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12. ∫ −∞
+∞

x2e−x3 dx = ∫ −∞
0

x2e−x3 dx + ∫ 0

+∞
x2e−x3 dx =

= lim
s → −∞ ∫ s

0
x2e−x3 dx + lim
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3 [e−t3 − 1]  = +∞

because of the first term; the second term is just   
1
3 .

20. ∫ 0
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et + 1  = 1,  by L’Hospital’s Rule.

26. ∫ 1

+∞ ln x
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4 ,  by L’Hospital’s Rule.

32. ∫ 0

2 1
4 x − 5 dx = ∫ 0

5/4 1
4 x − 5 dx + ∫ 5/4

2 1
4 x − 5 dx.

∫ 0

5/4 1
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Likewise  ∫ 5/4

2 1
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t → (5/4)+ ∫ t
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1
4

4 5
2

ln .x
t

− = +∞


But that doesn’t mean that  ∫ 0

2 1
4 x − 5 dx = 0;  you can’t do arithmetic with  ∞  that way.



2

38. ∫ 0

4 dx
x2 + x − 6

= ∫ 0
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= + =   is tame that doesn’t help; all three integrals

would have to converge to make our original improper integral  ∫ 0

4 dx
x2 + x − 6

   exist.

42. ∫ 0

1 lnx

x
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s →0+ ∫ s

1 lnx

x
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s →0+
2 2

1
x x
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−0.5s−3/2  = lim
s →0+

(− 4 + 4s1/2) = −4,

by L’Hospital’s Rule.

48. S = {(x, y) : 3 < x ≤ 7,  0 ≤ y ≤ (x − 3)−1/2 }.

Area = ∫ 3

7 1
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−
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See graph below.
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50. Since  1 1 0+ ≥ ≥x

x x
  and  ∫ 1

+∞ 1

x
dx = ∫ 1

+∞ 1
1 2x

dx  is known to diverge to  +∞

because   
1
2 ≤ 1,  ∫ 1

+∞ 1+ x

x
dx  also diverges to  +∞.
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13x
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+
  also converges.
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58. If  p ≠ 1,  ∫ e

+∞ 1
x(ln x)p dx = lim

t →+∞ ∫ e

t 1
x(ln x)p dx = lim

t →+∞
1

1
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1

(ln t)p −1 − 1  = 
 î

 1

p − 1 if p > 1

+ ∞ if p < 1
.

If  p = 1,  ∫ e

+∞ 1
x(ln x)p dx = ∫ e

+∞ 1
x ln x dx = lim

t →+∞ ∫ e

t 1
x ln x dx = lim

t →+∞
ln(ln x)]e

t
 =

= lim
t →+∞

ln(ln t) = +∞.

So the integral converges to   
1

p − 1   just when  p > 1,  and diverges to  + ∞  otherwise.
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2. If   
dy
dx = x + sin x

3 y2    then  ∫ 3y2 dy = ∫ (x + sin x) dx.

Integrating,  y3 = 1
2 x2 − cos x + C,  and thus  y = ( )1

2 x2 − cos x + C
1/3

.

Conversely, substitution shows that  y = ( )1
2 x2 − cos x + C

1/3
  will solve   

dy
dx = x + sin x

3 y2 .

4. If  y' = xy  then  ∫ y−1 dy = ∫x dx  if  y ≠ 0.  (y = 0  is a solution too.)

Integrating,  ln ,y x C= +1
2

2
1   so  y C ex= 2 22 ,  where  0 < C2 = eC1.

This is equivalent to  y C ex= 3 22 ,  where  C C3 2= ,  so that  C3 ≠ 0.

If we allow  C3 = 0,  we capture the singular solution  y = 0  as well.

Conversely, substitution shows that  y C ex= 3 22   will solve  y' = xy.

8. If   
dx
dt = 1 + t − x − tx  then  ∫ dx

1 − x = ∫ (1 + t)dt  if  x ≠ 1.  (x = 1  is a solution too.)

Integrating,  − − = + +ln ,x t t C1 1
2

2
1   so  x C e t t− = − +1 2 22( ),  where  0 < C2 = e−C1.

So  x C e t t= + − +1 3 22( ),  where  C C3 2= ,  so that  C3 ≠ 0.

If we allow  C3 = 0,  we capture the singular solution  x = 1  too.

Conversely, substitution shows that  x C e t t= + − +1 3 22( )  will solve   
dx
dt = 1 + t − x − tx.

14. If   
dy
dt = t y + 3 t

t2 + 1
   and  y(2) = 2  then  ∫ dy

y + 3 = ∫ t dt
t2 + 1

   if  y ≠ − 3.

Note  y = −3  is a solution of the differential equation   
dy
dt = t y + 3 t

t2 + 1
   too, but it does not

pass through  (2, 2).
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Integrating,  ln ln .y t C+ = + +( )3 11
2

2

Putting  t = 2  and  y = 2,  ln5 = 1
2 ln5 + C  and thus  C = 1

2 ln5.

Thus  ln(y + 3) = 1
2 ln(5(t2 + 1)),  so  y t+ = +3 5 12( ) ,  and  y t= − + +3 5 12( ) .

Conversely, substitution shows that  y t= − + +3 5 12( )  will solve   
dy
dt = t y + 3 t

t2 + 1

and satisfies the condition  y(2) = 2.

30. (a) Let  y  be the mass (measured in kg) of the salt in the tank  t  minutes after
the two brine sources begin to fill the tank. Then  y = 0  when  t = 0.  The first source
adds salt at a rate of  0.05 kg/l × 5 l/min = 0.25 kg/min  and the second source adds salt
at a rate of  0.04 kg/l × 10 l/min = 0.4 kg/min,  so the rate at which new salt is added is
0.65 kg/min.  The amount of solution in the tank is always  1000 l  since the outflow rate,
15 l/min,  equals the sum of the two inflow rates,  5 l/min + 10 l/min.  The rate at which

salt is lost through the outflow is   
y

1000 kg/l × 15 l/min = 3 y
200 kg/min  and the net rate at

which salt accumulates in the tank is  ( )0.65 − 3 y
200  kg/min,  or   

130 − 3 y
200   kg/min.

This gives us the differential equation   
dy
dt = 130 − 3 y

200    with initial condition  y(0) = 0.

Thus  ∫ dy
130 − 3 y = ∫ dt

200 ,  if  y ≠ 130
3 .  Note  y = 130

3    is a solution of the differential

equation   
dy
dt = 130 − 3 y

200    too, but it does not satisfy the initial condition  y(0) = 0.

Integrating,  − − = +1
3 200

130 3ln .y Ct

Putting  t = 0  and  y = 0,  − 1
3 ln130 = 0 + C.  Consequently  C = − 1

3 ln130.

Thus  ln
130 − 3 y

130 = − 3 t
200 ,  so  130 − 3y = 130e−3t/200,  and  y = 130

3 [1 − e−3t/200] kg.

(b) When  t = 60 min,  y = 130
3 (1 − e−0.9) ≈ 25.715 kg.

Notice that  lim
t →+∞

y = 130
3 kg  and the concentration after a long time will be

nearly equal to the weighted average  ( )5
15 × 0.05 + 10

15 × 0.04  kg/l  of the concentrations

of salt in the two intakes. Put another way, if you wait long enough nearly all the original
pure water will be gone.

42. If  m(t)  is the mass of the raindrop at time  t,  we are told that   
dm
dt = km  for some

positive constant  k.  Newton’s second law then requires that the force on the raindrop

due to gravity,  gm,  and the rate of change of momentum,   
d
dt (mv),  must be equal, so

gm = d
dt (mv) = v

dm
dt + m

dv
dt = vkm + m

dv
dt = m( )vk + dv

dt .  We assume  m(t) ≠ 0.  So

g = vk + dv
dt    and thus  ∫ dv

g − kv = ∫dt,  if  v ≠ g
k .  Note  v(t) = g

k   is a solution too.
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Integrating,  − − = +1
1k

g kv t Cln ,  so  g kv C e kt− = −2   where  C e kC2 1= −   is positive.

Thus  v(t) = 1
k [g + C3e−kt]  where  C C3 2 0= ≠ .

If we allow  C3 = 0,  we capture the singular solution  v(t) = g
k   too.

Conversely, substitution shows that  v(t) = 1
k [g + C3e−kt]  will solve  g = vk + dv

dt .

Since  k > 0,  lim
t →+∞

v(t) = g
k .  The terminal velocity is   

g
k .

Now what keeps the raindrop mass from approaching  +∞?
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4. We can solve  12xy = 4y4 + 3  for  x = 1
3 y3 + 1

4 y−1  and observe that this curve

does pass through  A(7/12, 1)  and  B(67/24, 2).  Then  dx
dy

y y= − −2 21
4

  so

1 1 1
2

2 2
2

4 4 4 4 2 21
4

1
2

1
16

1
2

1
16

1
4

+ = + − = + − + = + + = +

















− − − −dx
dy

yy y y y y y y .

L = ∫ 1

2( )y2 + 1
4 y−2 dy = ( )1

3 y3 − 1
4y−1 ]1

2
 = 59

24 .

6. If  y x
x

= +
3

6
1

2
,  1 ≤ x ≤ 2,  then  dy
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x

x
= −

2

22
1

2
  and  1

2 2

22
1

2
+ = +





dy
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x
x

.

L = ∫ 1
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x

x
x
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10. If  y = ln(sinx),   
π
6 ≤ x ≤ π

3   then   
dy
dx = cot x.

L = ∫π/6

π/3
1 2+ =cot x dx ∫ π/6

π/3
csc ln csc cot ln .xdx x x= − + = +






π

π

6

3 2

3
1

Alternatively  x = sin−1(ey)  and  dx
dy

e

e

y

y
=

−1 2
.

L = ∫ ln1 2

ln 3 2

 


 
1 + e2y

1 − e2y

1/2
dy = ∫ ln1 2

ln 3 2 e

e

y

y
dy e ey y

−

− − ( )


= − + − =− −
( )

ln ( )
ln

ln

2 1
2

12

3 2
1

= +





ln .2

3
1

16. The curve  y2 = 4x,  0 ≤ y ≤ 2  runs between  (0, 0)  and  (1, 2).

Writing  y x= 2 ,   
dy
dx = x−1/2  and  L = ∫ 0

1
1 1 2 2+ −( ) .x dx

Letting  u x= ,  x = u2  and  dx = 2u du;  u = 0  when  x = 0  and  u = 1  when  x = 1.
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So  L = ∫ 0

1
2 1 1 1 2 1 22 2 2

0

1
u du u u u u+ = + + + +( )( )] = + +( )ln ln .

Alternatively  x = 1
4 y2,   

dx
dy = y

2 ,  and  L = ∫ 0

2
1

2
1
2

2
+ =





y dy ∫ 0

2
4 2+ =y dy

= + + + + = + +( )







 ( )y y y y

4
4 4 2 1 22 2

0

2
ln ln .

20. y a xb
a

= −2 2   and  dy
dx

b
a

x

a x
= −

−2 2
  on the upper right quarter of the ellipse.

Here  0 ≤ x ≤ a.  Multiplying the length of this quarter of the ellipse by  4,

L = 4∫ 0

a
1

2 2

2 12
4+ − =

−


















b
a

x

a x a
dx ∫ 0

a

 


 
(b2 − a2)x2 + a4

a2 − x2

1/2
dx.

(In general, such integrals cannot be evaluated in closed form in terms of elementary
functions of  a  and  b,  unless  a = b  and the ellipse is really a circle.)

It is just as bad if one solves for  x  in terms of  y;  the letters  a  and  b  trade places.

32. (a) If  y = acosh
x
a ,  − b ≤ x ≤ b,  then   

dy
dx = sinh

x
a   and  1

2
+ =





dy
dx

x
a

cosh .

L = ∫ −b

b
cosh

x
a dx = a sinh

x
a ]−b

b
 = 2a sinh

b
a .

(b) If the poles are  50 ft  apart and the wire length is  56 ft  then  b = 25  and

56 = 2a sinh
25
a ,  so we need to solve  sinh

25
a = 28

a .  This requires a numerical
approximation technique such as Newton’s method. To simplify the setup, let

t = 25
a    so that the equation to be solved becomes  sinh t = 1.12t.

Since  cosh t,  the derivative of  sinh t,  has smallest value,  1,  at  t = 0  and since  cosh t
becomes steadily larger than  1  as we retreat from  t = 0  in either direction, it is clear
that the graphs of  y = sinh t  and  y = 1.12t  will cross at three places in the ty-plane: the
origin, and two more points symmetrical with respect to the origin. Probing with my
TI–36 calculator,  sinh1 ≈ 1.175201194 > 1.12;  the positive root is less than  1.
sinh 0.5 ≈ 0.521095305 < 0.56;  the positive root is more than  0.5.
Let  F(t) = sinh t − 1.12t.  Then  F' (t) = cosh t − 1.12.  The recursion relationship for

Newton’s method is  tn+1 = tn −
F(tn)
F' (tn)

= tn −
sinh tn − 1.12tn
cosh tn − 1.12 =

tn cosh tn − sinh tn
cosh tn − 1.12 .

I chose as first guess  t1 = 0.8,  and using the TI–36 found  t4  and  t5  agreeing at
0.833915825.  Checking,  sinh 0.833915825 − 1.12·0.833915825 ≈ 1.09·10−10.

The corresponding value for  a = 25
t    is  29.97904495.

The lowest point on the wire is about  30 ft  above the ground.


