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6.
1

1 − x = ∑
n=0

∞
xn  for  x < 1,  so   

1
1 − x2 = ∑

n=0

∞
(x2)n = ∑

n=0

∞
x2n  for  x < 1.

Multiplying by  x2,   
x2

1 − x2 = ∑
n=0

∞
x2n+2 = ∑

n=1

∞
x2n  for  x < 1.

Adding,  f(x) = 1 + x2

1 − x2 = ∑
n=0

∞
x2n + ∑

n=1

∞
x2n = 1 + ∑

n=1

∞
2x2n  for  x < 1.

10. f(x) = x
x2 − 3 x + 2

= − 1
x − 1 + 2

x − 2 = 1
1 − x − 1

1 −
x
2

= ∑
n=0

∞
xn − ∑

n=0

∞ ( )x
2

n
 = ∑

n=1

∞

 


 
1 − 1

2n xn

for  x < 1.  (The  n = 0  terms in the two series cancel.)

The series expansion for   
1

1 − x   is valid for  x < 1  and the series expansion for
1

1 −
x
2

   is valid for  x < 2.  The common portion of these two intervals satisfies  x < 1.

14.
1

1 − x = ∑
n=0

∞
xn  for  x < 1,  so   

1
1 + x = 1

1 − (− x) = ∑
n=0

∞
(− x)n = ∑

n=0

∞
(− 1)nxn  for  x < 1.

Integrating,  ln(1 + x) = ∑
n=0

∞ (− 1)n

n + 1 xn+1  for  x < 1.

Multiplying by  x,  f(x) = x ln(1 + x) = ∑
n=0

∞ (− 1)n

n + 1 xn+2 = ∑
n=2

∞ (− 1)n

n − 1 xn  for  x < 1.

In fact, this series converges (conditionally) at  x = 1,  representing  ln 2  correctly.
It diverges however at  x = − 1,  and of course there is no  ln 0  for it to try to represent!

20. f(x) = 1
x2 + 25

= 1
25 ·

1

1 − ( )−
x2

25

= 1
25 ∑

n=0

∞

 


 
− x2

25

n
 = ∑

n=0

∞ (− 1)n

25n + 1 x2n  for  − <x2

25
1,

or in other words  for  x < 5.  Notice that  s0(x) = 1
25 ,  s1(x) = 1

25 − 1
625 x2,

s2(x) = 1
25 − 1

625 x2 + 1
15625 x4,  s3(x) = 1

25 − 1
625 x2 + 1

15625 x4 − 1
390625 x6,  and

s4(x) = 1
25 − 1

625 x2 + 1
15625 x4 − 1

390625 x6 + 1
9765625 x8.  Here  sn(x) = T2n(x).

On the next page is a Maple plot of  y = f(x),  y = s0(x),  y = s1(x),  y = s2(x),  y = s3(x),
and  y = s4(x),  all on the interval  − 6 ≤ x ≤ 6,  but with visible  y  values limited to
− 0.01 ≤ y ≤ 0.04.  In the open interval  −5 < x < 5,  the higher-order Taylor polynomials
do a better job of approximating the function  f(x),  but at  x = ± 5  the error  Rk(±5)  is
always exactly  0.02  in absolute value, and for  x > 5  the higher-order Taylor
polynomials do a worse job of approximating  f(x).
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For Exercise 20

24.
1

1 + x2 = 1
1 − (− x2)

= ∑
n=0

∞
(− x2)n = ∑

n=0

∞
(− 1)nx2n  for  x < 1.

Integrating,  tan−1 (x) = ∑
n=0

∞ (− 1)n

2 n + 1 x2n+1  for  x < 1.

Replacing  x  by  x2,  tan−1 (x2) = ∑
n=0

∞ (− 1)n

2 n + 1 (x2)2n+1 = ∑
n=0

∞ (− 1)n

2 n + 1 x4n+2  for  x < 1.

Integrating,  ∫ tan−1 (x2) dx = ∑
n=0

∞ (− 1)n

(2n + 1)(4n + 3) x4n+3  for  x < 1.

As a matter of fact, the series given here for  tan−1 (x),  tan−1 (x2),  and  ∫ tan−1 (x2) dx
all converge at the endpoints  x = ± 1  also, and correctly represent the functions there.
In particular, the one for  tan−1 (x)  can be used to approximate  π = −4 11tan ,  although
the convergence is very slow.

26. By Exercise 24,  ∫ 0

0.5
tan−1 (x2) dx = ∑

n=0

∞ (− 1)n

(2n + 1)(4n + 3) ( )1
2

4n+3
.

This is an alternating series. Successive partial sums are
s0(0.5) ≈ 0.041666667,  s1(0.5) ≈ 0.041294643,  s2(0.5) ≈ 0.041303521,
s3(0.5) ≈ 0.041303230,  and  s4(0.5) ≈ 0.041303241.

To six decimal places,  ∫ 0

0.5
tan−1 (x2) dx ≈ 0.041303.

Given the command

> evalf(int(arctan(x^2),x=0..0.5));

Maple provides the response
0.0413032408.
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2. f(x) = sin(2x)  so  f(2n)(x) = (− 1)n22n sin(2x)  and  f(2n+1)(x) = (− 1)n22n+1 cos(2x).

f(2n)(0) = 0,  f(2n+1)(0) = (−1)n22n+1,  and the Maclaurin series for  f(x) is  ∑
n=0

∞ ( )
( )!

.−
+

+
+1 2

2 1

2 1
2 1

n n

n
x n

If  u xn n
n n

n
= −

+

+
+( )

( )!
1 2
2 1

2 1
2 1  then  u

u
x

n n
n

n

+ = →
+ +

1
24

2 2 2 3
0

( )( )
  as  n → ∞  for all real  x.

The radius of convergence is  R = ∞.

4. f x x
x x

( ) = = − +
− −1

1
1

1   so  f xn n
x n

( )( ) !
( )

=
− +1 1

  and  f nn( )( ) !0 =   for  n ≥ 1,  but  f( )( ) .0 0 0=

The Maclaurin series for  f(x)  is thus  ∑
n=1

∞
xn.

If  un = xn  then  u
u
n

n
x+ =1   so the series has radius of convergence  R = 1.

8. f x x( ) cos=   and  a = − π 4.
Since  f x xn( )( ) cos ,4 =   f x xn( )( ) sin ,4 1+ = −   f x xn( )( ) cos ,4 2+ = −   and  f x xn( )( ) sin ,4 3+ =

we have  f an( )( ) ,4 1

2
=   f an( )( ) ,4 1 1

2
+ =   f an( )( ) ,4 2 1

2
+ = −   and  f an( )( ) .4 3 1

2
+ = −

The Taylor series for  f(x)  about  − π 4  is  ∑
n=0

∞ ( )
( )! ( )!

.− +( ) +( )
+















π π

+
+

1

2 2 2 1
4 4

2 2 1
n

n n
x

n

x

n

If  u xn
nf

n

n
= +− π π





( )( )
!

4
4

  then  u
u

x

n
n

n

+ = →
+

+

π
1 4

1
0  so the series has radius of convergence

R = ∞.

20. cos x  has Maclaurin series  ∑
n=0

∞ (− 1)n

(2n)! x2n.

Hence  cos(x3)  has Maclaurin series  ∑
n=0

∞ (− 1)n

(2n)! (x3)2n = ∑
n=0

∞ (− 1)n

(2n)! x6n.

Since the series for  cos x  converges absolutely for all real  x,  so does the one for
cos(x3),  and its radius of convergence is  R = ∞.
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24. cos x  has Maclaurin series  ∑
n=0

∞ (− 1)n

(2n)! x2n.

Hence  cos(2x)  has Maclaurin series  ∑
n=0

∞ (− 1)n

(2n)! (2x)2n = ∑
n=0

∞ (− 1)n22n

(2n)! x2n  and

cos2 x = 1
2 [1 + cos(2x)]  has Maclaurin series  1 + ∑

n=1

∞ (− 1)n22n− 1

(2n)! x2n.

All these series have  R = ∞.

26. cos x  has Maclaurin series  ∑
n=0

∞ (− 1)n

(2n)! x2n  so  1 − cos x  has Maclaurin series

∑
n=1

∞ (− 1)n − 1

(2n)! x2n = ∑
n=0

∞ (− 1)n

(2n + 2)! x2n+2 = x2 ∑
n=0

∞ (− 1)n

(2n + 2)! x2n.

If  f(x) = 1 − cos x
x2    for  x ≠ 0  and  f(0) = 1

2   then  f(x)  has Maclaurin series  ∑
n=0

∞ (− 1)n

(2n + 2)! x2n.

32. sinx  has Maclaurin series  ∑
n=0

∞ (− 1)n

(2n + 1)! x2n+1,  an alternating series.

3° = π/60 radians, so to have  5  decimal place accuracy we can calculate

∑
n=0

N (− 1)n

(2n + 1)! ( )π
60

2n+1
  where   

1
(2N + 3)! ( )π

60
2n+3

 < 0.000005.

Since   
1
3! ( )π

60
3
 > 0.00002  and   

1
5! ( )π

60
5
 < 0.000000004,  using  N = 1  we conclude

that  0.052335952 < sin 3° < 0.052335957.

My TI–36 calculator gives  sin 3° ≈ 0.052335956243.
Maple gives  sin3° ≈ 0.0523359562429438327….

36. ex  has Maclaurin series  ∑
n=0

∞ 1
n! xn  with radius of convergence  R = ∞.

So  ex3  has Maclaurin series  ∑
n=0

∞ 1
n! (x3)n = ∑

n=0

∞ 1
n! x3n  also with  R = ∞.

Thus  ∫ex3 dx  has Maclaurin series  ∑
n=0

∞ 1
n!(3n + 1) x3n+1 + C,  again with  R = ∞.

42. cos x  has Maclaurin series  ∑
n=0

∞ (− 1)n

(2n)! x2n = 1 − x2

2 + x4

24 − x6

720 + …  so

sec x  has Maclaurin series  1 + 1
2 x2 + 5

24 x4 + … ,  using long division.


