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1. INTRODUCTION

A natural way to generate n -th order algebraic approximants
to a function f , analytic at zero, is to consider expressions of
the following form

() €, (f:2) i=p (2)F(2)4p

m’n_1(z)ff"1(z)+...+pm,0(z) -

_ O(Z(n+1)(m+1)-1)

where the »p are polynomials of degree at most m . The n-th

m,1
order approximant is then a solution of the equation

-1
(2) pm,n(z)yn + pm,n_1(z)yn .. 4+ pm,O(Z) =0 .

In the case n =1 this leads to the familiar main diagonal Padé
approximant. He will call a solution of (2) the (principal) n -th
order Padé approximant to f and will call the pm,i the coeffi~
cient polynomials. We will call f n-normal if (1) always has a
unique solution with pm’n(z) = zm-+0(zm'1) . The functions we will
examine are all n-normal and we will assume throughout that pm,n
is normalized so that it has highest coefficient 1,

The hard questions for Padé approximants, 1ike the nature and
region of convergence, become harder in this more general setting

* Research supported, in part, by N.S.E.R.C. Some of the material in
this paper has been published in [2].
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and some new problems arise. For example, (2) has multiple solutions
and different branches may be appropriate approximants on different
regions. The following results, which are fairly immediate general-
izations, indicate some of the similarities to usual Padé approxi-
mants.

THEOREM 1. If f <s n-normal then the n+1 coefficient se-
quences, {pm 1}:=0 , all satisfy the same n+2 term recursion

n+1
(3) 0 = kZO Cy,m{Z) Py (2

where the Cp.m are polynomials of uniformly bounded degree Zn n .

Note that the Ceom depend on m and f , but noton i, so
b1
all the coefficient sequences satisfy the same recursion. In the
case that the Cy.m are also independent of m , which occurs for
b

(1 +z)1/(n+1) , we have

THEOREM 2. If the Ckom in recursion (3) are independent of

m then f <s an algebraic function.

If f 1is n-normal then the n-th order Padé approximant is
locally optimal in the following sense:

THEOREM 3. 1f f <s n=-normal and

(4) My i= min IV (2)8%2) + v (26" @)+ (2
Vi€m $
1m
Vn=zm+...
then
Mg

Tim - = 1.
§+0 NEm,nCT:2) o
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Here, | ”Ca is the supremum norm on C. := {|z| € 8} and o

8

denotes the algebraic polynomials of degree at most m .

These approximations have a considerable history. Hermite
analyzed some of the properties of such approximation to exp in
{4]. He viewed them as an algebraic extension of the continued frac-
tion. Later Mahler [5] showed how a proof of the transcendence of
e and w could be based on this approach and still Tater [6]
proved an irrationality measure for 7 from this method.

The general Hermite —Padé approximation problem concerning
solution of (1), and generalizations, has received considerable
attention lately. This material may be accessed through the exten-
sive bibliography in [1]. One can, for example, obtain generaliza-
tions of the Montessus de Ballore Theorem. Because the details are,
in general, difficult it seems appropriate to offer some very pre-
cise special case analysis.

The remainder of this paper is concerned with approximations to
1/n . The analysis of exp ds particularly thorough.
The approximations to exp are relatively easy to compute and pro-

exp, log and x
vide an outstanding method for calculating exp .

2. QUADRATIC PADE APPROXIMATION TO exp

We outline the basic formula for the second order Pade approxi-
mants to f , The proofs may be pursued in [2].

Let
cjxj
g I —
(5) pm(x) = m ‘]ZO J!
where
M3 om-(k+j)y (mek
¢ = ( m )( m )_ER- *

37 k%
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Let

]
Fide] m djx
(6) qm(x) = =2 m! jZO 3
where
3m J s
a i (-1)3'[—2— 2™
J m ?
Let
(7) ro(x) 1= (1) (-x)
and let
E(x) = pm(X)e'X + qm(x)e'X +r(x) .

The next theorem demonstrates that p_ , O and r, are the coef-
ficient polynomials of the quadratic Padé approximant to exp. It
also gives a precise estimate for the error E_ .

THEOREM 4.

"X g (e v (x) = o(x3(m1)-1)

al Em(x) . pm(x)e m

where P, G and ¥ are given by (5), (6) and (7) respectively.

2m+1m|x3m+2e—x

S T

The asymptotic is uniform on bounded subsets of C . (As usual,
a

n
a ~b means EH_) 1.)

PROPOSITION 1. Let Dm := 3m(3m-2)c ... (m+2) . Then

a] pm(x) -~ Dme(1'1/\/-3-)x

’
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b] qm(X) -~ ( -1 m+1D [eX/)/-g " (_1)nle‘X//§]

cl rm(x) ~ (-1)mDme'(1 - 1//3)x

(The asymptotic is uniform on compact subsets of C~{tk/3n/2 k=21,
24000} W)
PROPOSITION 2. Let

-q(x) + VGh(x) - 4p (x)r(x)
um(x) 1= 2pm(x)

where the square root is the principal branch. Then, for odd m and
for Ix| =

2m+1mlx3m+2e-x

X3, IV |

e " - um(x) ~
(3m+2) 1D _[e

(The estimate is uniform on the unit disk.)

This is a remarkably good approximation, og already gives 15
digit accuracy on the unit disk.

Note, for odd m
2(

3 = 2
. %[eX/ + e X/v/g]

q.-(x) - 4p (x)r(x) ~D

while, for even m

- 2
Q2 (x) - 4p (x)r(x) ~ p2[*3 - V3

Thus, while the principal branch of the square root works for the
definition of am(x) for odd m , we must contend with a branch
point near x =0 for even m . Hence, an asymptotic, Tike Propo-
sition 2, for even m is more complicated. In fact, if

~q.(x) /q ) - 4p (x)rp(x)
B(x) = me(x)

m

- 217 -



then, for even m ,

t

a (t) ~ e t € [-1,0)

and

B (1) ~e™t  te(0,1].

Let f;(z) = fm(z-+§ﬁ%?) . Then, as the following proposition shows,

shifted quadratic Padé approximants provided an asymptotically exact
minimization on C1 := {lz| € 1} . Similar results for ordinary ra-
tional approximation may be found in [3] and [7].

PROPOSITION 3.

al " *(Z)e-ZZ % *(Z)e-z & r*(Z)” ~ 2m+1m!
Pm 9 m C1 Gm+2) 7T *
bl Let
wo = min ||s.(z)e'22 + t(z)e? + u(z)]lC .
s,t,uEnm 1
s=z"+
m+1

Then Wo~ TEm2)T

The coefficient polynomials are linked by the following third
order differential equations.

PROPOSITION 4.
= ni® _ "
al 2mpm-1 = P 3pm

.
9 = 9m

bl 2mq,_,
¢l 2Zmr, 4 =gt 3rm +2r! .
The recursion for the coefficients is given in the next propo-
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sition.

PROPOSITION 5,

al

P(x) g (x) (%)

m m
Det pm+1(x) s qm+1(X) Iy rm+1(x) = ('1)m+19'2m+2(4+3m)X3m+2

Pre2(X) s Quo(x) 5 v o (x)

bl {pm}, {qm} , {rm} and {Em} all satisfy the recursion

Tm+3::[§£%I]{(-2m'14/3)X3Tm'+[(3m+5)X2 +(3m+4)(3m+5)(3m+7)]Tm+1+me+2}.

3. n-TH ORDER PADE APPROXIMATION TO Tog

The next result concerns approximation to log z at 1.

THEOREM 5. There exist polynomials Tm,n""’Tm,O €m. 8o that

al By o(2) = T (2)00g ) 4 e T () =
- 0((2_1)(n+1)(m+1)‘1) )

bl The lead coefficient polynomial in al is given by

m +
Toon(@) = (DORT@Peg) ek
? k=0
n+1
el ey, (9] S ity 0D ™0 o sy

n+1
A (D) =Bl e P Dty () (net),
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PROOF SKETCH. Repeated differentiation and division shows that
non-zero expression of type al cannot have a zero of order greater
than (n+1){(m+1)-1 at 1 and we deduce the uniqueness of the coef-

ficients in al up to a multiplicative constant. We observe on differen-
m+1
Em,n
log z with coefficients that are polynomials of degreeat most m, and
that zm+1Em n(z)"”1 has a zero of order n{m+t) -1 at 1. It fol-
lows, on normalizing so that the lead coefficient of Tm n is 1,

that

tiating m+1 times that z (z)m+1 is a polynomial of degree n-1 in

m+l  _ nem!
Em,n(z) - ;ﬁIT Em,n-1(z)

and hence
z (z-t)" (t)dt
B m,n-1
(8) Em,n(z) =8 { tm+1
Also, if Tm n(z) = amzm-r... +a then one can compute directly that
i
gy eomo (=1)Ya.z _
(9) E, n(z)m+1= ( $i1m.n L - I (log 2™ + R(2)
i z j=0 (J)

where R(z) 1is of degree n-2 in log z .

Part b} follows inductively from (9) while c] and d] follow in-
ductively from (8). The induction starts either at n =1 which is
the familiar Padé case, or at n =0 in which case one has

zm+1Em’1(z)m+1 =mi(z-1)" .

(Similar estimates may be found in [5] and [61.) (

For n =2 we have
(10) Em(X) = tm(x)(1og x)2 + um(x)(]og x) +Vm(x) =O((x-1)3(m+1)'1)

where
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m 3
£ (x) = (D)™ T (M7 (-x)k .
m . kZO k A

One can derive the following recursion for {tm} s {um} and

{v.}.

m

PROPOSITION 6. The sequences {e, b, {ugb, (v} and {E,} , as

defined above, all satisfy the recursion

= alx-113T - (hy2 -
(11) Tes = a(x-1) T - (bx™ +cx + d)T .4+ elx DT o

where

(3me7) (me1)2/D ,

a -
b =d = (3m5)(3m°+ 11m+9)/D ,
¢ = (3m+5)(21m% + 77m+66)/D ,
e = (9m> +57n° + 116m+ 74) /D
and
D = (3m+4)(m+3)2 .

The initial values are

1 = X1 t, = X2 -8x+1,

- % - - - . ——2
ug = 0 ; Uy = 6X ~6 ; Uy = =9~ + 9,

= -12x-12 ; v, = 28x% < 48x + 24 .

Note that at % =1, (11) reduces to

<
|
o
-
<
]

T (D) = (X +cx+ )T (1)

m+1

and we can deduce an identity of Dixon’s, namely

2m
2m3, .k _ (3m)! m
t, (1) = () (-1)" = S E D
&l kzo K (m!)3
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The proof of Proposition 6 is entirely mechanical. Once one
knows the general form of the recursion (11) and also a specific
solution, namely {Tm} , one can solve for a,b,c,d and e as
rational functions of m by inserting the first few coefficients
of Tos Toet Te2 and Tm+3 in (11). This was done with the aid
of the symbolic manipulation package Maple.

4. (n-1) -ST ORDER PADE APPROXIMATIONS TO x'/™

We write
n-1 n-2

(x1/0 - qy(mein-1 P poq (00X n + P -2 (X)X " * P, 0(x)

where

m -~
pm,n-i(x) - kZO [EE:};E:}}xk(_1)(m k)n+i-1

and observe that we have constructed the normal (n-1) -st order Padé

i/n

approximant to x at x=1.

. o« - * .
. rsi
For fixed n , {pm,n-1}m=0 satisfies a recursion

n-1
pm+n,n-i(x) = i ck,n(x)pm+k,n-i(x)

where Ckon is independent of both m and i . The coefficients of
’
the first few recursions are as follows:

~(x-1)?

(8]
o
-
N
—
>
~
1

<4 2(x) = 2x + 2

cg 3(x) = (x-1)3

¢y 30 = 23x% - 21x - 3
c2’3(x) =3x -3
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(1

[2]

n=4:
¢p,4(%) =
¢q,4(x)
¢z 4(X)

¢3,4(x)
n=5:
cg,5(%) =
¢q,5(x) =
¢z,5(%)
c3,5(%) =
¢4,5(%) =
n==56:

cg,6(%) =
c,600) =
¢2,6¢%)
¢3,6(%) =
cq,60%) =
¢5 6(X)

= -15x% + 20586x

~(x-1)*

= 4x3 + 124x2 + 124x + 4

2

= -bx~ + 124x - 6
4x + 4
5

(x-1)
-5t - 605x3 - 1905x% - 605x - 5

= 10x3 - 1905:& + 1905x - 10

2

-10x~ - 605x - 10

5x - 5

-(x-1)6

6x° + 2736x7 + 20586x5 + 20586x% + 2736x + 6

3 131727%% + 20586x - 15

20x3 + 20586x% + 20586x + 20

2

-15x" + 2736x - 15

=6X +6 .
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