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1. INTRODUCTION

If two finite sets of points in the real projective plane are not all collinear,
then there exists a line through two points of one of the sets that does not
intersect the other set. Such a line is called monochrome. This attractive
result is Motzkin’s theorem ([1] or [2]). More generally, Shannon has shown
that » finite sets of points whose union spans real n-dimensional space must
also define a monochrome line [3]. We shall consider an n-dimensional
variant of Motzkin’s theorem. More precisely, we shall prove the following:

THEOREM. If R and B are two finite sets whose union spans E"
(Euclidean n space), then either there exists a monochrome R line (a line
through two points of R that does not intersect B) or there exists a
monochrome B hyperplane (a hyperplane spanned by points of B that does
not intersect R).

Both Motzkin’s Theorem in E* and Shannon’s result in E" are immediate
corollaries of this theorem. Our proof is self-contained and unlike the proofs
of the above results we shall proceed directly rather than considering the
equivalent dual formulation of the problem. We shall, however, offer a
detailed proof of the above theorem in three dimensions only. This is concep-
tually much easier and as the referee points out, the results extend in a
straightforward way to higher dimensions. We shall discuss the necessary
modifications later.

We note that two colours in three dimensions is insufficient to guarantee
the existence of a monochrome plane. See Fig. 1.
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2. PRELIMINARIES

We shall denote points in R by r,r,, r,,.., points in B by b, b, b, ..., by
interior we mean relative interior. We shall denote tetrahedra by
(P1+ P2» P35 py), triangles by A(p,, p,, p;). and segments by S(p,, p,). The
plane through p,, p,, and p, is denoted by n(p,, p,, p,) and the line through
p, and p, by L(p,, p,). When we write p € 4(p,, p,, p,) etc., we mean p lies
in the closed set defined by A(p,. p,, ;).

We require the following lemma:

LEMMA. If R and B are two finite sets whose union spans E* and if there
are no monochrome R lines, then there exists either:

(a) a monochrome B triangle (a triangle with no R points on its
boundary or in its interior), or

(b) a monochrome B segment and a monochrome R segment which are
non-coplanar.

Proof. We shall first prove that every plane defined by three B points
contains a monochrome B segment. Suppose there exists a plane containing
three noncollinear B points and no monochrome B segments. We restrict our
attention to this plane. This plane must contain at least three R points (one

FIGURE 2
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FIGURE 3

on each edge of the triangle defined by the three B points). Rotate this plane
so that no two points lie on the same vertical line and so that there exists a
vertical line passing through a B point and the interior of an R segment.
Now consider the minimum vertical distance from a B point b, to the
interior of an R segment S{r,, r,). See Fig. 2. By assumption there are no
monochrome R lines. So there must exist a B point b on L(r,,r,). Since
S(by, b) cannot be monochrome it must contain r,. Point b,, however, is
now “too close” to either S(r,, r,) or S{r,, r,). Thus, every B plane contains
a monochrome B segment. (We note that the above is obvious if we assume
Motzkin’s result.) Suppose that S(b,, b,) is monochrome.

Consider two R points r, and r, such that the dihedral angle
{{r;, L{b,, b,), ry| is the smallest among all the nonzero dihedral angles
(|ri» L(by, b,), r;|. Except in cases where the lemma is trivial such a pair of
points clearly exist. See Fig. 3.

If S(ry.r,) contains no B point, then segments S(r,,r,) and S(b,,b,)
satisfy condition (b).

If S(ry,r,) contains a B point b,, then A(b,,b,,b,) satisfies
condition (a). |

The n-dimensional form of the lemma asserts the existence of either (a)a
monochrome B (n— 1)-simplex, or (b) a monochrome B (n — 2)-simplex
and a monochrome R segment. To prove this we proceed inductively. By the
(n — 1)-dimensional form of the theorem, there exists a monochrome (1 — 2)-
dimensional affine variety H(b,,..., b, ). We can finish the argument, as in
the last paragraphs of the proof of the lemma, by considering the minimal
nonzero dihedral angle ([r,, H(b, ..., b,_)), r;].

3, THE PROOF OF THE THEOREM

We assume that there exist neither monochrome B planes nor
monochrome R lines. We rotate the configuration so that:
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(1) no vertical line passes through both a point and a line of the
configuration, and

(2) at least one vertical line passes through either an R point and a
noncoplanar monochrome B triangle or through a monochrome B segment
and a noncoplanar monochrome R segment.

The lemma and a dimensionality argument allow us to do this.
We now consider the minimum vertical distance from either:

Condition (1): an R point to a noncoplanar monochrome B triangle or

Condition (2): a monochrome R segment to a noncoplanar
monochrome B segment.

Before proceeding with the proof we shall indicate the modifications
required for the n-dimensional version. Condition (1) becomes the distance
from an R point to a monochrome B (n— 1)-simplex and condition (2)
becomes the distance from a monochrome R segment to a monochrome B
(n — 2)-simplex where, in both cases, we assume that the n points involved
are spanning. If we now read B (n— 2)-simplex for B segment, B (n— 1)-
simplex for B triangle, and B hyperplane for B plane, then the proof
generalizes in an obvious fashion.

Case 1. A minimum is obtained (as in condition (1)) between an R
point r, and a monochrome B triangle A(b,, by, b,). See Fig. 4. Let S(r,, )
be the vertical segment from r, to A(b,, by, by). Let m, be the plane through
r, parallel to z,, the plane of A(b,, b,, b,).

Since 7, contains an R point r, exterior to A(b,. b,.b,), S(r,,r,) must
contain a B point b,. One of the triangles A(b,, b,. b,) intersects s(r,, ¢).
Thus, there are triangles with 3 B-vertices under n, and on or above 7,

FIGURE 4
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FIGURE 5

which intersect S(r,, t) above t. Consider the A(b,, b,, b,) in this set which
has the highest intersection ¢', with S(r,, t). See Fig. 5.

The minimality of S(ry, ) implies that A(b,, b,, b,) must contain an R
point r,, where r, lies above 7, but does not lie vertically above A(by, by, b,).
Hence, S(ry,r,) passes vertically over an edge of this triangle and must,
therefore, contain a B point b,. This leads to the contradiction that one of
the triangles 4(b,, b,, b,) intersects the segment S(r,, t').

Case 2. A minimum is obtained (as in condition (2)) between a
monochrome R segment S(r,, r§) and a monochrome B segment S(b,, b,).
See Fig. 6. Since L(r,, rf) is not monochrome there exists b, & L{ry,, r¥)—
S(ry, ry’). Thus, there exists r; € 4(b,, b, b,) or condition (1) is violated
with respect to r, and A(b,. by, b,). In order that S(r,, r¥) and S(b,, b,) do
not violate condition (2) we must place b, on S(r,, r¥).

We have now guaranteed the existence of a segment S(r,r) having R
endpoints, containing B points in the interior of tetrahedron (b,, b,, b, ri)

b] b

FIGURE 6



MONOCHROME LINES AND HYPERPLANES 81

FIGURE 7

and passing vertically over S(b,,b,). Consider the class of all such
segements and suppose that S(r,, r,) is one subtending the smallest nonzero
dihedral angle {[r,, L(b,, b,), ;] at the line L(b,, b,). See Fig. 7.

This segment must contain a B point b,and A(b,,b,,b,) must be
monochrome. But either r, is vertically over A(b,, b,, b,) or s(r,, r¥) passes
vertically over one of the monochrome B segments s(b,, b,). Either case
violates the minimality of the vertical distance between segments S(r,, r¥)
and S(b,, b,).
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