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Incomplete Rational Approximation in the Complex Plane 

P. B. B o r w e i n  a n d  W e i y u  C h e n  

Abstract. We consider rational approximations of the form 

{ (l+z)~"+lpc"(z)~q.(z) J 

in certain natural regions in the complex plane where Pc, and q. are polynomials 
of degree cn and n, respectively. In particular we construct natural maximal 
regions (as a function of ~ and e) where the collection of such rational functions 
is dense in the analytical functions. So from this point of view we have rather 
complete analog theorems to the results concerning incomplete polynomials on 
an interval. 

The analysis depends on an examination of the zeros and poles of the Pad6 
approximants to (1 + z) " + 1. This is effected by an asymptotic analysis of certain 
integrals. In this sense it mirrors the well-known results of Saff and Varga on the 
zeros and poles of the Pad6 approximant to exp. Results that, in large measure, 
we recover as a limiting case. 

In order to make the asymptotic analysis as painless as possible we prove a 
fairly general result on the behavior, in n, of integrals of the form 

f0 It(1 - t)L(t)]" dr, 

where f~(t) is analytic in z and a polynomial in t. From this we can and 
do analyze automatically (by computer) the limit curves and regions that we 
need. 

1. Introduction 

In  his r e m a r k a b l e  p a p e r  o f  1924, Szeg6  [11]  c o n s i d e r e d  the  ze ros  o f  the  pa r t i a l  

s u m s  s,(z) : =  ~ l  = o zk/k! of  the  M a c L a u r i n  e x p a n s i o n  for  e z. Szeg6  [11]  e s t ab l i shed  

tha t  ~ is a l imi t  p o i n t  o f  ze ros  o f  the  s e q u e n c e  o f  n o r m a l i z e d  pa r t i a l  sums,  

{s,(nz)},% o, i f  a n d  o n l y  if  

(1.1) ~ e  {z: Izet-Z I = 1, Iz[ -< 1}. 
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Moreover, Szeg6 [11] showed that ~ is a nontrivial limit point of zeros of the 
normalized remainder {e "z - s,(nz)}~=l if and only if 

(1.2) ~ {z: Ize I zl = 1, Izl _> 1}. 

Saff and Varga [10] established sharp generalizations of Szeg6's results to the 
asymptotic distribution of zeros and poles of more general sequences of the Pad6 
approximants to e ~. 

In this paper we consider the Pad6 approximants to (1 + z) ~"+ 1, and locate the 
limit points of the zeros and poles of the Pad6 approximants. The Pad6 approxima- 
tion to e ~ is then a limiting case of the Pad6 approximations to (1 + z) ~" § 1 (see 
Section 6). 

The approach is to obtain some general theorems (Theorems 2.4 and 2.5) 
concerning the zeros of the limit function of the integrals 

(1.3) f~  [t(1 -- t)f~(t)]" dt, 

where f~(t) is a polynomial in t and analytic in z. These theorems can be applied 
to many other cases. As a consequence of these theorems, we not only determine 
the limit points of the zeros and poles of the Pad~ approximants to (1 + z) ""+ 1, 
but also obtain, for example, 

Theorem. The set of  functions {(1 + z)~"r,(z)/s,(z): r,(z), s,(z)elt,};= t is dense in 
A(K), the analytic functions on K, where K is an arbitrary compact subset of  R 3 
and not in any region strictly containing R 3 (where R 3 is as defined in Section 3). 

This can be thought of as a generalization to the complex plane of the now 
numerous results on denseness of incomplete polynomials on an interval. 

In Section 2 we give the explicit formulas for the Pad6 approximants to 
(1 + z) ~"+ 1 in the form of(1.3), and then prove our main theorems. The distribution 
of the limit points of the zeros and poles of the Pad6 approximants to (1 + z) ~"+1 
is established in Section 3. 

One advantage of our method is that this procedure can be carried out 
automatically on a computer. So after some theoretical results are obtained the 
messy algebra of determining the limit curves and regions is entirely automatic 
(using Maple or some other symbolic algebra package, see Section 3). 

We consider incomplete rationals and incomplete polynomials in Sections 4 and 
5, respectively. In our last section, Section 6, we discuss the Pad6 approximation 
to e z as a limiting case of the Pad6 approximation to (1 + z) ~n+ 1. 

2. The Main Theorems 

In this section we discuss the Pad6 approximation to (1 + z) ~"§ at 0, and obtain 
the corresponding p, q, and error term explicitly in the following integral form: 

fo (2.1) It(1 -- t)f~(t)] n dt, 
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where f=(t) is a po lynomia l  in t and  analyt ic  in z on some compac t  set K. In 
the second half  of  this section we establish a general  t heo rem concerning the limit 
funct ion of the above  integral  fo rm (2.1) as n ~ oo. F r o m  this limit function, we 
determine the limit points  of  the zeros of  the integral  forms (2.1) as n goes to 
infinity. 

Theorem 2.1. F o r  the  (m, n) P a d 6  a p p r o x i m a t i o n  to (1 + z) ""+ 1 at  0, a > 0, we  have  

(a) (1 + z) ="+a 
p,.(z) z "+"+1 ~o1(1 -- t)~t"(1 + t z )~" -md t  

q,(z)  q.(z)  ' 

f l  
(b) pro(z) = J o  (t - 1)"t="-"(1 + z -- t) r" dr, 

and  

(c) q,(z)  = [' (1 -- t ) ' U " - ' ( t ( z  + 1) -- 1)" dt. 
30 

Proof .  We write 

Then  

(1 + z) ~" + 1 
pro(z) z"+"+ l e~.-m(z)  

q.(z)  q.(z)  

[(1 + z)  ~" + 1 q . ( z )  - -  p,.(z)] (m + 1) = z" T ( z ) ,  

where T(z )  is a po lynomia l  in z and (1 + z) ~. Also, 

[(1 + z y  "+ lq.(z) -pro(z)] ~"+"  = (1 + zy"-~S(z), 

where S(z)  is po lynomia l  of  degree n in z. 
So we deduce tha t  

[(1 + zy"+lq.(z) - p.,(z)] (~+~ = Cz"(1 + z) ~"-~, (2.2) 

which implies 

(1 + z) ~" + 1 q,(z)  --  p,,(z) 
ean - rn(Z) = Z m + n + 1 

= C* f ~  (1 -- t)"t"(1 + tz) ""-m dt. 

In the last equal i ty we used the following fact: if 

zm+l f~ 
G(z) = ~ (1 -- t ) " f ( t z )  dt, 

then, given suitable smoothness  of  f ,  

O ("+ 1)(z) = f ( z ) .  
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O n  the o ther  hand ,  f rom (2.2) we  have  

(2.3) [(1 + z ) " + l q . ( z ) ]  ~m+l) = Cz"(1 + z)="-" .  

So in tegra t ing  f rom - 1 gives back  the cor rec t  initial terms.  Let  y = 1 + z. F r o m  
(2.3) we  ob ta in  

[y~n+'qn(y  --  1)] (re+l) = C ( y -  1)"y ~"-".  

Therefore ,  

o r  

y ~ " + ~ q . ( y  --  1) = C*y m+l f ~  (1 -- t )m(y t )=n-m(y t  --  1)" dt  

q . ( y  - -  1) = C* J o  (1 - t )mt~" -m(y t  - 1)" dt,  

which  implies (c). (There  is one  free no rma l i za t ion  constant . )  
N o w ;  cons ider  p,,(z), f rom (a) and  (c) we can  write  

pro(z) = (1 + z) ~"+1 f ~  (1 - t)mt~n-m(t(z + 1) - 1) n dt  

- z m+"+l f ~  (1 -- t)'~tn(1 + t z )  ~"-m dt. 

Let  t = (s(1 + z) - -  1)/z,  we can rewri te  

f ]  (1 - t)mt"(1 + tz)  ~"-m 
zm+.+ l dr 

f, t (1  z+z)m(1 = Z m+"+l - -  s )ml- -[S(1  + Z) --  1]"S~"-m(1 + z) ~ " - m -  
/(1 +z) zn 

= (1 + z) ="+1 (1 - S)m[S(1 + Z) -- 1]"S ~"-m ds. 
i /(i  +z) 

Therefore ,  

f ~l(1 +z) pro(z) = (1 + z) ~"+1 (1 - t)mt~"--m(t(1 + Z) - -  1)" dt  

f ~ (  s "kin// s "k ~"-m ds 
-- (, + z):~ 1 17_ Z) ) (s-- 1)" 1~ z 

= f ~  (1 + z - -  S)mS~"-m(S --  1)" dr, 

l + z  
dt  Z 

which is (b). �9 
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I f  we let m = cn a n d  suppose  tha t  cn is an  integer ,  we have  the  fo l lowing 
coro l la ry .  

Coro l l a ry  2.2. For  the (cn, n) Padd approximat ion  to (1 + z) "n+~ at O, ct > O, we 
have 

(a) (1 + z) ~tn+l Pen(Z) - zr ~ [(1 -- t)ct(1 + t z ) ' -~]ndt  

q.(z) q.(z) ' 

(b) pcn(z) = 11 [ ( t .  1)t~-c(1 + z - t)c] n dt, 
Jo 

and 

Corollary 2.3. 

(2.4) 

I f  or - c = 1, then 

(2.5) 

(c) q.(z) = J o  [(1 - t)~t'-~(t(1 + z) - 1)]" dt. 

T h e  re la t ions  a m o n g  p,.(z), q.(z), a n d  e . n - z  are  cons ide red  in the  next  co ro l l a ry  
for some  specific ~ a n d  c. 

When c = 1, we have 

(1 + z)npn = q.(z). 

(--1)"e(._c)n(--(1 + z)) = q.(z). 

Proof .  F r o m  C o r o l l a r y  2.2, we have  

Pn = t - 1 ) f f - x  1 l + z t dt 

= ~ [(1 - t ) t ' -  l(t(1 + z) - 1)in dr, 

which  implies  (2.4). 
W h e n  ~ - c = 1, f r o m  (a) of  C o r o l l a r y  2.2, 

e (~-e ) , ( - (1  + z)) = foX [(1 - t)ct(1 - t(1 + z))]" dr 

fo = ( - 1 ) "  [(1 -- t)ct(t(1 + z) -- 1)]" dt, 

which  comple t e s  the  p r o o f  of  the  coro l la ry .  
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Since pc.(z), qn(Z), and e(,_c),(z) can all be written in the integral form 

(2.6) j'~ [t(1 - t)f:(t)]" dt, 

where fz(t) is a polynomial in both z and t, it is natural to investigate some 
properties of this integral form. 

Theorem 2.4. Let 

I ,  = j~x It(1 - Of(t)]" dt = j~x [Q(t)]" dt, 

where Q(O -- t(1 - Of(t) is a polynomial of  degree N in t. Let  tl, t2 . . . . .  tN- 1 be 
the N - 1 zeros of  Q'(O. Suppose that 

IQ(t,)l ~ IQ(tj)l, i ~ j .  
Then 

lim _,r'/" = ara(Q(t3)lQ(tJI = Q(t3 for some i. 
n - ~  oo 

Proof. In the proof we use the method of steepest descent and a saddle-point 
argument (see [5] and for the complex analysis [1]). First, let us recall the real 
case (see p. 96, ~ 198, of [6]). Suppose two functions q~(x) and 9(x) are continuous 
and positive on the interval [a, hi. Then 

(2.7) lim q~(x)[0(x)]" dx 
n--* oo 

exists and is equal to the maximum of g(x) on [a, b]. (This is in fact a fairly 
easy exercise.) 

Let us return to the proof of the theorem. Observe that from any point there 
is a downhill contour (in decreasing magnitude) that terminates at one of the zeros 
of Q(t). Otherwise the path would end at a point of minimum modulus of Q(t) 
other than a zero which is impossible. So descent is always possible (and not to 
t = ~ because Q(t) is a polynomial in this case). 

Now suppose that Ai is a piece of arc of constant argument for Q(t) through ti 
from 7i to 6~, Then by the above observation we can connect 7~ to one zero and 
6~ to another to form a contour B i from one zero of Q(t) to another in a descending 
fashion. Do this procedure for all the ti. This forms no closed contours since, if it 
did, integrating around one of these is nonzero by a steepest descent argument 
but is zero by Cauchy's theorem. 

Thus the contour Bx, B 2 . . . . .  BN- 1 in some order must connect all N zeros of 
Q(t) with exactly one link. 

In particular there is a path from 0 to 1 via some of the saddle points of Q(t) 
(not necessarily all), say t~k, k = 1, 2 , . . . ,  r, where r < N - 1. We may suppose 
that 

(2.8) IQ(t~)l > IQ(t~)l, k = 2 . . . .  , r. 
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N o w  we can app ly  the modif ied steepest descent a rgumen t  in the real case (see 
p. 287, ~: 198, of  [6]) since, a long A~,, Q(t) has cons tant  a rgumen t  while, for the 
remainder  of  the Bi,, the modu lus  of Q(t) is less than  I Q(h,)l by the construct ion 
of Bi,. Along other  Bik, k = 2 . . . . .  r, we k n o w  tha t  the modu lus  of  Q(t) is less than  
IQ(t~l)l too by  (2.8) and  the construct ions  of  Bik, k = 2 . . . .  , r. This gives us the 
desired result. �9 

T h e o r e m  2.4 is a pointwise version for z iff~(t) is a po lynomia l  in t and  analytic 
in z on some compac t  set K. F r o m  T h e o r e m  2.4 we can p rove  the following 
uni form version of T h e o r e m  2.4, which is the result we really need. 

Theorem 2.5. Let 

(2.9) 1,(z) = [t(1 - t)fz(t)]" dt = [Qz(t)]" dt, 

where Q~(t)= t ( 1 -  t)f~(t) is a polynomial in t and analytic in z on an open 
simply connected set U. Suppose 

I Q~(ti(z))[ v~ [Q~(tj(z))[ 

for any i #  j, and any z ~ U, where ti:= ti(z ) are the zeros of the polynomial 
(d/dt)Qz(t) (which by the above assumption can be given so that  each t~ is analytic 
on U). Then 

(a) I,(z) 1/" converges to a nonzero limit pointwise on U. 
(b) II,(z)l 1/" is uniformly bounded on compact subsets of  U. 
(c) I,(z) 1/" converges uniformly to a Qz(ti(z)) on compact subsets of  U, and Qz(ti(z)) 

is analytic on U. Moreover, Qz(ti(z)) # 0 f o r  all z ~ U. 

Proof .  (a) This is the content  of  T h e o r e m  2.4. 
(b) This is obvious  f rom the definition of I,(z). 
(c) Deno te  the open disk centered at z with radius e as D(z, e), and the 

cor responding  closed disk as D(z, e). N o w  pick a z o ~ U, then there is an i o such 
tha t  

Let  

I Qzo(tio(Zo))l > I Qzo(ti(Zo))[ for i # i o. 

d = min{I  Q,0(tlo(Zo)) I - I Q,o(t~(Zo))l} > 0, 
iv~/o 

then, since ti(z ) (i = 1 , . . . ,  N -  1) is a cont inuous  function of z and  Qz(ti(z)) 
is analytic,  there is an ex such that  

II Oz(t,o(Z))Ilcl~lzo..1, -> V ( z o )  - - 
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II Q~(ti(z))I[c(O(~o,~a) -< V(zo) - �88 

V(zo) = IQAt,o(Zo))l. 

According to the proof of Theorem 2.4, there is a contour A~o(Zo) through 
qo(Zo) from Yio(Zo) to 6io(Zo) on which Qzo(t) has constant argument. In addition, we 
choose yio(Zo) and ~a(zo) such that 

and 

I QAT,0(Zo))l -< V(zo) - �88 

I Qz0(,~dZo))l _ V(zo) - �88 

Denote the whole contour from 0 to 1 through t~o(Zo) by F(z0) and the 
length of F(zo) by l(zo). Suppose the length of the part of Aio(Zo) such that 
[Qzo(t)[ > V(zo) - d/2 is r. 

Now, for z ~ D(zo, cO, we construct the contour F(z) in the same fashion, that is, 

and 

Choose e2 > 0 such that 

1O~(y~0(z))l _ V(zo) - �88 

I Q~(a,o(z))l _< V(zo)-  �88 

l(z) <_ l(zo) + 1 for z ~ D(zo, e2), 

and e3 > 0 such that the length of the part of A~o(z ) with [Q~(t)t > V(zo) - d/2 
is larger than or equal to r/2 for z ~ D(zo, e3). 

Let ~ = min{el, ~2, ca}, then, for z ~ D(zo, ~), we have 

[Q~(t)]"dt 1/, 

= fr,z, [Qz(t)]" dt a/, 

=[fA,o(~[Oz(t)]"dt+fr,(~) [Q~(t)ydt '" '  

where F'(z) is the part of F(z) without A~o(Z ). 
From the choice of e and the construction of F(z), we have 

> [~.__ 1/, [1 I ~A,o(~)Sr'(~)lQ~(t)["dt - [ ~ s  11/" 

_>[2(V(zo)-~)"]x/"[1 -- (l(zo)+l)(V(zo)-#d)"l'/"~//~(V~o)~_d_~2_ ~ [ "  
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Therefore, there is an no(Zo) which depends only on z o such that 

[I,,(Z)I1/n>o for zeD(zo,  e ), n>no(Zo). 

Now consider any compact  subset K of U. For  any Zo ~ K, by the above 
argument,  there are e(Zo) and n(zo) such that 

II.(z)l I/" > 0 for z ~ D(zo, e(z0)), n > no(Zo). 

Thus, we can pick up finitely many  z in K, say z i, i = 1, 2 , . . . ,  M, such that 

M 
K = 0 D(z,, 

i=1 

Let n o = max 1 <_i~M{n(zi)}, then 

II,(z)l 1/" > 0 for z ~ K, n >_ no(Zo). 

That  is, I.(z) 1/" is analytic on K for n >_ no(Zo) (in the sense that there is a 
well-defined analytic nth root). 

F rom the above arguments, (a) and (b), and applying Vitali's theorem we know 
that I.(z) 1/" converges uniformly on compact  subsets of U to an analytic function 
Q,(t~(z)). Now we can apply the uniqueness theorem, which implies that In(z) 1/" m u s t  

converge to the same Q~(ti(z)) on all compact  subsets of U. From Hurwitz's 
theorem, we see that 

Qz(ti(z)) :/: 0 for all z ~ U. �9 

F rom Theorems 2.4 and 2.5, we have knowledge of the limit function of In(Z) l/n, 
n = 1, 2 , . . . .  In fact, the limit function tells us more. 

Corollary 2.6. Let I,(z),fz(t), and Q~(t) be as in Theorem 2.5. Suppose that, for each 
z, Q~(t) is a polynomial of  degree N in t, and further that Q~(t) is analytic in z. Then 
the limit points of  the zeros of I,(z) can only cluster on the curve 

{z: [Q~(ti(z)) I = I Q~(tj(z))], for some i ~ j )  

or at points where Q~(ti(z)) = O, or at points where Qz(ti(z)) is not analytic. 

Proof. Let U be an open and connected set which is disjoint from the curves 
and points stated in this corollary. Suppose S is a compact  subset of U where 
I,(z) ~/" is analytic, which will be whenever the nth root is well defined and nonzero. 
Then by Theorems 2.4 and 2.5 

l,(z) 1/" -~ Qz(ti) ~ 0 as n ~ ~ ,  

pointwise on S. Therefore, applying Vitali's theorem, I,(z) 1/" converges uniformly 
on any such compact  subset of U to the nonzero analytic limit Q~(ti(z)). �9 
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F r o m  now on we call the curve 

{z: IQ~(t,(z))l : IQ=(tj(z))l, for some i # j }  

the critical curve of 1,(z), 

3. Pad6 Approximation to (1 + z) ~+1 

I n  this section we apply  the results of  Theo rems  2.4 and 2.5, and  their corol lary 
to the Pad6 app rox ima t ion  to (1 + zy  "+1 at 0, and  analyze the limiting locat ion 
of the zeros of  p<,(z), q,(z), and e~:_c),(z). In fact, all the procedures  we discuss in 
this section can be executed au tomat ica l ly  by computer .  (This we did using Maple.) 

First  let us note  the following facts. Fo r  c = 1, f rom Coro l la ry  2.3, if we have 
knowledge of the dis tr ibut ion of the zeros of  q,(z), then we know the distr ibution 
of the zeros of  p.(z). Similarly, when 0~ - c = 1, we know the distr ibution of the 
zeros of e~_o,(z ) f rom tha t  of  q,(z). Since I,(z) 1/" converges uniformly on any 
compac t  subset  S c U to the nonzero  analytic limit Qz(ti(z)), where 1.(01/" is 
analytic, in order  to see which roo t  of  (d/dt)(Q~(t)) 1,(z) 1/" goes to, it is sufficient, 
by analytic cont inuat ion,  to check which root  it will app roach  on a segment  A of 
the real axis p rovided  that  A c U. 

I t  is amus ing  to observe that  the critical curves for p~,(z), q,(z), and e~_o.(z ) are 
all the same, essentially since we can write 

(3.1) ff 
l(1 +z) 

p~.(z) = (1 + ty  "+1 [(1 -- t)q'-~(t(1 + z) -- 1)In at, 

(3.2) q,(z) = f /  [(1 - t)ct'-c(t(1 + z) - 1)]" dr, 

and 

(1 + z) ~"+x f l  (3.3) e(,_o,(z ) - z~+,~ ~ [(1 - tl~t~-~(t(1 + z) - 1/]" dt 
/(1 +z) 

f rom the p roo f  of  T h e o r e m  2.1. Not ice  tha t  

g~(O) = g~(1) = g~ = O, 

where gz(t)= ( 1 -  t)ct'-c(t(1 + z ) -  1). However ,  pc,(Z), q,(z), and e~_o(z) m a y  
pick up different branches  of that  critical curve as we will see later. 

To  illustrate the procedures,  we consider the case c = 1. In  this case we have 

(3.4) p,(z) = f [  [(t - 1)t " -  1(1 - t + z)]" dr, 

(3.5) q.(z) = f )  [(1 - t)t ~- 1(t(1 + z) - 1)]" dr, 



Incomplete Rational Approximation in the Complex Plane 95 

and 

(3.6) e(,_ 1)n(Z) = j~l [-(1 -- t)t(1 + tz) "- l']n dr. 

Let Q~(t) = (1 - t)t ~- l(t(1 + z) - 1), then 

and  

where 

(3.7) 

Qz(O) = Qz(1) = Q~ = 0 

d 
dt Qz(t)1t=,1,2(~) = o, 

~(z + 2) _ # 
tl'z(z) - 2(z + 1)(1 + ~) '  

# = (.ZzZ + 4z + 4) 1/2. 

Therefore,  f rom Corol la ry  2.6 and the above  observat ions,  the critical curve for 
p.(z), q.(z), and et._ 1).(z) is 

{z: I Q~(tl(z))[ = I Q~(t2(z))[}, (3.8) 

which is 

(3.9) 

where 

{  z+2z+2+ l 2 } 
Z: ----1 , 

~ z + 2 z + 2 - -  2 + #  c~z+20~+/~ 

# = (~2z2 + 4z + 4) 1/2. 

F r o m  (3.9), it can be seen tha t  the critical curve is always symmetr ic  abou t  the 
real axis for any  0~. The  critical curves for a = 2 , ,  = 3, ~ = 5, and  c~ = 8 are shown 
in Figs. 1, 2, 3, and  4, respectively. In  Figs. 5 and  6 we plot  the zeros of p,(z) and 
q,(z) for ~ = 2, n = 20 and  , = 3, n = 10, respectively. (Since the zeros are 
symmetr ic  in the real axis we only plot  the por t ion  in {Im(z) ___ 0} . )We also plot  
the zeros of  et,_l),(z) for ~ = 3, n = 15 in Fig. 7. These pictures indicate that  the 
zeros of  p,(z), q,(z), and  et,_ 1),(z), n = 1, 2 . . . . .  are dense on the three different 
branches  of  the critical curve (3.8). Indeed,  we can p rove  this fact. 

N o w  we restrict our  a t tent ion to the case a = 2, c = 1. Then  we have  

f/ (3.10) q.(z) = [(1 - t)t(t(1 + z) - 1)] ~ dt 

and the critical curve (3.9) is replaced by 

{ 2 z + l + v  I z - l - v -  v ~ + 2 - _ V v [  ) 
(3.11) z: 2 z + l - v  z 1 +  + 2 +  = 1  , 

where 

v = (1 + z + z2) 1/2. 
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0 21 

Ri 

0!s t 

R~ 

Fig.  1. Cr i t ica l  cu rve  for  c = 1, ~ = 2. 

T o  analyze which roo t  q,(z) will pick up on the four  regions bounded  by (3.11) 
and the branch  lines where v changes its branches  (see Fig. 1), it is sufficient t o  
consider  the real segments  conta ined in these four regions R l, R2, R3, and R 4. We 
specify the four regions by R 1 contains  - ~ ,  R 2 contains - 1, R 3 contains  0, and 
R+ contains  or. F r o m  (3.10) and (3.7), we k n o w  that  

(3.12) a~(t) = (1 - t)t(t(1 + z) - 1) 

- 2  
x 

-1 .5  

0 . 5  

Fig .  2. Cr i t ica l  curve  for  c = I, c~ = 3. 
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1 . 5  

'1 Y 

o 2 
- 2  - 1 . 5  -1  - 0 . 5  

X 

F i g .  3. C r i t i c a l  c u r v e  fo r  c = 1, ~, = 5. 

and 

z + 2 + v  
(3.t3) tl'2(z) = 3"1t + z) " 

Let A 1 = { x : x  is real, - 5  < x < - 3 }  c R, ,  then 

x + 2 + v  
tl(x) - ~ 10, 1] for x ~ A1 

3(1 + x) 

-2 -I. 5 -I -0,5 
x 

Fig. 4. Critical curve for c = 1, ct = S. 

-1 y 

O,  5 
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and 

~ 

0.6 �84 

0.4 �84 

0,2 

-01.3 -0'.2 -01.I 0 

Fig. 5. 

- 0 . 2 -  

- 0 , 4 -  

o!i o!z 0:3 ' ' 0,4 0 .5  

- 0 , 6 -  

Z e r o s  of p.(z) and q.(z), e = 3 ,  n = 20_ 

x + 2 - v  
tz(X) - e [0, 1] for x ~ A1. 

3(1 + x) 

Then by a saddle-point argument (see p. 287, :~ 198, of [6])  

{q.(x)} 1/. ~ Q~(t2(x) ) 

pointwise on A I. N o w  applying the argument we used in the proof  of Theorem 
2.5, we obtain that 

(3.t4) {q.(z)} "~ ~ Q=Ct~iz)) 

uniformly on compact  subsets of R 1. 

-0.2 -0 i. 1 

0.3 �84 

0.2 

0.I 

0 

-0.1 

-0.2 

-0.3 

o:l o:2 o:3 

Fig. 6. Zeros of p,,(z) and q . ( z ) ,  ez = 5,  n = 10. 
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0.5 

-0.  

-1  

/2 -11.8 -11.6 -1 .4  - l t .  2 -I1 -01.8 -01.6 -01.4 

Fig. 7. Zeros of e~=_:~(z), c~ = 3, n = 15. 

Let  A 2 = {x: x is real, _ 3  < x < - - ~ }  ~ R2, then 

tl(X) • [0, 1] for x e A 2 

and 

t2(x) ~ [0, 1] for x e A 2. 

Therefore,  {q.(z)} 1/. converges to Qz(t2(z)) uniformly on compact  subsets of R 2. 
Set As = {x: x is real, 0 < x < �89 m R3, then, for x ~ A 3, we have q(x) ~ [0, 1] 

and t2(x)e [0, 1]. However ,  

(3.15) I Qx(t l(x))l < I Qx(t2(x)) I. 

Thus, {q,(z)} 1/, converges to Q=(t2(z)) uniformly on compact  subsets of R 3. 
Set A4 = {x: x is real, 2 < x < 4} c R4, then tl(x), t2(x) e [0, 1], for x e A4, 

but  

(3.16) I Qx(t a(x))] > ] Qx(tz(x))]. 

Therefore,  {q,(z)} a/, converges to Q~(tl(z)) uniformly on compact  subsets of  R4. 
F r o m  the above considerat ion,  the uniqueness theorem, and Montel ' s  theorem 

(see [1]) we can prove that  the limit points of  the zeros of  {q,(z)}~= 1 are dense on 
the branch B3, which is the bounda ry  between R 3 and R 4. 

Therefore,  we have proved  

Theorem 3.1. For ~ > 1, {qn(z)} 1In converges to Qz(t2(z)) uniformly on any compact 
subset of Rx, R2, and R3, and to Q~(q(z)) uniformly on any compact subset o f  R 4. 
Moreover, the limit points of the zeros of {qn(z)}~~ x are dense on the branch B3, 
which is the boundary between R 3 and R 4. 

Similarly, we can consider p.(z) and e(._ x).(z). The  analogs for p.(z) and e(,_ ~).(z) 
are summarized in Theorems 3.2 and 3.3. 
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Theorem 3.2. For ~ > 1, {p,(z)} 1/" converges to (1 + z)~Q~(ti(z)) uniformly on any 
compact subset of R l and R 2, and to (1 + z)'Q~(tz(Z)) uniformly on any compact 
subset of R a and R 4. Moreover, the limit points of the zeros of  (p,(z)}~= 1 are dense 
on the branch Bz, which is the boundary between R z and R 3. 

Theorem 3.3. For ~ > 1, {ec,_l),} 1/" converges to (1 + z)~Q~(t2(z))/z 2 unijbrmly 
on any compact subset of R 1 and to (1 + z)'Q~(tl(z))/z z uniformly on any compact 
subset of R2, R a, and R 4. Moreover, the limit points of the zeros of {e,(z)),~= 1 are 
dense on the branch B1, which is the boundary between R1 and R2. 

4. Incomplete Rationals 

We have established the results on the zeros and poles of Pad6 approximants to 
(1 + z) " +  1, and on the zeros of the Pad6 remainder in Section 3. In addition, we 
know that (p,(z)} 1/", {q.(z)} l/", and {et,_l),(z)}l/, converge to some analytic 
functions on Ra, R2, Ra, and R4, respectively. In this section we apply these results 
to analyze the limit functions of (1 + z) ""+ lq,(z)/p.(z) on R1, R2, R3, and R4. Then 
we prove that the collection of functions of the form {(1 + z)"r,(z)/s,(z)}~=l is 
dense on R3 where r,(z) and s,(z) belong to re,. 

First we prove the following theorem. 

Theorem 4.1. Let p.(z), q.(z), and e~_ 1),(z) be as in Corollary 2.2 in the case c = 1. 
Then we have that (1 + z) " +  lq,(z)/p.(z) converges 

(a) to ~ uniformly on any compact subset of R 1 and R 4, 
(b) to 0 uniformly on any compact subset of R2, and 
(c) to 1 uniformly on any compact subset of  R 3. 

Remark. Observe that 1 cannot be approximated on any region strictly larger 
than Rs by Rouch6's theorem, so R 3 is a natural maximal region of denseness. 

Proof. (a) we consider R1 first (similarly for R4). Let K 1 be a compact subset of 
R 1. Then from (3.1), (3.2), (3.14), and Theorems 3.1 and 3.2, we have 

and 

uniformly on K 1. 
Therefore, 

{p.(z)}'/" ~ (1 + zrg.z(t~(z)) 

{q,,(z)} 1/. __+ Q~(t2(z)) 

(1 + z) ~"+1 q.(z) a/"lQ~(tz(z))l 
p.(z) ]Q~(q(z))l 

> 1 + ~  

by the definition of critical curve (see (3.8)) and nature of R 1, where e~(0, 1) 
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depends only on K1 ~ Ra. Thus we conclude that (1 + z) ~"+ *q,(z)/p,(z) converges 
to 0o uniformly on K~. 

Now let K 4 be a compact  subset of R4, then 

and 

{p,(z)} 1/" ~ (1 + z)~Q~(t2(z)) 

{q,(z)} l /"~Q~(tx(z))  

uniformly on K4, which implies 

I( 1 + z) ""+1 q,(z) 1 / ,  
p.(z) 

IQz(h(z))i 

I Qz(tz(z))l 
> 1 + e on K,,. 

The above inequality comes from the definition of R 4 and the compactness of 
K 4. Therefore, we complete the proof  of (a). 

(b) Let K z be a compact  subset of R 2, then 

and 

{pn(z) } 1In ~ (1 + z)aQz(tl(Z)) 

{ qn(Z) } 1/n --* Qz(tz(Z)) 

uniformly on K2, thus we have 

(1 + zr" + ~ q.(z) ~/" IQ~(t~(z))l 
p,(z~) ~ I Q=(tz(z))l < 1 - e on K 2 

(see (3.15)). Therefore, (1 + Z)~+lqn(Z)/pn(Z ) converges to 0 uniformly on K2. 
(c) Let K 3 be a compact  subset of R 3. Since 

p.(z) z~"+~e~._,.(z) 
( 4 . 1 )  (1  + z )  ~ " + ~  - - -  = 

q.(z) q.(z) " 

from (3.1), (3.2), Theorems 3.2, and 3.3, we have 

(4.2) (i + z) ~"+' q,(z) 1 = z 2"+a e( ,- l ) , (z)  
p.(z) p.(z) 

However, 

and 

{p,(z)} 1/" ~ (1 + z)~Qz(tz(z)) 

Qz(tl(z)) 
{e(~_,.(z)}~/" --, (1 + z)" z2 
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uniformly o n  K 3. Thus, from (3.15), we obtain 

(1 + z) ~"-1 q.(z) 
Pn(Z) 

1In ] l/n 
- - -  1 = z~.+ 1 e(~-l).(z) ~ [Q~(ta(z))l 

I p,(z) IO=(tz(Z))l 

Therefore, we obtain the desired results. 

- - < l - - s  o n  K 3 . 

Theorem 4.2. {(1 + z)'%(z)/s.(z): r.(z), s .(z)e n.}.~= x is dense in A(K) where K is 
an arbitrary compact subset of R 3. 

Proof. Note first that 

T = {f(z) = (1 + z) ~" r.(z) s-~)): r.(z), s.(z) ~ ~., n E N} 

is closed under addition, provided that we have the same degree and same 
denominator, and is also closed under multiplication. 

Therefore, if (1 + z)"r.(z)/s.(z) can approximate 1 and z with the same s.(z), they 
can approximate the linear form az + b. From the above observation we see that 
we can approximate any polynomial p(z) since it can be written as 

p(z) = ~I (akZ + bk)" 

Notice that the collection of all polynomials is dense in A(K), thus 

{(1 + z)~%(z)/s.(z): r.(z), s.(z)~ rc.}.~: 1 

is dense in A(K) provided that (1 + z)"r.(z)/s.(z) can approximate 1 and z with 
the same denominator. 

Let K be an arbitrary compact subset of R3. We choose a rational number 
6 > 0 small enough such that K is a subset ofR~ corresponding to ~' = ~(1 + 6). 
Note that from (3.8) or (3.9) we know that the critical curve is a continuous function 
of 0~ and R~ c R 3. 

From Theorem 4.1, we have p,(z) and q,(z) for ~ ' =  ~(1 + 5 ) such  that 
(1 + z) ~(1 +6),§ Jq,(z)/p,(z) converges uniformly to 1 on K. Now we choose pt~,l(z), 
q[~.l(z), and 0t~.](z)~ nta.l such that 

qt'~"l(z~) ~ 1 + z, ~/t'~'*l(z~) ~ z(1 + z) 
Pt~.j(z) Pto.l(z) 

uniformly on K. We have 

(4.3) (1 + z) "(1+~)"+1 q.(z) qto.j(z) ~ 1 + z 
p.(z) pr~.l(z) 

and 

(4.4) (1 + z) ~(1+a)"+I q.(z) ?1to.](z) ~ z(1 + z) 
p.(z) pt~.](z) 
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uniformly on K. That is 

(4.5) (1 + z) =(a +01. q.+t0"l (z) 
p*+ t,.l(z) 

-,1 

and 

(4.6) (1 + z) ~(1 +*)" (/*+t~ 
P*+t..1(z) 
w - - - ~  Z 

uniformly on K where p*+to.l(z) = p.(z)pto,j(z), q.+t~.l(z) = q.(z)qt~.l(z ), and 
0"+ t~ . l ( z )  = q.(z)Ot~.j(z). 

From (4.5) and (4.6) we know that (1 + ~j ~.~.+to.j~.j + bq,+t~.l(z))/p.+t~.l(z ) 
converges to az + b uniformly on K, which completes the proof of the 
theorem. �9 

5. Incomplete Polynomials 

If we let c = 0, then instead of incomplete rationals we have incomplete poly- 
nomials. (For a discussion of approximation by incomplete polynomials, applica- 
tions, and the relations among Pad6 approximants, incomplete polynomials, and 
orthogonal polynomials, see [3] and [7] and the references therein.) 

From Corollary 2.2 and (3.3) we have 

(5.1) po(z) = f /  [(t - 1)t']" dt, 

(5.2) q . ( z )= f~  It'(t(1 + z ) -  1)]" dt, 

and 

(5.3) %n(Z ) __ (1 +z.+Z)"+ 1 1  f l  
/(1 +z) 

Let Rz(t) = t'(t(1 + z) - 1), then 

[t~(t(1 + z) - 1)]" dt. 

(5.4) :.z( 1 ) R (O) = o. 

Since we do not have the factor ( 1 -  t) in R.(t), we cannot apply Theorems 
2.4 and 2.5 to q.(z) and e..(z) directly. However, since Rz(t ) is a polynomial in both 
t and z, and has exactly one nontrivial critical point t* = a/I(1 + a)(1 + z)], by 
the argument in Theorem 2.4, there is a contour B from 0 to 1/(1 + z), and a 
downhill contour which starts at 1, and terminates at 0 or 1/(1 + z). Therefore, 
there are contours that connect 0 and 1 (for q.(z)) or 1/(1 + z) and 1 (for e..(z)). 
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F r o m  this observat ion,  and  modifying the proofs  of  Theorems  2.4, 2.5, and 
Corol la ry  2.6, we have 

Theorem 5.1. Let q,(z) and e,,(z) be as stated in (5.2) and (5.3). Then q,(z) and e,,(z) 
have the same critical curve 

(5.5) {z: ]R,(t*)l = IRz(1)l}, 

where Rz(t ) = t~(t(1 + z) - 1) and t* = ct/[(1 + ~)(1 + z)]. That is, the limit points 
of  the zeros of q,(z) or e~(z) can only cluster on the curve (5.5). (Note 
R~(1) = z.) 

We can write (5.5) explicitly: 

Figure 8 is the critical curve (5.6) when ct = 2. By a lmos t  identical a rguments  
to those in Section 3, the following theorems can be proved.  N o t e  that  this t ime 
we do not  have any b ranch  lines. 

Theorem 5.2. {q,(z)} 1/" converoes to Rz(1) uniformly on any compact subset o f  
R 1 and R 2, and to Rz(t*) uniformly on any compact subset of  R 3. Moreover, the 
limit points o f  the zeros o f  {q,(z)}2= 1 are dense on the branch B2, which is the 
boundary between R 1 and R 3. 

Rt 

R2 Rs 

- 1 . 2  -1 - 0 . 8  - 0 . 6  - 0 . 4  - 0 . 2  
x 

Fig. 8. Critical curve for c = 0, ~ = 2. 

-0.35 

~0.3 

0.25 

o.~, 

0.15 

"t 
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Theorem 5.3. {e~n(Z)} 1/n converges to (1 + z)~Rz(1)/z uniformly on any compact 
subset of R 1 and R3, and to (1 + z)~Rz(t*)/z uniformly on any compact subset of 
R 2. Moreover, the limit points of the zeros of {e~.(z)},~l are dense on the branch 
B1, which is the boundary between R 1 and R2. 

The  ana log  of Theo rem 4.2 is the following: 

7~ 0o Theorem 5.4. {(1 + z)'"p,(z): p.(z)~ ,}.=1 is dense in A(K) where K is an arbi- 
trary compact subset of  R 3. 

6. Pad~ Approximation to e z 

In this section we consider  the Pad6 app rox ima t ion  to eL In  a sequence of papers  
[8 ] - [10 ]  Saff and  Varga  examined the Pad6 app rox ima t ion  to e ~ in detail. The  
purpose  of this section is to observe that  this is the limiting case of  the Pad6 
approx ima t ion  to (1 + z) " §  1. We verify this as follows. 

F r o m  Corol la ry  2.2 and  using the subst i tut ion t = 1 - s/~, we can write 

(6.1) p~.(z) = ;~  [(t - 1)t~-<(1 + z - t)<]" dt 

tll\cn+n+l ~ , [ -  iI S ' ~ , - c  In 
JoLSt,-;) o z+s , 

Similarly, we have 

(6.2) 
/1 \  c'+"+l f'~F f t \  :-< ]" ) 

Therefore,  (a) of  Coro l la ry  2.2 can be writ ten as 

(6.3) 
(1 + z) ~"+1 - S~ [t(1 - t/oO~-r + t)C]"dt 

S~ [t~( 1 - t/~)~-c(( 1 + z)t - ~z)]" dt 

( - -  1)"(~z) c~+~+1 S~ [(1 - t)r + tz)~-c] ~ dt 

~ [tr - t/cO ~-~((1 + z)t - ~z)] ~ dt 

Let z = y/~, and next  let ~ ~ 0% then f rom (6.3), we obta in  

(6.4) e ~r 
09 n c n + n + l  1 So [te-t(t + y)C]. dt _ ( -  1) y So [(1 - t)ctetr] ~ dt 

S~ [tCe-t( t -- y)]n dt S~ [tCe-t( t -- Y)]" dt ' 

which is exact ly the Pad6 app rox ima t ions  to e z (see [10]). 



106 ~P. B. Borwein and Weiyu Chen 

F r o m  (3.8) and (3.9), we have the critical curve for the Pad6 app rox iman t s  to 
(1 + z) ~"+1, which is 

f t (6.5) z: - = 1 
~ z + Z z + 2 +  ~ 2  p c~z+2c~ 

where # = ((~222 -'}- 42 + 4) 1/2. 

Set c~z = y, and  then let e --* 0% f rom (6.5) we have 

 66, J+4Le  
Let y = 2x, then we can rewrite (6.6) as 

xe,/~ 

which is exactly the critical curve for the Pad6 approx ima tes  to e" with a = 1 
in [10]. This l imiting argument ,  however,  requires some careful justification. 
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