On Monochrome Lines and Hyperplanes

PETER BORWEIN*

Department of Mathematics, Statistics and Computing Science, Dalhousie University, Halifax, Nova Scotia, Canada

Communicated by the Managing Editors

Received May 15, 1981

1. Introduction

If two finite sets of points in the real projective plane are not all collinear, then there exists a line through two points of one of the sets that does not intersect the other set. Such a line is called monochrome. This attractive result is Motzkin's theorem ([1] or [2]). More generally, Shannon has shown that n finite sets of points whose union spans real n-dimensional space must also define a monochrome line [3]. We shall consider an n-dimensional variant of Motzkin's theorem. More precisely, we shall prove the following:

THEOREM. If R and B are two finite sets whose union spans E^n (Euclidean n space), then either there exists a monochrome R line (a line through two points of R that does not intersect B) or there exists a monochrome B hyperplane (a hyperplane spanned by points of B that does not intersect R).

Both Motzkin's Theorem in E^2 and Shannon's result in E^n are immediate corollaries of this theorem. Our proof is self-contained and unlike the proofs of the above results we shall proceed directly rather than considering the equivalent dual formulation of the problem. We shall, however, offer a detailed proof of the above theorem in three dimensions only. This is conceptually much easier and as the referee points out, the results extend in a straightforward way to higher dimensions. We shall discuss the necessary modifications later.

We note that two colours in three dimensions is insufficient to guarantee the existence of a monochrome plane. See Fig. 1.

^{*} Research Supported by N.S.E.R.C.

FIGURE 1

2. PRELIMINARIES

We shall denote points in R by r, r_0, r_1, \ldots , points in B by b, b_0, b_1, \ldots , by interior we mean relative interior. We shall denote tetrahedra by (p_1, p_2, p_3, p_4) , triangles by $\Delta(p_1, p_2, p_3)$, and segments by $S(p_1, p_2)$. The plane through p_1, p_2 , and p_3 is denoted by $\pi(p_1, p_2, p_3)$ and the line through p_1 and p_2 by $L(p_1, p_2)$. When we write $p \in \Delta(p_1, p_2, p_3)$ etc., we mean p lies in the closed set defined by $\Delta(p_1, p_2, p_3)$.

We require the following lemma:

LEMMA. If R and B are two finite sets whose union spans E^3 and if there are no monochrome R lines, then there exists either:

- (a) a monochrome B triangle (a triangle with no R points on its boundary or in its interior), or
- (b) a monochrome B segment and a monochrome R segment which are non-coplanar.

Proof. We shall first prove that every plane defined by three B points contains a monochrome B segment. Suppose there exists a plane containing three noncollinear B points and no monochrome B segments. We restrict our attention to this plane. This plane must contain at least three B points (one

FIGURE 2

FIGURE 3

on each edge of the triangle defined by the three B points). Rotate this plane so that no two points lie on the same vertical line and so that there exists a vertical line passing through a B point and the interior of an R segment. Now consider the minimum vertical distance from a B point b_0 to the interior of an R segment $S(r_0, r_1)$. See Fig. 2. By assumption there are no monochrome R lines. So there must exist a B point b on $L(r_0, r_1)$. Since $S(b_0, b)$ cannot be monochrome it must contain r_2 . Point b_0 , however, is now "too close" to either $S(r_0, r_2)$ or $S(r_1, r_2)$. Thus, every B plane contains a monochrome B segment. (We note that the above is obvious if we assume Motzkin's result.) Suppose that $S(b_1, b_2)$ is monochrome.

Consider two R points r_3 and r_4 such that the dihedral angle $\langle [r_3, L(b_1, b_2), r_4]$ is the smallest among all the nonzero dihedral angles $\langle [r_i, L(b_1, b_2), r_j]$. Except in cases where the lemma is trivial such a pair of points clearly exist. See Fig. 3.

If $S(r_3, r_4)$ contains no B point, then segments $S(r_3, r_4)$ and $S(b_1, b_2)$ satisfy condition (b).

If $S(r_3, r_4)$ contains a B point b_3 , then $\Delta(b_1, b_2, b_3)$ satisfies condition (a).

The *n*-dimensional form of the lemma asserts the existence of either (a) a monochrome B (n-1)-simplex, or (b) a monochrome B (n-2)-simplex and a monochrome R segment. To prove this we proceed inductively. By the (n-1)-dimensional form of the theorem, there exists a monochrome (n-2)-dimensional affine variety $H(b_1,...,b_{n-1})$. We can finish the argument, as in the last paragraphs of the proof of the lemma, by considering the minimal nonzero dihedral angle $\langle r_i, H(b_1,...,b_{n-1}), r_i \rangle$.

3. The Proof of the Theorem

We assume that there exist neither monochrome B planes nor monochrome R lines. We rotate the configuration so that:

- (1) no vertical line passes through both a point and a line of the configuration, and
- (2) at least one vertical line passes through either an R point and a noncoplanar monochrome B triangle or through a monochrome B segment and a noncoplanar monochrome R segment.

The lemma and a dimensionality argument allow us to do this.

We now consider the minimum vertical distance from either:

Condition (1): an R point to a noncoplanar monochrome B triangle or Condition (2): a monochrome R segment to a noncoplanar monochrome B segment.

Before proceeding with the proof we shall indicate the modifications required for the n-dimensional version. Condition (1) becomes the distance from an R point to a monochrome B (n-1)-simplex and condition (2) becomes the distance from a monochrome R segment to a monochrome B (n-2)-simplex where, in both cases, we assume that the n points involved are spanning. If we now read B (n-2)-simplex for B segment, B (n-1)-simplex for B triangle, and B hyperplane for B plane, then the proof generalizes in an obvious fashion.

Case 1. A minimum is obtained (as in condition (1)) between an R point r_0 and a monochrome B triangle $\Delta(b_0,b_0,b_0)$. See Fig. 4. Let $S(r_0,t)$ be the vertical segment from r_0 to $\Delta(b_0,b_0,b_0)$. Let π_1 be the plane through r_0 parallel to π_2 , the plane of $\Delta(b_0,b_0,b_0)$.

Since π_2 contains an R point r_1 exterior to $\Delta(b_0, b_0, b_0)$, $S(r_0, r_1)$ must contain a B point b_1 . One of the triangles $\Delta(b_0, b_0, b_1)$ intersects $s(r_0, t)$. Thus, there are triangles with 3 B-vertices under π_1 and on or above π_2 .

FIGURE 4

FIGURE 5

which intersect $S(r_0, t)$ above t. Consider the $\Delta(b_2, b_2, b_2)$ in this set which has the highest intersection t', with $S(r_0, t)$. See Fig. 5.

The minimality of $S(r_0, t)$ implies that $\Delta(b_2, b_2, b_2)$ must contain an R point r_2 , where r_2 lies above π_2 but does not lie vertically above $\Delta(b_0, b_0, b_0)$. Hence, $S(r_0, r_2)$ passes vertically over an edge of this triangle and must, therefore, contain a B point b_3 . This leads to the contradiction that one of the triangles $\Delta(b_3, b_2, b_2)$ intersects the segment $S(r_0, t')$.

Case 2. A minimum is obtained (as in condition (2)) between a monochrome R segment $S(r_0, r_0^*)$ and a monochrome B segment $S(b_0, b_0)$. See Fig. 6. Since $L(r_0, r_0^*)$ is not monochrome there exists $b_1 \in L(r_0, r_0^*) - S(r_0, r_0^*)$. Thus, there exists $r_1 \in \Delta(b_1, b_0, b_0)$ or condition (1) is violated with respect to r_0 and $\Delta(b_0, b_0, b_1)$. In order that $S(r_1, r_0^*)$ and $S(b_0, b_0)$ do not violate condition (2) we must place b_2 on $S(r_1, r_0^*)$.

We have now guaranteed the existence of a segment S(r,r) having R endpoints, containing B points in the interior of tetrahedron (b_1,b_0,b_0,r_0^*)

FIGURE 6

FIGURE 7

and passing vertically over $S(b_0, b_0)$. Consider the class of all such segements and suppose that $S(r_2, r_3)$ is one subtending the smallest nonzero dihedral angle $\langle [r_2, L(b_0, b_0), r_3]$ at the line $L(b_0, b_0)$. See Fig. 7.

This segment must contain a B point b_2 and $\Delta(b_2, b_1, b_0)$ must be monochrome. But either r_0 is vertically over $\Delta(b_2, b_0, b_0)$ or $s(r_0, r_0^*)$ passes vertically over one of the monochrome B segments $s(b_0, b_2)$. Either case violates the minimality of the vertical distance between segments $S(r_0, r_0^*)$ and $S(b_0, b_0)$.

ACKNOWLEDGMENTS

I would like to thank Professor Edelstein for his considerable encouragement and assistance and also to thank the referee for helping recast the proofs in a far more transparent and extendable form.

REFERENCES

- G. D. CHAKERIAN, Sylvester's problem on collinear points and a relative, Amer. Math. Monthly 77 (1970), 164-167.
- 2. T. S. MOTZKIN, Nonmixed connecting lines, Notices Amer. Math. Soc. 14 (1967), 837.
- 3. R. SHANNON, Ph. D. thesis, University of Washington, 1974.

Printed by the St. Catherine Press Ltd., Tempelhof 41, Bruges, Belgium