]. So in this case the length of E_n is at most $4\pi n$.

REFERENCES

- [1]. Baker, G. A., Jr, Essentials of Padé Approximants, Academic Press, New York, 1975.
- [2]. Erdös, P., F. Herzog and G. Piranian, Metric Properties of Polynomials, J. D'Analyse Math. 6 (1958), 125-148.
- [3]. Erdös, P., Extremal Problems on Polynomials, in Approximation Theory II, Academic Press (1976), 347-355.
- [4]. Pommerenke, Ch., On some metric properties of polynomials with real zeros, Mich. Math. J. 6 (1959), 377-384.
- [5]. Pommerenke, Ch., On some problems of Erdös, Herzog and Piranian, Mich. Math. J. 6 (1959), 221-225.
- [6]. Pommerenke, Ch., On some metric properties of polynomials II, Mich. Math. J. 8 (1961), 49-54.
- [7]. Pommerenke, Ch., On metric properties of complex polynomials, Mich. Math. J. 8 (1961), 97-115.
- [8]. Santaló, L. A., Integral Geometry and Geometric Probability, Addison-Wesley, Reading, Mass., 1976.
- [9]. Wegert, E. and L. N. Trefethen, From the Buffon Needle Problem to the Kreiss Matrix Theorem, M.A.A. Monthly (to appear).