Computational Methods and Function Theory Proceedings, Valparaíso 1989 St. Ruscheweyh, E.B. Saff, L. C. Salinas, R.S. Varga (eds.) Lecture Notes in Mathematics 1435, pp. 27-31 © Springer Berlin Heidelberg 1990

A Remarkable Cubic Mean Iteration

J.M. Borwein and P.B. Borwein

Mathematics, Statistics and Computing Science Department Dalhousie University, Halifax, N.S. B3H 3J5, Canada

1. Introduction

Consider the two term iteration defined by

(1.1)
$$a_{n+1} := \frac{a_n + 2b_n}{3}, \quad a_0 := a_n$$

 and

(1.2)
$$b_{n+1} := \sqrt[3]{b_n \left(\frac{a_n^2 + a_n b_n + b_n^2}{3}\right)}, \quad b_0 := b.$$

Then since

(1.3)
$$a_{n+1}^3 - b_{n+1}^3 = \frac{(a_n - b_n)^3}{27},$$

it follows that, for $a, b \in (0, \infty)$, and for $n \ge 1$,

$$|a_{n+1} - b_{n+1}| \le \frac{|a_n - b_n|}{27}$$

 and

(1.4)
$$F(a,b) := \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$$

is well defined, and that on compact subsets of $(0,\infty)$ the convergence is cubic. It is also easy to see that F(1,z) is analytic in some complex neighbourhood of 1. All of this is a straightforward exercise. What is less predictable is that we can identify the limit function explicitly, and that it is a non-algebraic hypergeometric function. Thus, it is one of a very few such examples; and it is certainly the simplest cubic example we know. The most familiar quadratic example is the arithmetic-geometric mean iteration of Gauss and Legendre. Namely the iteration

$$a_{n+1} := \frac{a_n + b_n}{2}, \qquad a_0 := a_n$$

 $b_{n+1} := \sqrt{a_n b_n}, \qquad b_0 := x_n$

where, for 0 < x < 1 a := 1

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \frac{1}{{}_2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; 1 - x^2\right)}$$

For a discussion of this and a few other examples see [2] and [3].

2. The main theorem

The point of this note is to provide a self-contained proof of the closed form of the limit of (1.1) and (1.2). This is the content of the next theorem.

Theorem 1. Let 0 < x < 1. Let

$$a_{n+1} := \frac{a_n + 2b_n}{3} \qquad a_0 := 1$$

$$b_{n+1} := \sqrt[3]{\frac{b_n(a_n^2 + a_n b_n + b_n^2)}{3}} \qquad b_0 := x.$$

Then the common limit, F(1, x), is

$$\frac{1}{F(1,x)} = \sum_{n=0}^{\infty} \frac{(3n)!}{(n!)^3 \, 3^{3n}} \left(1 - x^3\right)^n = {}_2F_1\left(\frac{1}{3}, \frac{2}{3}; 1; 1 - x^3\right).$$

Proof. The limit function F(a, b) must satisfy

(2.1)
$$F(a_0, b_0) = F(a_1, b_1) = \cdots$$

and since the iteration is positively homogeneous so is F. In particular

(2.2)
$$F(a_0, b_0) = F(a_1, b_1) = F\left(\frac{a_0 + 2b_0}{3}, \sqrt[3]{\frac{b_0(a_0^2 + a_0b_0 + b_0^2)}{3}}\right)$$

or

(2.3)
$$F(1,x) = F\left(\frac{1+2x}{3}, \sqrt[3]{\frac{x(1+x+x^2)}{3}}\right)$$
$$= \frac{1+2x}{3}F\left(1, \sqrt[3]{\frac{9x(1+x+x^2)}{(1+2x)^3}}\right).$$

A Remarkable Cubic Mean Iteration

If we set $H(x) := \sqrt{x(1-x)}/F(1,(1-x)^{\frac{1}{3}})$ then the functional equation (2.3) becomes

(2.4)
$$H(x) = \sqrt{\frac{3}{t'(x)}} H(t(x)),$$

where

(2.5)
$$t(x) := 1 - \frac{9x^*(1+x^*+x^{*2})}{(1+2x^*)^3}, \qquad x^* := (1-x)^{\frac{1}{3}}.$$

Furthermore $\sqrt{x}H(x)$ is analytic at 0. The point of the proof is to show that

(2.6)
$$G(x) := \sqrt{x(1-x)} {}_{2}F_{1}\left(\frac{1}{3}, \frac{2}{3}; 1; x\right)$$

also satisfies the functional equation (2.4). From this it is easy to deduce that G(x) = H(x); as follows from the functional equation for H/G, and the value at x = 1. The (hypergeometric) differential equation satisfied by G is

(2.7)
$$a(x) := \frac{G''(x)}{G(x)} = \left(\frac{-8x^2 + 8x - 9}{36x^2(1-x)^2}\right).$$

Now it is a calculation (for details see [2]) that

(2.8)
$$G^*(x) := \sqrt{\frac{3}{t'(x)}} G(t(x))$$

also satisfies (2.7) exactly when

(2.9)
$$a(x) = (t'(x))^2 a(t(x)) - \frac{1}{2} \left[\frac{t'''(x)}{t(x)} - \frac{3}{2} \left(\frac{t''(x)}{t'(x)} \right)^2 \right].$$

It is now another calculation, albeit a fairly tedious one, that a and t defined by (2.7) and (2.5) satisfy (2.9). We have now deduced that $G^*(x)$ and G(x) both satisfy (2.7). Furthermore, since the roots of the indicial equation of (2.7) are (1/2, 1/2) there is a fundamental logarithmic solution. Since both G^* and G are asymptotic to \sqrt{x} at 0, they are in fact equal. Thus (2.8) shows that G satisfies (2.4). This finishes the proof.

As a consequence we derive the following particularly beautiful cubic hypergeometric transformation.

Corollary 1. For $x \in (0, 1)$

$$_{2}F_{1}\left(\frac{1}{3},\frac{2}{3};1;1-x^{3}\right)=\frac{3}{1+2x} _{2}F_{1}\left(\frac{1}{3};\frac{2}{3};1,\left(\frac{1-x}{1+2x}\right)^{3}\right).$$

Proof. This is just a rewriting of the functional equation (2.3).

The above verification entirely obscures our discovery of Theorem 1. This arose from an examination of some quadratic modular equations of Ramanujan [1, Chapter 21]. Notably, Ramanujan observed that,

(2.10)
$$(1-u^3)(1-v^3) = (1-uv)^3$$

is a quadratic modular equation, for $_2F_1(\frac{1}{3},\frac{2}{3};1;\cdot)$. We then observed, with the aid of considerable symbolic computation, that if

(2.11)
$$L(q) := \sum_{-\infty}^{\infty} q^{m^2 + mn + n^2}$$

 and

(2.12)
$$R(q) := \frac{3L(q^3)}{2L(q)} - \frac{1}{2}$$

then

$$u := u(q) := R(q)$$
 and $v := v(q) := R(q^2)$

solve (2.10) parametrically. From (2.12) it is natural to examine the cubic modular equation for R. This leads to the following result.

Theorem 2. Let

$$L(q) := \sum_{-\infty}^{\infty} q^{m^2 + mn + n^2}$$

and

$$M(q):=\frac{3L(q^3)-L(q)}{2}$$

Then, L and M parameterize the mean iteration of (1.1) and (1.2) in the sense that if a := L(q) and b := M(q), then

$$L(q^3) := \frac{a+2b}{3}$$

and

$$M(q^3) = \sqrt[3]{\frac{b(a^2 + ba + b^2)}{3}}$$

and the limit function F (of Theorem 1) satisfies

$$F\left(1, \frac{M(q)}{L(q)}\right) = \frac{1}{L(q)}$$
.

The derivation of this, which requires some modular function theory, will be discussed elsewhere [3].

References

- [1] B.C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag, New York, 1989.
- [2] J.M. Borwein and P.B. Borwein, Pi and the AGM A Study in Analytic Number Theory and Computational Complexity, Wiley N.Y., New York, 1987.
- [3] J.M. Borwein and P.B. Borwein, A Cubic Counterpart of Jacobi's Identity and the AGM, Trans. A.M.S., to appear.

Received: October 8, 1989