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ABSTRACT

We present a family of algorithms for computing pi which
converge with order m (m any integer larger than one). De-
tails are given for two, three and seven,

INTRODUCTION

In the course of a general study of elliptic integral
transforms and their applications in the construction of good
algebraic approximations to transcendental functions and natural
constants [2], the authors discovered the following general
multiplication formula which gives algebraic approximations of
order m to w (for m any integer greater than 1). The
formula is constructed as follows. Let

T/2
1
K(K) : =J (1.1)
0/ 1-k%sin?
and
/2
ECk): = J /1 - k%sin? (1.2)

0

denote the complete elliptic integrals of first and second kind
respectively, for 0 < k < 1, For each integer m there is an
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integral polynomial in two variables u and v, ¢n’ called

the modular equation (of order m) and a rational functionm,
Mm’ of u and v, called the multiplier such that for any

u in ]0,1{

Kuh) = mMm(u,v)K(v4) (1.3)

whenever v is the (unique) solution in 1}0,u[ to @m(u,v) =0,
[5]. When u8 + v8 =1, u: =u(m and v : = v(m) are said
to be conjugate. Let K(m) and E(m) denote K(V4(m)) and

E(V4(m)). In [2] the authors showed that there is a computable
algebraic constant, o(m), such that

}=ﬂmnﬁi%$—l)+um] (1.4)
and
0<m- ot(m)-l = 0(10"/‘;). (1.5)

In fact a(m)_l converges monotonically [2] to .
Heuristically this goes as follows. As m tends to infinity

A(m) := v4(m) tends to zero and so K(m) tends to =/2. More-
over, E{(m)/K(m) decreases to one sufficiently fast to validate
(1.5). When m =1, ao(m) = 1/2 and (1.4) is Legendre's identity
[5]- The multiplication formula, which allows one to compute

m rapidly, is now able to be stated. Let p be any positive
integer. Then for integral m

8, dM
2. 2.2 — v(1-v) P 8 2 8
a(p™m) = p Mp a(m) + pvm [——ETEI—— e 4 W pMpu 1 (1.6)
where u := v(m) and v 1is the unique solution to

; My .
@p(v(m),v) =0 in ]JOo,v(m)[. Also v 1S the complete dif-
ferential of Mp with respect to v. To compute this quantity

it helps to know Jacobi's identity

8
du _u(l-u’) pMz

- = (1.7)
v(l—vs)

v

whenever @p(u,v) =0 and 0 < v £ u. For convenience we
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4

denote Vv as Tp(u), and let k :=u, X

Algebraic details for p
given in [6].

a prime less
The general theory is nicely

A GENERAIL ITERATION

249

than twenty are
laid out in [5].

By iterating (1.5) we are led to the following algorithm.

Let m be integral and let
(1) ao := a(m), vy 1T v(m) . (2.1)
For n in N we compute
(ii) Vel (T Tp(vn) (2.2)
(1ii) s_ := pMi(v_,v_ ) (2.3)
n ' P n’ n+l :
v a-vd ) M (v,v )
(iv) d := n+1 n+l p - n’ n+l (2.4)
n -’ 4 M (v.,v. .) dv ’
P n’ n+l
and have
n+l 8 8
o, PTPS @+ Vm ld + v, - sV, (2.5)
Moreover,
n
a;l -7 =0(10"P ‘/"_‘). (2.6)

The larger m
This is illustrated below.
initial values [2].

For small

is, the better the initial approximation.
m we have the following
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Starting Values

m v4(m) = A(m) a(m)

1 2'1/2 1/2

2 V2 -1 7 -1

3 V2(Y3-1) /4 (¥3-1)/2

4 3 - 2V2 6 - 4/2

5 (VW5 -1 - V3 - ¥/5)/2 /5 - L(/51))/2
7 V2(3-Y7)/8 (V7-2)/2

Other values are computed in [2]. We now specialize our
algorithm for m = 2, 3, 7. The specializations are remarkably
clean. Note also that (1.7) allows one to calculate (2.2), (2.3)
and (2.4) as soon as

¢p is known since

The (uadratic Case

In this case the multiplier is M, := 4% and the trans-

2 2
formation T2 is given by A := (1 - / l—kz)/(l + v l-kz).

The iteration becomes

; B / 2 2
(i) X, 'S (1 - l—xn)/(l + l-xn) (2.1)
o L 2 n+1
(ii) @ T (1+xn+1) o - 2 /ﬁ-xn+1, (2.2)
with ap i= a(m) and Xy t= A(m); and
n
“1_11 = 00072y

A more exact asymptotic is given in [2]. The first few itera-
tions behave as follows:
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Digits Correct in Quadratic Algorithms

n=1 2 3 4 5 6 7 8
m=1 0 3 8 19 41 84 171 344
m= 2 FAZ 5 13 28 56 120 242 > 400
m=7 5 12 | 26 55 112 227 > 400 J
If one replaces Xy by cn/an (where an+1 1= (an+bn)/2;
el °T ﬁiﬁi;; e, i= ai - bi is the AGM iteration [4], [7])

then we may replace (2.2) by

a2 a = g - 2% e

2
n+l “n+l nn n ’ (Bl ]
which on summing yields
. 2
lim a
"= I# . (2.4)
a(m) - /m I -1
n
n=0

When m=1 this is an identity known to Gauss [3] which forms
the basis for the Salamin-Brent [4], [7] algorithm recently

used by Tamura and Kanada to compute ok digits of m, ([8]

and private communication). There is some advantage to (2.2)
over (2.4) in that all root extractions in the former are of
numbers converging rapidly to one.

THE CUBIC CASE

The modular equation is u4 - v4 + 2uv(1-u2v2) = 0. It is
convenient, though, to use a form of the modular equation given
in Cayley [5] which uses an auxiliary variable t. We have

L_ 2t+l o 3
M3 == t 1= v /u
8 t+2.3,. 8 3 _t+2
L (2t+1) 4 =t (2t+1)
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As in [1] we can explicitly compute the v The algorithm be-

comes:
. .3 6 s3/,2 8
(i) vn+l =V //>vn + 4vn(1—vn) * Vo (3.1)
Vo
(ii) to:= = (3.2)
n
5.3 2 n
(i) o 4 1= @t + D% - 2vm 3 (t+2)t (3.3)
with o, i= a(m), Vg i= v(m), and vy calculated from the
quartic formula as in [1]. When m =1, we have
1-Y3  1/4, .-7/8
v, 1= ((=/=—+ 3 2 .  Then
n
a]’_ll - w= og07E Yy

Alternately, we can give (3.1) and (3.2) in terms of tn

directly., We get

tn_l+2
Tt G0 [t -
n-1
4(1-t_ (2t ,+1)
- /tz + (1+t ) 3/ 5 121_1 ]3 .
n-1 n-1 (tn_1+2)

For practical purposes it seems better to directly invert the
modular equation. The first few iterations give:

Digits Correct in Cubic Algorithms

n=1 2 3 4 5
m=1 2 10 34 107 | 327
m=7 8 30 | 93 | 288 873

In both the quadratic and cubic cases it is easy to directly
establish the error estimate.

The Septic Case. The modular equation is
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(lius)(lévs) = (l-uv)g. Ve use (1.7) and

7M§. = viu-v)/uu’-v)
=b/a
where b := uv/(u8 - uv); a := uv/(uv—vs) to derive the follow-

ing algorithm.

(i) Generate (vn) decreasingly from

8 8 . 8
(l-vn)(l-vn+1) = (l—vnvn+1) ‘ (4.1)
(ii) a_ :=v.v_ ./(v.v -v8 ); b = v v /(v8-v v_..)
n ° n n+l nn+l n+l’’ "n ° n n+l n n n+l
(4.2)
(iii) IR bn/ah
(iv) t = 1/8[(1-v8 J(49a_-b_) + (1-v8)(s -1)b ] (4.3)
n n+l n n n n n :
(V) o, i= s+ TVm (T-s -t ) (4.4)
with ay := a(m), vy i= v(m) as before. Then
1 -7%m

a; -1 = 0(10 )

The first few iterations are as follows:

Digits Correct in Septic Algorithms

n=1 2 3
m=1 7 63 464
m=7 22 173 >1000

We finish by observing that while the rate of convergence
improves as p increases the complexity remains unchanged [1]
{3]. Also, it is possible, using the data given in [6], to
write down an explicit iteration for p any odd number less
than twenty. The case p = 5 can be handled almost as cleanly
as 3 or 7.
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THREE ALGORITHMS FOR

OUADRATIC: with ay = a(m) Xy i= A(m):; and
. _ [ 2 /2
(1) Xpep T (1 - l-xn)/(l + l—xn)
i - 2 n+l
(ii) a .1 = (l+xn+1) a - /m 2 X410

n
o -7 = 0(10_2 /ﬁi.

CUBIC: with oy 1= a(m), vy 1T v(m}; and

(i) generate (vn) decreasingly from
4 _ .4 3
Vnel ¥ PVnVne1 T Y 20V
.. .3
(i1) by = vn+1/vn
(1i1) o := (2t +1)%a - 2/m (e +2)t
n+l ° n n n n’
n
B o 0(10~° ‘/’H).
n
SEPTIC: with a, = a(m), Vg i= v(m); and
(i) generate (vn) decreasingly from
8 g 8
(I—VD)(l-vn+1) = (l-vnvn+l)
(ii) a :=vv_ . /(vv —v8 ); b= vV /(VS—V v )
n -’ n n+l nn+l n+l’’ "n -’ n n+l n n n+l
(1i1) s, i bn/an
(iv) t. := 1/8[(1-v> )(49a -b ) + (1-v®)(s_-1)b_]
n n+1 n n n n n
n
(v) S vm 7 (sn+tn—7)

n
o’} - m = 00077 sy
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In cubic algorithms: (i) may be replaced by

v p= v - fv(’ £ 3 4V2(1-v8) + Vv
n n n

n+l n n-1

once Vl is known. When m =1

v, i= ((1—'/3_‘/3:) + 31/4277/8,

Selected Starting Values

m vim) = aqm a(m)

1 o B2 1/2

2 V2 -1 V2 - 1

3 V2(/3-1)/4 (/3-1)/2

5 /-1 - /3452 5 - /20/55-1))/2
7 V2(3-/7)/8 (/7-2)/2
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