MATHEMATICS 152 98-2 Solutions for Assignment 13

Page 632

6.
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
 for $|x| < 1$, so $\frac{1}{1-x^2} = \sum_{n=0}^{\infty} (x^2)^n = \sum_{n=0}^{\infty} x^{2n}$ for $|x| < 1$
Multiplying by x^2 , $\frac{x^2}{1-x^2} = \sum_{n=0}^{\infty} x^{2n+2} = \sum_{n=1}^{\infty} x^{2n}$ for $|x| < 1$.
Adding, $f(x) = \frac{1+x^2}{1-x^2} = \sum_{n=0}^{\infty} x^{2n} + \sum_{n=1}^{\infty} x^{2n} = 1 + \sum_{n=1}^{\infty} 2x^{2n}$ for $|x| < 1$.

10.
$$f(x) = \frac{x}{x^2 - 3x + 2} = \frac{-1}{x - 1} + \frac{2}{x - 2} = \frac{1}{1 - x} - \frac{1}{1 - \frac{x}{2}} = \sum_{n=0}^{\infty} x^n - \sum_{n=0}^{\infty} \left(\frac{x}{2}\right)^n = \sum_{n=1}^{\infty} \left(1 - \frac{1}{2^n}\right) x^n$$

for |x| < 1. (The n = 0 terms in the two series cancel.) The series expansion for $\frac{1}{1-x}$ is valid for |x| < 1 and the series expansion for $\frac{1}{1-\frac{x}{2}}$ is valid for |x| < 2. The common portion of these two intervals satisfies |x| < 1.

14.
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
 for $|x| < 1$, so $\frac{1}{1+x} = \frac{1}{1-(-x)} = \sum_{n=0}^{\infty} (-x)^n = \sum_{n=0}^{\infty} (-1)^n x^n$ for $|x| < 1$.
Integrating, $\ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^{n+1}$ for $|x| < 1$.

Multiplying by x, $f(x) = x \ln(1 + x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^{n+2} = \sum_{n=2}^{\infty} \frac{(-1)^n}{n-1} x^n$ for |x| < 1. In fact, this series converges (conditionally) at x = 1, representing ln2 correctly. It diverges however at x = -1, and of course there is no ln0 for it to try to represent!

20.
$$f(x) = \frac{1}{x^2 + 25} = \frac{1}{25} \cdot \frac{1}{1 - \left(-\frac{x^2}{25}\right)} = \frac{1}{25} \sum_{n=0}^{\infty} \left(-\frac{x^2}{25}\right)^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{25^{n+1}} x^{2n} \text{ for } \left|-\frac{x^2}{25}\right| < 1,$$

or in other words for |x| < 5. Notice that $s_0(x) = \frac{1}{25}$, $s_1(x) = \frac{1}{25} - \frac{1}{625}x^2$, $s_2(x) = \frac{1}{25} - \frac{1}{625}x^2 + \frac{1}{15625}x^4$, $s_3(x) = \frac{1}{25} - \frac{1}{625}x^2 + \frac{1}{15625}x^4 - \frac{1}{390625}x^6$, and $s_4(x) = \frac{1}{25} - \frac{1}{625}x^2 + \frac{1}{15625}x^4 - \frac{1}{390625}x^6 + \frac{1}{9765625}x^8$. Here $s_n(x) = T_{2n}(x)$.

On the next page is a *Maple* plot of y = f(x), $y = s_0(x)$, $y = s_1(x)$, $y = s_2(x)$, $y = s_3(x)$, and $y = s_4(x)$, all on the interval $-6 \le x \le 6$, but with visible y values limited to $-0.01 \le y \le 0.04$. In the open interval -5 < x < 5, the higher-order Taylor polynomials do a better job of approximating the function f(x), but at $x = \pm 5$ the error $R_k(\pm 5)$ is always exactly 0.02 in absolute value, and for |x| > 5 the higher-order Taylor polynomials do a worse job of approximating f(x).

For Exercise 20

24.
$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} (-1)^n x^{2n} \text{ for } |x| < 1.$$

Integrating, $\tan^{-1}(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$ for $|x| < 1.$
Replacing x by x², $\tan^{-1}(x^2) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} (x^2)^{2n+1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{4n+2}$ for $|x| < 1.$
Integrating, $\int \tan^{-1}(x^2) dx = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)(4n+3)} x^{4n+3}$ for $|x| < 1.$
As a matter of fact, the series given here for $\tan^{-1}(x)$, $\tan^{-1}(x^2)$, and $\int \tan^{-1}(x^2) dx$ all converge at the endpoints $x = \pm 1$ also, and correctly represent the functions there. In particular, the one for $\tan^{-1}(x)$ can be used to approximate $\pi/4 = \tan^{-1}1$, although the convergence is very slow.

,

26. By Exercise 24,
$$\int_{0}^{0.5} \tan^{-1} (x^2) dx = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)(4n+3)} \left(\frac{1}{2}\right)^{4n+3}.$$
This is an alternating series. Successive partial sums are $s_0(0.5) \approx 0.041666667$, $s_1(0.5) \approx 0.041294643$, $s_2(0.5) \approx 0.041303251$
 $s_3(0.5) \approx 0.041303230$, and $s_4(0.5) \approx 0.041303241$.
To six decimal places,
$$\int_{0}^{0.5} \tan^{-1} (x^2) dx \approx 0.041303.$$

Given the command

> evalf(int(arctan(x^2),x=0..0.5));

Maple provides the response 0.0413032408.

Page 643

2.
$$f(x) = \sin(2x)$$
 so $f^{(2n)}(x) = (-1)^n 2^{2n} \sin(2x)$ and $f^{(2n+1)}(x) = (-1)^n 2^{2n+1} \cos(2x)$.
 $f^{(2n)}(0) = 0$, $f^{(2n+1)}(0) = (-1)^n 2^{2n+1}$, and the Maclaurin series for $f(x)$ is $\sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n+1}}{(2n+1)!} x^{2n+1}$.
If $u_n = \frac{(-1)^n 2^{2n+1}}{(2n+1)!} x^{2n+1}$ then $\left| \frac{u_{n+1}}{u_n} \right| = \frac{4x^2}{(2n+2)(2n+3)} \to 0$ as $n \to \infty$ for all real x .
The radius of convergence is $R = \infty$.

The facility of convergence is $R = \infty$.

4.
$$f(x) = \frac{x}{1-x} = -1 + \frac{1}{1-x}$$
 so $f^{(n)}(x) = \frac{n!}{(1-x)^{n+1}}$ and $f^{(n)}(0) = n!$ for $n \ge 1$, but $f^{(0)}(0) = 0$.
The Maclaurin series for $f(x)$ is thus $\sum_{n=1}^{\infty} x^n$.
If $u_n = x^n$ then $\left|\frac{u_{n+1}}{u_n}\right| = |x|$ so the series has radius of convergence $R = 1$.

8. $f(x) = \cos x$ and $a = -\pi/4$. Since $f^{(4n)}(x) = \cos x$, $f^{(4n+1)}(x) = -\sin x$, $f^{(4n+2)}(x) = -\cos x$, and $f^{(4n+3)}(x) = \sin x$, we have $f^{(4n)}(a) = \frac{1}{\sqrt{2}}$, $f^{(4n+1)}(a) = \frac{1}{\sqrt{2}}$, $f^{(4n+2)}(a) = -\frac{1}{\sqrt{2}}$, and $f^{(4n+3)}(a) = -\frac{1}{\sqrt{2}}$. The Taylor series for f(x) about $-\pi/4$ is $\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{2}} \left(\frac{\left(x + \frac{\pi}{4}\right)^{2n}}{(2n)!} + \frac{\left(x + \frac{\pi}{4}\right)^{2n+1}}{(2n+1)!} \right)$.

If $u_n = \frac{f^{(n)}(-\pi/4)}{n!} \left(x + \frac{\pi}{4}\right)^n$ then $\left|\frac{u_{n+1}}{u_n}\right| = \frac{\left|x + \frac{\pi}{4}\right|}{n+1} \to 0$ so the series has radius of convergence $R = \infty$.

20. $\cos x$ has Maclaurin series $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$. Hence $\cos(x^3)$ has Maclaurin series $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} (x^3)^{2n} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{6n}$.

Since the series for $\cos x$ converges absolutely for all real x, so does the one for $\cos (x^3)$, and its radius of convergence is $R = \infty$.

24. $\cos x$ has Maclaurin series $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$. Hence $\cos(2x)$ has Maclaurin series $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} (2x)^{2n} = \sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n}}{(2n)!} x^{2n}$ and $\cos^2 x = \frac{1}{2} [1 + \cos(2x)]$ has Maclaurin series $1 + \sum_{n=1}^{\infty} \frac{(-1)^n 2^{2n-1}}{(2n)!} x^{2n}$. All these series have $R = \infty$.

26. $\cos x$ has Maclaurin series $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$ so $1 - \cos x$ has Maclaurin series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n)!} x^{2n} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+2)!} x^{2n+2} = x^2 \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+2)!} x^{2n}.$ If $f(x) = \frac{1 - \cos x}{x^2}$ for $x \neq 0$ and $f(0) = \frac{1}{2}$ then f(x) has Maclaurin series $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+2)!} x^{2n}.$

32. sinx has Maclaurin series $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$, an alternating series. $3^{\circ} = \pi/60$ radians, so to have 5 decimal place accuracy we can calculate $\sum_{n=0}^{N} \frac{(-1)^n}{(2n+1)!} \left(\frac{\pi}{60}\right)^{2n+1}$ where $\frac{1}{(2N+3)!} \left(\frac{\pi}{60}\right)^{2n+3} < 0.000005$. Since $\frac{1}{3!} \left(\frac{\pi}{60}\right)^3 > 0.00002$ and $\frac{1}{5!} \left(\frac{\pi}{60}\right)^5 < 0.000000004$, using N = 1 we conclude that $0.052335952 < \sin 3^{\circ} < 0.052335957$. My TI-36 calculator gives $\sin 3^{\circ} \approx 0.052335956243$. *Maple* gives $\sin 3^{\circ} \approx 0.0523359562429438327...$

36. e^x has Maclaurin series $\sum_{n=0}^{\infty} \frac{1}{n!} x^n$ with radius of convergence $R = \infty$. So e^{x^3} has Maclaurin series $\sum_{n=0}^{\infty} \frac{1}{n!} (x^3)^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^{3n}$ also with $R = \infty$. Thus $\int e^{x^3} dx$ has Maclaurin series $\sum_{n=0}^{\infty} \frac{1}{n!(3n+1)} x^{3n+1} + C$, again with $R = \infty$.

42. $\cos x$ has Maclaurin series $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + \cdots$ so sec x has Maclaurin series $1 + \frac{1}{2}x^2 + \frac{5}{24}x^4 + \cdots$, using long division.