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Incomplete Rational Approximation in the Complex Plane

P. B. Borwein and Weiyu Chen

Abstract. We consider rational approximations of the form

Perl2)
(1 + )zzn+1 _}
{ EPYE

in certain natural regions in the complex plane where p,, and g, are polynomials
of degree cn and n, respectively. In particular we construct natural maximal
regions (as a function of « and c) where the collection of such rational functions
is dense in the analytical functions. So from this point of view we have rather
complete analog theorems to the results concerning incomplete polynomials on
an interval.

The analysis depends on an examination of the zeros and poles of the Padé
approximants to (1 + z)™* 1. This is effected by an asymptotic analysis of certain
integrals. In this sense it mirrors the well-known results of Saff and Varga on the
zeros and poles of the Padé approximant to exp. Results that, in large measure,
we recover as a limiting case.

In order to make the asymptotic analysis as painless as possible we prove a
fairly general result on the behavior, in s, of integrals of the form

1
f (1 = ) £OT dt,
0

where f(t) is analytic in z and a polynomial in ¢t. From this we can and
do analyze automatically (by computer) the limit curves and regions that we
need.

1. Introduction

In his remarkable paper of 1924, Szegd [11] considered the zeros of the partial
sums s,(z) = Y §—¢ z*/k! of the MacLaurin expansion for e*. Szegd [11] established
that £ is a limit point of zeros of the sequence of normalized partial sums,
{s,(nz)};> o, if and only if

(1.1) te{zi|zet™? =1, |z| < 1}.
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Moreover, Szeg6 [11] showed that Z is a nontrivial limit point of zeros of the
normalized remainder {€" — s,(nz)}>; if and only if

(1.2) zef{z:|ze' 7% =1, |z] > 1}.

Saff and Varga [10] established sharp generalizations of Szegd’s results to the
asymptotic distribution of zeros and poles of more general sequences of the Padé
approximants to e°.

In this paper we consider the Padé approximants to (1 + z)***!, and locate the
limit points of the zeros and poles of the Padé approximants. The Padé approxima-
tion to e® is then a limiting case of the Padé approximations to (1 + z)**** (see
Section 6).

The approach is to obtain some general theorems (Theorems 2.4 and 2.5)
concerning the zeros of the limit function of the integrals

(L3) j [l — O f0)]" dt,
0

where f,(t) is a polynomial in ¢ and analytic in z. These theorems can be applied
to many other cases. As a consequence of these theorems, we not only determine
the limit points of the zeros and poles of the Padé approximants to (1 + z)***?,
but also obtain, for example,

Theorem. The set of functions {(1 + z)*"r(2)/s(2): 1.(2), s,(z) € T}, is dense in
A(K), the analytic functions on K, where K is an arbitrary compact subset of Ry
and not in any region strictly containing Ry (where R is as defined in Section 3).

This can be thought of as a generalization to the complex plane of the now
numerous results on denseness of incomplete polynomials on an interval.

In Section 2 we give the explicit formulas for the Padé approximants to
(1 + z*™** in the form of (1.3), and then prove our main theorems. The distribution
of the limit points of the zeros and poles of the Padé approximants to (1 + z)***!
is established in Section 3.

One advantage of our method is that this procedure can be carried out
automatically on a computer. So after some theoretical results are obtained the
messy algebra of determining the limit curves and regions is entirely automatic
(using Maple or some other symbolic algebra package, see Section 3).

We consider incomplete rationals and incomplete polynomials in Sections 4 and
5, respectively. In our last section, Section 6, we discuss the Padé approximation
to e as a limiting case of the Padé approximation to (1 + z)y™*1.

2. The Main Theorems

In this section we discuss the Padé approximation to (1 + z)™** at 0, and obtain
the corresponding p, g, and error term explicitly in the following integral form:

2.1) J- [ — 0 L0 dt,
Q.
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where f(¢f) is a polynomial in ¢t and analytic in z on some compact set K. In
the second half of this section we establish a general theorem concerning the limit
function of the above integral form (2.1) as n — co. From this limit function, we
determine the limit points of the zeros of the integral forms (2.1) as n goes to
infinity.

Theorem 2.1.  For the (m, n) Padé approximationto (1 + z)** at 0, > 0, we have

pm(z) B Zm+n+1 j‘(l)(l - t)mtn(l + tz)an—m dt

1 an+1 —_ ,
@ e 4.2
(b) palz) = JI t— D" ™1 + z — )" dt,

4}
and
(c) g.2) = J 1 —™™" ™tz + 1) — 1)" dr.
Proof. We write
m+np+1
1 an+ 1 _ pm(z) — z ean*m(z)
G e 4.

Then
[ + 2" 'q,(z) — pu(2]™ " = 2"T(2),
where T(z) is a polynomial in z and (1 + z)* Also,
[ + 2" g(2) ~ pu(2)]™ Y = (1 + 2" "S(2),

where S(z) is polynomial of degree n in z.
So we deduce that

22 [ + 2" 1g,(z) ~ pul(2)]™ "V = C2"(1 + 2" 7™,
which implies

- (1 + Z)un+ IQn(Z) - pm(z)
e“"'"‘(z) - Zm+n+1

1
=C* J (1 —o™"1 + tz™ ™™ dt.
0

In the last equality we used the following fact: if

Zm+1

G(z) =

Jl 1 — o"f(t2) dt,

m!
then, given suitable smoothness of f,

G z) = f(2).
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On the other hand, from (2.2) we have
23) [ + 2" g, (@] D = C2'(1 + 2™

So integrating from —1 gives back the correct initial terms. Let y = 1 + z. From
(2.3) we obtain

™ gy — D170 = Cly — 1y~

Therefore,
1
Y rlg(y — 1) = C*ym+? f (I — ™yt~ ™(yt — 1y dt
0
or
1
qg(y—1)=C* f (1 —gme™ ™yt — 1) dt,
0

which implies (c). (There is one free normalization constant.)
Now; consider p,(z), from (a) and (c) we can write

1
Pu(2) = (1 + 2" f (L= ™™uz + 1) — 1)" dt
4
1
— gmtetd J 1 — o™ (1 + tz)* ™" dr.
0
Let t = (s(1 + z) — 1)/z, we can rewrite

1
e f (1 — (1 + 2y ™ ds
0

! 1+ z\" 1 1+
= gmtntl J ( Z) (1— s)'”—"[s(l +z)— 1™ (1 + z)an—m___zdt
1/(1 +2) 4 z z
1
=(1+z"*! f (1 —9"[s(l +z) — 17" "™ ds.
1(1+2)
Therefore,
1/(1+2)
Pu(2) = (1 + 2! f (=" e + 2) — 1)" dt
0

1 m an—m d
=4zt | (12 > ) (s—1p -2
0 14z/ \1+z 1+z

1
= j (14 z—s)"s* ™s — 1)" dt,

0

which is (b). [ |
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If we let m = cn and suppose that cn is an integer, we have the following
corollary.

Corollary 2.2. For the (cn, n) Padé approximation to (1 + 2z at 0, a > 0, we
have

Pl®) _ 20 — 0FH(1 + 2 T dr

@ e =0 2. ’
() Pul2) = f 01 [t — D~ + 2 — ¥ di,
and o

© 0.0 = J [(1 — 0Fe(1 + ) — DT d.

The relations among p,.(z), ¢,(z), and ¢ are considered in the next corollary

for some specific « and c.

ch—m

Corollary 2.3. When ¢ = 1, we have

2.4) 1+ ”’(Ti) = 4,(2).

If a — c =1, then

23) (= 1eu—an(—(1 + 2)) = 4,(2).

Proof. From Corollary 2.2, we have

-2z 1 - z i
()=, Lot
I - n
=<IT> f [ — 0= (t(1 + 2) — DT ds,

which implies (2.4).
When ¢ — ¢ = 1, from (a) of Corollary 2.2,

eu-al —(L +2)) = L [ — ol —e(1 + 2)]" de

1
=(=1r f [ — (1 + z) — 1)]" dt,
0

which completes the proof of the corollary. [ |



90 P. B. Borwein and Weiyu Chen

Since p,,(2), 4,(2), and e, _,(z) can all be written in the integral form

1
(2.6) f [« — 9 f(0]" dz,

where f(f) is a polynomial in both z and ¢, it is natural to investigate some
properties of this integral form.

Theorem 2.4. Let
1 1
I, = J (1 —0)f@]" dt = J [em1” 41,
4] 0

where Q(t) = t(1 — t)f(¢) is a polynomial of degree N in t. Let t,t,,...,ty_, be
the N — 1 zeros of Q'(t). Suppose that

Q) # |10(t)), P #J.
Then

lim I3 = arg(Q(t:)|Q(t:)| = Q(t:)  for some i.

>0

Proof. In the proof we use the method of steepest descent and a saddle-point
argument (see [5] and for the complex analysis [1]). First, let us recall the real
case (see p. 96, 4 198, of [6]). Suppose two functions ¢(x) and g(x) are continuous
and positive on the interval [a, b]. Then

b i/n
2.7 : lim {j o(x)Lg(x)]" dx}
exists and is equal to the maximum of g(x) on [a, b]. (This is in fact a fairly
easy exercise.)

Let us return to the proof of the theorem. Observe that from any point there
is a downhill contour (in decreasing magnitude) that terminates at one of the zeros
of Q(t). Otherwise the path would end at a point of minimum modulus of Q()
other than a zero which is impossible. So descent is always possible (and not to
t = o0 because Q(t) is a polynomial in this case).

Now suppose that 4, is a piece of arc of constant argument for Q(z) through ¢,
from y; to ;. Then by the above observation we can connect y; to one zero and
J; to another to form a contour B; from one zero of Q(t) to another in a descending
fashion. Do this procedure for all the ;. This forms no closed contours since, if it
did, integrating around one of these is nonzero by a steepest descent argument
but is zero by Cauchy’s theorem.

Thus the contour By, B,, ..., By_, in some order must connect all N zeros of
Q(r) with exactly one link.

In particular there is a path from 0 to 1 via some of the saddle points of Q(¢)
(not necessarily all), say ¢;, k=1,2,...,r, where r < N — 1. We may suppose
that

(2.8 Q@) > 100l k=2,...,n.
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Now we can apply the modified steepest descent argument in the real case (see
p. 287, #198, of [6]) since, along A;, Q(r) has constant argument while, for the
remainder of the B;, the modulus of Q(z) is less than |Q(z;)| by the construction
of B;. Along other B;, k = 2,...,r, we know that the modulus of Q(¢) is less than
|Q(t;)| too by (2.8) and the constructions of B;, k =2,...,r. This gives us the

11724

desired result. [ ]

Theorem 2.4 is a pointwise version for z if f,(t) is a polynomial in ¢ and analytic
in z on some compact set K. From Theorem 2.4 we can prove the following
uniform version of Theorem 2.4, which is the result we really need.

Theorem 2.5. Let
1 1

29) 1(z) =J [11 — ) f()]" dt = J [Q.(0]" dt,
0 0

where Q,(t) = (1 — t)f(t) is a polynomial in t and analytic in z on an open
simply connected set U. Suppose

10tz # 1Q.(t2)]

for any i#j, and any ze U, where t;:=tz) are the zeros of the polynomial
(d/dt)Q.(t) (which by the above assumption can be given so that each t; is analytic
on U). Then

(@) I(2)''" converges to a nonzero limit pointwise on U.

(b) |1(2)|'™ is uniformly bounded on compact subsets of U.

(©) I(2)'" converges uniformly to a Q,(t{z)) on compact subsets of U, and Q (t(2))
is analytic on U. Moreover, Q(t{z)) # 0 for all ze U.

Proof. (a) This is the content of Theorem 2.4.

(b) This is obvious from the definition of I,(z).

{(c) Denote the open disk centered at z with radius ¢ as D(z,¢), and the
corresponding closed disk as D(z, ¢). Now pick a z, € U, then there is an i, such
that :

1Q2(tii(20))] > [Q{tilzo))|  for i1y,

Let
d = min {|Q,(t:,(zo))| — Q. (t{z0))]} > O,
i¥ip
then, since t{z) (i=1,...,N — 1) is a continuous function of z and Q,(t(2))

is analytic, there is an &, such that

d
fl Qz(tio(z)) ”C(lj(zo,al)) > Vi(zo) — Z
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and

I Q2N | ctiey, ey < V(zo) — 2d

for i # i, where

V(zg) = 1Q.{t:{zo))]-

According to the proof of Theorem 2.4, there is a contour A,(z,) through
t;,(zo) from y,(z,) to ,(z,) on which Q, (¢) has constant argument. In addition, we
choose y;(z,) and J;(z,) such that

|on(Vi0(Zo))| < Vizo) — %d

and

102,Bi(zo))| < V(zo) — 34

Denote the whole contour from 0 to 1 through t;,(z,) by I'(zo) and the
length of I'(zo) by Il(zo). Suppose the length of the part of 4,(z,) such that
19,0 = V(zo) —d/2is r.

Now, for z € D(z,, &,), we construct the contour I'(z) in the same fashion, that is,

1002 < V(zo) — 3d
and
[Q.00: (2 < V(zo) — 3d.
Choose &, > 0 such that
l2) <lizo)+1  for zeD(zqe,),

and ¢; > 0 such that the length of the part of 4,(z) with [Q.(t)] > V{(z,) — d/2
is larger than or equal to r/2 for z € D(z,, €3).
Let ¢ = min{e,, &,, &3}, then, for z € D(z,, ), we have

1/n

(L)' = f [Q.(0)]" dt
0

1/n

= f [Q.()]" dt
)

i/n

s

=J (0.7 dr + f [0 dt
Aig(2) I'(z)

where I"(z) is the part of I'(z) without 4, (z).
From the choice of ¢ and the construction of I'(z), we have

un fr 1001 dt J”"
n 4 1 — e =z 7
ino(z) [QZ(t)] ‘ * [ ’IA;O(Z) [Qz(t)]n dtl

> |:l <V(ZO) B §>ni|1/n|:1 _ (l(zo) + 1XV(zq) — %d)n:ll/n_
2 2 t/2(V(zg) — dJ2)"

L@ =
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Therefore, there is an ny(z,) which depends only on z, such that
i) >0  for zeD(zg,8), n > nyzg).

Now consider any compact subset K of U. For any z,€ K, by the above
argument, there are &(z) and n(z,) such that

ILE@)I" >0 for zeD(zo, &zo)), 1 = nolzo):
Thus, we can pick up finitely many z in K, say z,, i = 1, 2, ..., M, such that
M
K< | D, o(z).
i=1

Let ny = max, .; . p{n(z;)}, then

L)Y >0 for zeK, n> ngzo)-

That is, I,(z)'™ is analytic on K for n > ny(z,) (in the sense that there is a
well-defined analytic nth root).

From the above arguments, (a) and (b), and applying Vitali’s theorem we know
that I,(z)}"" converges uniformly on compact subsets of U to an analytic function
Q.(t{z)). Now we can apply the uniqueness theorem, which implies that I,(z)'/" must
converge to the same Q,(t(2)) on all compact subsets of U. From Hurwitz’s
theorem, we see that

Q.(t2) #0  forall zeU. ]

From Theorems 2.4 and 2.5, we have knowledge of the limit function of I (z)'/*,
n=1,2,.... In fact, the limit function tells us more.

Corollary 2.6. Let I,(z), f.(t), and Q,(t) be as in Theorem 2.5. Suppose that, for each
z, Q,(t) is a polynomial of degree N in t, and further that Q_(¢) is analytic in z. Then
the limit points of the zeros of 1,(z) can only cluster on the curve

{z:1Q.(t42)| = |Q.(t[2))], for some i # j}

or at points where Q_(t(z)) = 0, or at points where Q,(t{z)) is not analytic.

Proof. Let U be an open and connected set which is disjoint from the curves
and points stated in this corollary. Suppose S is a compact subset of U where
I(z)*" is analytic, which will be whenever the nth root is well defined and nonzero.
Then by Theorems 2.4 and 2.5

In(z)lln - Qz(ti) :/é 0 as n— x,

pointwise on S. Therefore, applying Vitali’s theorem, I,(z)!”" converges uniformly
on any such compact subset of U to the nonzero analytic limit Q,(z(2)). [ ]
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From now on we call the curve

{2:10.t42)] = 1Q.(t2))], for some i # j}

the critical curve of I,(z).

3. Padé Approximation to (1 + z)***!

In this section we apply the results of Theorems 2.4 and 2.5, and their corollary
to the Padé approximation to (1 + z)**! at 0, and analyze the limiting location
of the zeros of p,(z), q,(z), and e _,(z). In fact, all the procedures we discuss in
this section can be executed automatically by computer. (This we did using Maple.)

First let us note the following facts. For ¢ = 1, from Corollary 2.3, if we have
knowledge of the distribution of the zeros of g,(z), then we know the distribution
of the zeros of p,(z). Similarly, when o« — ¢ = 1, we know the distribution of the
zeros of e, _,(z) from that of g,(z). Since I,(z)'" converges uniformly on any
compact subset S = U to the nonzero analytic limit Q,(t(z)), where I,(z)'/" is
analytic, in order to see which root of (d/dt)(Q,(t)) I,(z)*™ goes to, it is sufficient,
by analytic continuation, to check which root it will approach on a segment 4 of
the real axis provided that A <« U.

It is amusing to observe that the critical curves for p,,(z), q,(z), and e, _,(z) are
all the same, essentially since we can write

1/(1+2)

G.1) Pal2) = (1 + "1 J [ = (1 + 2) = 1)]" dt,

1
32 q42) = j [ = o1 + 2) — 1)]" d,
and

(L + g7 jl [(1 — O ~e(l + 2) — 1)]" de

(33) e(a—c)n(z) = entn+1
Z 1/(1 +2)

from the proof of Theorem 2.1. Notice that

1
gz(o) = gz(l) = gz(l—ﬂ> = 05

where g,(t) = (1 — )t*"“(t(1 + z) — 1). However, p.(z), q.(z), and e,_.(z) may
pick up different branches of that critical curve as we will see later.
To illustrate the procedures, we consider the case ¢ = 1. In this case we have

1
34 pz) = f [t— D1 — ¢ + 2)]" dt,
0

(3.5 3(2) = jl [ -0l +2)— DI" dt,
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and

1
(3.6) € 1yl2) = j [ — DKL + tz)* 1" d.

o]
Let Q.(t) = (1 — Ht*~ Ht(1 + z) — 1), then

1
0.(0=0,1)= Q(1—+Z> =0
and
d
Z Qz(t)'t=t1,2(z) =0,
where
37 AL Rt Y

2z + D)1 + o)
u= (2222 + 4z + 42,

Therefore, from Corollary 2.6 and the above observations, the critical curve for
Pal(2), G,(2), and eg,—1),(2) is

(3.8) {z:10.(t:(2)] = Q.£2(2)},

which is

(39) . wz +22+24p|laz—2—p ocz+2zx—,u"‘1=1’
wz+2z+2—p||jaz—2+pu|laz+ 20+ u

where
p= (2> + 4z + 4)'2

From (3.9), it can be seen that the critical curve is always symmetric about the
real axis for any «. The critical curves for o« = 2, ¢ = 3, & = 5, and & = 8 are shown
in Figs. 1, 2, 3, and 4, respectively. In Figs. 5 and 6 we plot the zeros of p,(z) and
g z) for o« =2, n=20 and o =3, n=10, respectively. (Since the zeros are
symmetric in the real axis we only plot the portion in {Im(z) > 0}.) We also plot
the zeros of e, _,),(z) for « = 3, n = 15 in Fig. 7. These pictures indicate that the
zeros of p,(z), q,(z), and e,_,),(z), n=1,2,..., are dense on the three different
branches of the critical curve (3.8). Indeed, we can prove this fact.

Now we restrict our attention to the case & = 2, ¢ = 1. Then we have

(3.10) q.(2) = j t(l — Ol + z) —~ 1)]" dt
0

_ 1},

and the critical curve (3.9) is replaced by

z+2—v
z+24v

z—1—vy
z—1+v

224+ 1+v
224+ 1 —v

(3.11) {z:

where

v=(1+z 4+ )12,
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-2 -1.5 -i -0.5 M 6.5 1
x

Fig. 1. Critical curve forc =1, a = 2.

To analyze which root g,(z) will pick up on the four regions bounded by (3.11)
and the branch lines where v changes its branches (see Fig. 1), it is sufficient to
consider the real segments contained in these four regions R,, R,, R,, and R,. We
specify the four regions by R, contains — oo, R, contains — 1, R4 contains 0, and
R, contains . From (3.10) and (3.7), we know that

(3.12) 0.0 =(1 — el +z) — 1)
I

x

Fig. 2. Critical curve forc =1, ¢ = 3.
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-2 -1.5 -1 ~0.5%
X

Fig. 3. Criticalcurveforc =1, a =5

and
z+ 2+
313 t =
(3.13) 1,2(2) 31 + 2)
Let 4, = {x:xis real, —5 < x < —3} < Ry, then
x+24+v
tl(x)=~m¢[0, 1] for xeA,
}2
TLS
1 Y
0.5
-2 -1.5 -1 -0.5 \

Fig. 4. Critical curve forc =1, = 8.
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~0.3 ~0.2 ~0.1

-0.2¢+

=

-0.6

Fig. 5. Zeros of p,(z) and ¢q,(z), x = 3, n = 20.

and
x+2—v
t,(x) =—3(T-;x—)€[0’ 1] for xeA,.
Then by a saddle-point argument (see p. 287, # 198, of [6])
{qn(x)} 1n - Qx(tz(x))

pointwise on A,. Now applying the argument we used in the proof of Theorem
2.5, we obtain that

(3.14) {a.2}'" = Q.(tal2)

uniformly on compact subsets of R;.

=0.11

-0.21

-0.3T1

Fig. 6. Zeros of p,(z) and g,(z), v =5, n = 10.
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i

-2 -1.8 -1.6 -1.4 -1.2 -1 ~0.8 -0.6 ~0.4

Fig. 7. Zeros of e,_,{{z), @ =3, n = 15.
Let A, = {x:x isreal, —3 < x < —}}} < R,, then

ty(x)¢[0,1]  for xed,
and

t,(x)e [0, 1] for xeA,.

Therefore, {g,(z)}'/" converges to Q,(t,(z)) uniformly on compact subsets of R,.
Set A = {x:x is real, 0 < x < 4} = R;, then, for x € 4, we have ¢,(x) e [0, 1]
and t,(x) € [0, 1]. However, '

(3.15) 10:(t:(x)] < [QLt:(x))].

Thus, {g,(z)}*/" converges to Q,(¢,(z)) uniformly on compact subsets of R.
Set A, = {x:x is real, 2 <x <4} < R,, then 1,(x), t,(x)€[0, 1], for xe A4,
but

(3.16) 19.(t1(x))] > [Q£:(x))]-

Therefore, {g,(z)}'/* converges to @ (t,(z)) uniformly on compact subsets of R,.
From the above consideration, the uniqueness theorem, and Montel’s theorem
(see [1]) we can prove that the limit points of the zeros of {g,(z)}% , are dense on
the branch B,, which is the boundary between R, and R,.
Therefore, we have proved

Theorem 3.1. For a > 1, {q,(z)}*"* converges to Q,(t,(z)) uniformly on any compact
subset of Ry, R,, and R, and to Q(t,(z)) uniformly on any compact subset of R,.
Moreover, the limit points of the zeros of {q,(z)};>, are dense on the branch B,
which is the boundary between R, and R,.

Similarly, we can consider p,(z) and e, _ ),(z). The analogs for p,(z) and e, _ ,,(z)
are summarized in Theorems 3.2 and 3.3.
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Theorem 3.2. For o« > 1, {p,(2)}'/" converges to (1 + z)*Q,(t,(2)) uniformly on any
compact subset of R, and R,, and to (1 + z)*Q,(t,(2)) uniformly on any compact
subset of Ry and R,. Moreover, the limit points of the zeros of {p,(2)} 1 are dense
on the branch B,, which is the boundary between R, and Rj.

Theorem 3.3. For o> 1, {e,_ 1.} converges to (1 + 2)°Q,(t,(2))/z* uniformly
on any compact subset of R, and to (1 + z)°Q,(t,(2))/z* uniformly on any compact
subset of R,, R, and R,. Moreover, the limit points of the zeros of {e(z)}i-, are
dense on the branch B,, which is the boundary between R, and R,.

4. Incomplete Rationals

We have established the results on the zeros and poles of Padé approximants to
(1 + z™*1, and on the zeros of the Padé remainder in Section 3. In addition, we
know that {p,(2)}'", {g,2)}'", and {e,_,)(z)}'™ converge to some analytic
functions on R,, R,, R;, and R, respectively. In this section we apply these results
to analyze the limit functions of (1 + z)** 'q,(z)/p{z) on R,, R,, R3, and R,. Then
we prove that the collection of functions of the form {(1 + z)™r(2)/s(2)}>, is
dense on R; where r,(z) and s,(z) belong to =,
First we prove the following theorem.

Theorem 4.1. Let p,(2), 4,(z), and e, _1),(z) be as in Corollary 2.2 in the case ¢ = 1.
Then we have that (1 + 2™ 1q,(2)/p.(z) converges

(a) to oo uniformly on any compact subset of R, and R,
(b) to O uniformly on any compact subset of R,, and
(©) to 1 uniformly on any compact subset of R.

Remark.  Observe that 1 cannot be approximated on any region strictly larger
than R; by Rouché’s theorem, so R, is a natural maximal region of denseness.

Proof. (a) we consider R, first (similarly for R,). Let K; be a compact subset of
R,. Then from (3.1), (3.2), (3.14), and Theorems 3.1 and 3.2, we have

{2} > (1 + 2/Q.(t4(2))

and
{22} = 0.(t2(2))
uniformly on K;.
Therefore,
(2| 1Q.At,(2))]
1 z an+1 —_ 1
}( el Tlewen T T

by the definition of critical curve (see (3.8)) and nature of R,, where g€ (0, 1)
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depends only on K, = R,. Thus we conclude that (1 + z)**'q,(z)/p,(z) converges
to oo uniformly on K.
Now let K, be a compact subset of R,, then

(P2} = (1 + 27°Q,(t2(2))

and

{92} - Q.(t:(2)

uniformly on K,, which implies

an+ 1 q”(z)
PA(2)

10t
0.0

The above inequality comes from the definition of R, and the compactness of
K. Therefore, we complete the proof of (a).
(b) Let K, be a compact subset of R,, then

(P} > (1 + 2)Q.(t4(2))

‘(1+z) >1+4¢ on K,.

and

{22} > 0.(t2(2)

uniformly on K,, thus we have

b 1)
106,

(see (3.15)). Therefore, (1 + z)**!q,(z)/p(z) converges to 0 uniformly on K,.
(c) Let K5 be a compact subset of R,. Since

1 an+ 1 q"(Z)
l( 2 p.2)

<l—¢ on K,

pn(z) - Zazn+ le(vz— l)n(z)

4.1 R LR
@D Ry

from (3.1), (3.2), Theorems 3.2, and 3.3, we have
@*2) (14 et DD ores el
pA2) Pil2)
However,
(P2} = (1 + 2)Q.(t2(2)

and

{e(a— l)n(Z)}lln -1+ 2z ‘Qz%@
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uniformly on K. Thus, from (3.15), we obtain

1/n 1/n ¢
(1 + Z)am—]_ M _ 1 - Za,,+1 e(a—l)n(z) — le( I(Z))| < 1 —¢ on K3.
pul2) pal2) 1Q.(t(2))]
Therefore, we obtain the desired results. [ ]

Theorem 4.2. {(1 + z)*r(2)/s,(2): r(2), s,(z) € M}y is dense in A(K) where K is
an arbitrary compact subset of R,.

Proof. Note first that
rdz}

T={fla=(1+ 2" =12, s(z) em,, ne N}
5z
is closed under addition, provided that we have the same degree and same
denominator, and is also closed under multiplication.

Therefore, if (1 + z)*r(z)/s,{z) can approximate 1 and z with the same s,(z), they
can approximate the linear form gz + b. From the above observation we see that

we can approximate any polynomial p(z) since it can be written as

pz) = [](@z + by

Notice that the collection of all polynomials is dense in A(K), thus

{(1 + Z)anrn(z)/sn(z): Tn(Z), Sn(Z) € n’l};ln: 1

is dense in A(K) provided that (1 + z)**r(z)/s,(z) can approximate 1 and z with
the same denominator.

Let K be an arbitrary compact subset of R;. We choose a rational number
o > 0 small enough such that K is a subset of R} corresponding to o' = a(1 + ).
Note that from (3.8) or (3.9) we know that the critical curve is a continuous function
of ¢ and Ry < R,. ,

From Theorem 4.1, we have p(z) and gq,(z) for o =l + ) such that
(1 + 2y *9n*1g (2)/p,(z) converges uniformly to 1 on K. Now we choose pys,(2),
Qism2), and §y5,(2) € 75, sSuch that

Q[an](z) 514z q[én](z) >l +2)
P[an](z) P[an](z)
uniformly on K. We have
(43) (1 + paromes 2 kD)
pn(z) P[&n](z)
and
(4.4) (1 4 gpcomss DD Ton®) g )

pal2) P[an](z)
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uniformly on K. That is

qn+ [au](Z)

4.5) (1 + Z)H1+om o1
P+ [5,.1(2)

and
=%

4.6) (1 + Z)H+om g+ oml2) Sy
prT+[6n](Z)

uniformly on K where  piy 5n(2) = Pu(2)Pian2), G+ ni(2) = Gu(2)pomfz), and
G+ an(®) = 4ul2)6m(2)-

From (4.5) and (4.6) we know that (1 + 2)** *9%ag¥, 54(2) + DG} + om(@)/PE+ onl2)
converges to az + b uniformly on K, which completes the proof of the
theorem. : . |

5. Incomplete Polynomials

If we let ¢ = 0, then instead of incomplete rationals we have incomplete poly-
nomials. (For a discussion of approximation by incomplete polynomials, applica-
tions, and the relations among Padé approximants, incomplete polynomials, and
orthogonal polynomials, see [3] and [7] and the references therein.)

From Corollary 2.2 and (3.3) we have

(5.1) polz) = J [(t — 1)e7]" d,

0
(5:2) q4u2) = j [e*(e(1 + 2z) — 1)]" d,
and

an+1 1
d+2 J [ + 2) — 1)]" dt.

(5.3) ean(z) = TTorl
z 1/(1+2)

Let R (f) = t(t(1 + z) — 1), then
' 1
(5.4) R0) = R,<m> =0.

Since we do not have the factor (1 —¢) in R,(t), we cannot apply Theorems
2.4 and 2.5 to q,(z) and e,,(z) directly. However, since R,(t) is a polynomial in both
t and z, and has exactly one nontrivial critical point ¢* = a/[(1 + a)(1 + 2)], by
the argument in Theorem 2.4, there is a contour B from 0 to 1/(1 + z), and a
downhill contour which starts at 1, and terminates at 0 or 1/(1 + z). Therefore,
there are contours that connect 0 and 1 (for ¢,(z)) or 1/1 + z) and 1 (for e, (z)).
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From this observation, and modifying the proofs of Theorems 2.4, 2.5, and
Corollary 2.6, we have

Theorem 5.1. Let q,(z) and e,,(z) be as stated in (5.2) and (5.3). Then q,(z) and e,(z)
have the same critical curve ’

(5.5) {z: IR = IR, M)},

where R (t) = t*(t(1 + 2) — 1) and t* = o/[(1 + a)(} + z)]. That is, the limit points
of the zeros of q,(z) or e,(z) can only cluster on the curve (5.5). (Note
R(1)=z)

We can write (5.5) explicitly:

a(l
{5.6) {z: lz2(1 + z)*| = W}

Figure 8 is the critical curve (5.6) when a = 2. By almost identical arguments
to those in Section 3, the following theorems can be proved. Note that this time
we do not have any branch lines.

Theorem 5.2. {q,(z)}'"" converges to R(1) uniformly on any compact subset of
R, and R,, and to R (t¥) uniformly on any compact subset of Ry. Moreover, the
limit points of the zeros of {q,(2)}; >, are dense on the branch B,, which is the
boundary between R, and R;.

Fig. 8. Critical curve for ¢ =0, & = 2.
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Theorem 5.3. {e,,(2)}'" converges to (1 + z)*R,(1)/z uniformly on any compact
subset of R, and Ry, and to (1 + z)*R(t*)/z uniformly on any compact subset of
R,. Moreover, the limit points of the zeros of {e,(z)}s=1 are dense on the branch
B, which is the boundary between R, and R,.

The analog of Theorem 4.2 is the following:

Theorem 54. {(1 + 2)™p,(2): p(z) e 7.}, is dense in A(K) where K is an arbi-
trary compact subset of R;.

6. Padé Approximation to €*

In this section we consider the Padé approximation to ¢°. In a sequence of papers
[8}-[10] Saff and Varga examined the Padé approximation to ¢ in detail. The
purpose of this section is to observe that this is the limiting case of the Pade
approximation to (1 + z)***'. We verify this as follows.

From Corollary 2.2 and using the substitution ¢ = 1 — s/a, we can write

1
6.1) Porl2) = J [t—Dr*" A +z—t)f]" dt
0

_ (_—l)n(1>cn+n+1J‘a|:s(1 N E>az~c(ocz N S)c:in s,
o o o
Similarly, we have
1 ent+n+1 fa t\e¢ n
(6.2) 4,(2) = (— 1)"<~> J [t“(l - —) (1 + 2zt — ocz):l dt.
o o o

Therefore, (a) of Corollary 2.2 can be written as

o [H(1 — t/a) oz + )" de
j“é [0 — t/o)* (1 + 2)t — az)]* dt
(=1t S IA = o + 2T de
T s — e (1 + 2t — )] de

(63) (1 4 Zyn+t

Let z = y/a, and next let & — oo, then from (6.3), we obtain

o — [§ [ee™"¢ + yyTde _ (—1y™ ™" {5 [(1 — f1e”]" dt
§& [tre™ (e — y)I"dt §& [re™ — y)1"dt ’

(6.4)

which is exactly the Padé approximations to e (see [10]).
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From (3.8) and (3.9), we have the critical curve for the Padé approximants to
(1 + zy**1, which is
a—1
_ 1},

(6.5) {z:

where u = (222 + 4z 4 4)1/2,
Set az = y, and then let & — oo, from (6.5) we have

(66) {y 2oyt ll P74 = }
2+ y +4
Let y = 2x, then we can rewrite (6.6) as
xe x2+1
{ LA 1},
1+ /x*+1

which is exactly the critical curve for the Padé approximates to ¢ with ¢ =1
in [10]. This limiting argument, however, requires some careful justification.

wz+2z4+2—p
oz +2z4+2+p

wz =2+ p|joz+20+p

az + 20— p

oz —2 —p
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