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ABSTRACT. The equality

|p'(a) | _ 207
sup =
p IPllay b—a

is shown, where the supremum is taken for all exponential sums p of the
form

n
pt) =ag+ Y ajeM’, aj €R,
=1

with nonnegative exponents A;. The inequalities

1P lljars.5-5) < 4(n+2)%6 " Ipllja

and
1P lfats,0—8] < 4V2(n + 2)36_3/2||p||L2 [a,b]

are also proved for all exponential sums of the above form with arbitrary
real exponents. These results improve inequalities of Lorentz and Schmidt
and partially answer a question of Lorentz.

Classification Number: 41A17

Key Words: Exponential sums, Mtntz Polynomials, Markov Inequality,
Bernstein Inequality.

1. Introduction and Notation



Let Ap :i={ M <X << A}, Aj#0, j=1,2...,n,

E(A)={f:ft)=ag+ Y a;e’' a; €R}
j=1

and

B, :=|JEA) ={f: f(t) =ag+Y_a;ed’, aj,); € R}.
An =1
We will use the norms

1/ llfa) == Jnax |/ ()]

b 1/2
Nl 2ofap) = </a | f(z)]? dm)

for functions f € CJa, b].

and

Schmidt [3] proved that there is a constant ¢(n) depending only on n so
that

19" at5.—5] < ()6~ Iplljapy

for every p € E,, and 6 € (0, (b—a)/2). Lorentz [2] improved Schmidt’s result
by showing that for every a > % there is a constant ¢(«) depending only on
a so that ¢(n) in the above inequality can be replaced by c(a)n®'°8"  and he
speculated that there may be an absolute constant ¢ so that Schmidt’s in-
equality holds with ¢(n) = en. Theorem 2 of this paper shows that Schmidt’s
inequality holds with c¢(n) = 4(n + 2)3. Our first theorem establishes the
sharp inequality

2n?
b—a

for every p € F,, with nonnegative exponents \;.

| p'(a) |<

Il e

2. New Results

Theorem 1. We have ‘
|P'(a) | _ 2n°
o by b-a

for every a < b, where the supremum s taken for all exponential sums
p € E, with nonnegative exponents. The equality

| p/(a) | 2n?
sup =
p Py  a(logb—loga)




also holds for every 0 < a < b, where the supremum s taken for all Muntz
polynomaals of the form

n
p(z) =ap+ Z ajx)‘f7 a; €R, A; >0.
i=1

Theorem 2. The inequalities

12 lljat5.5-5) < 4(n +2)% 6 Ipllja s

and
19 gt 50—5] < 4V2(n +2)* 6732|Ipll 1, sy

hold for everyp € E,, and 6 € (0,(b—a)/2).

3. Proofs

To prove Theorem 1 we need some notation. If A, :={A\] < Ay < -+ <
An} is a set of positive real numbers then the real span of

{1733)\]733)\27"':E/\n}7 3320,

will be denoted by M (A,,). It is well-known that these are Chebyshev spaces
(see [1] for instance), so M (A, ) possesses a unique Chebyshev “polynomial”
Ty, on [a,b], 0 < a < b, with the properties

() Ty, € M(Ay).

(i) Ta, llfap) =1

and

(iii) there are a =z < z1 < - -+ < x,, = b so that
TAn("’C]) = (_1)]7 ]:O*l**n

It is routine to prove (see [1] again) that Ty, has exactly n distinct zeros

on (a,b),

|p'(a)| _ [T}, (a)] .
max = n —IT (a 1
ot Toles — acllag (@) (1)
e [p(0) | _ [T, (0) ]
p A
o = =| T, (0) | . 2
02peM (M) Plljap) 1T Nl | Ta, (0) | (2)

Lemma 3. Let

Ap={N < X< < A} and Fn={n<m<-<mm}



be so that 0 < A\; < «y; for each j =1,2,---,n. Then

| T, () || T3, (@) | - (3)

Proof. Without loss of generality we may assume that there is an index
m, 1 <m < n, sothat A\, < v, and A\; = v; if j # m, since repeated
applications of the result in this situation give the lemma in the general
case. First we show that

| Tr,, (0) |<[ Ta, (0) |- (4)

Indeed, let Ry, € M(I',) interpolate T, at the zeros of T}, , and be normal-
ized so that Rr, (0) = Ty, (0). Then the Improvement Theorem of Pinkus
and Smith [4, Theorem 2] yields

| an(m) |§| TAn(x) |S 1, T € [a'ab]'

Hence, using (2) with A,, replaced by T',,, we obtain

which proves (4). Using the defining properties of Ty, and Tt,, we deduce
that Ty, — T, has at least n+ 1 zeros in [a, b] (we count every zero without
sign change twice). Now assume that (3) does not hold, then

| Th, () > Tt (a) |

This, together with (4), implies that Ty, — 7T, has at least one zero in (0, a).
Hence Ty, — Tr, has at least n + 2 zeros in (0,b]. This is a contradiction,
since

Ty, — Tr, € span{l,z™, 2?2 ... gin g¥m},

and every function from the above span can have only at most n + 1 zeros

in (0,00) (see [3]). |

Proof of Theorem 1. It is sufficient to prove only the second statement of
the theorem, the first one can be obtained by the change of variable z = ¢'.

We obtain from (1) and Lemma 3 that

Yl @
BT T m ———— = lim A a
Pl = 6=0+ [Ta, ;s 6—0+ = ns



for every p of the form
n
p(z) =ag+ Z a]':C)‘j, a; €R, X; >0,
j=1

where

Aps = {6,26,36, - ,né}

and T, s is the Chebyshev “polynomial” of M(A,s) on [a,b]. From the
definition and uniqueness of Ty, , it follows that

2 § b6+a6>

T
bé_aé‘ b5—a5

Th, s(z) =T, <

where T),(y) := cos(narccosy). Therefore

2 s
T4, @) | = | Th(=1) | s —a®™!

2n? S—1 2n?
ST 1) —o-1(ad — 1V =0+ a(looh — looa)
61 —1) =61 (a® - 1) a(logb —log a)

and the theorem is proved. O

To prove Theorem 2 we need two lemmas.

Lemma 4. For every set Ay := {1 < Ao < ...\, } of nonzero real numbers
there is a point y € [—1,1] depending only on A, so that

|2/ (y) 1< 200+ 2)lpll £p11)
for every p € E(A,).
Proof. Take the orthonormal set {py}7_, on [—1,1] defined by

(i) pr € span{l,eMt, ezt ..o Met), k=0,1,....n
1
@) [ ppj=ty  0<i<i<n

Writing p € F(A,) as alinear combination of the functionspg, £ =0,1,---,n,
and using the Cauchy-Schwartz inequality and the orthonormality of {p;}}_,
on [—1,1], we obtain in a standard fashion that

| p'(to) | - v
/ N2
max —————2— = E P (to) to € R.
PeEA) [Pl pa[=11] <k:0 7

Let

Ay ={te[-1,1] : | pe@®) [> (n+ DV, k=0,1,---,n



and

By = {t € [_17 1]\Ak : |p2(t) |2 2(n+ 2)5/2}7 k= 07 17 M

1
Since [ p? =1, we have
-1

m(Ak)S(n+1)_1* k20717"'7n'

Since span{1,eM? e*? ... M) is a Chebyshev system, each Ay, := [—1,1]\ 4
comprises of at most k+1 intervals, and each By comprises of at most 2(k+1)
intervals. Therefore

2n+22 m(B) < [ 1h(0) | dt < 4(k+ DV F T

k

whence

L , 2vn+1 (n+1)(n+2)

]Z:Om(Bk) < (n+ 272 5 <L
Now let .
A= [—1, 1]\ U (Ak U Bk).
k=0

Then

m(A) > 2-— Zm(Ak) - Z m(By)

k=0 k=0

> 2—(n+D(n+1)"t-1>0,
so there is a point y € A C [—1, 1], where
1P'(y) <200+ D2 k=010,
hence

n 1/2
<Zp’k(y)2> < 2(n+2)%,
k=0

and the lemma is proved. O

Lemma 5. We have

| 9'(0) < 200+ 2)°Ipll £, (-2.2) < 2(n +2)°[Ipll[-2,)

for every p € E,.



Proof. Let A, := {A\] < Xy < ---,A,} be a fixed set of nonzero real
numbers, and let y € [—1,1] be chosen by Lemma 4. Let 0 # p € E(A,).
Then

q(t) :==p(t—y) € E(An),

therefore, applying Lemma 4 to ¢, we obtain

/ A / A /
PO o 1POF  _ 1eW ] g, 49
||P||L2[72,2] ”p”Lg[flfy,lfy] ||Q||L2[f1,1]
and the lemma is proved. O

Proof of Theorem 2. Let ty € [a + 6,b — 6]. Applying Lemma 5 to
q(t) :=p(6t/2 + tp), we get the theorem. O
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