MATHEMATICS 152 98-2 Solutions for Assignment 11

Page 603

2. $\sum_{n=1}^{\infty} \left[\frac{2}{n\sqrt{n}} + \frac{3}{n^3} \right]$ is the sum of constant multiples of two p-series, with p = 1.5 and p = 3, and therefore converges.

4. $\sum_{n=1}^{\infty} n^{-0.99}$ is a p-series with p = 0.99 and therefore diverges.

8.
$$\int_{2}^{\infty} \frac{dx}{x^{2}-1} = \lim_{t \to \infty} \int_{2}^{t} \frac{1}{2} \left(\frac{1}{x-1} - \frac{1}{x+1} \right) dx = \lim_{t \to \infty} \frac{1}{2} \ln \frac{x-1}{x+1} \Big]_{2}^{t} =$$

$$= \lim_{t \to \infty} \frac{1}{2} \left(\ln \frac{t-1}{t+1} - \ln \frac{1}{3} \right) = \frac{1}{2} \ln 3.$$
By the integral test, the series $\sum_{n=2}^{\infty} \frac{1}{n^{2}-1}$ converges also.
Alternatively, $\frac{1}{n^{2}-1} = \frac{1}{2} \left(\frac{1}{n-1} - \frac{1}{n+1} \right)$ using partial fractions.
So the $(n-1)$ partial sum is $s_{n} = \sum_{i=2}^{n} \frac{1}{2} \left(\frac{1}{i-1} - \frac{1}{i+1} \right) = \frac{1}{2} \left(1 + \frac{1}{2} - \frac{1}{n} - \frac{1}{n+1} \right)$
Since $\lim_{n \to \infty} s_{n} = \frac{3}{4}$, the series converges to $\frac{3}{4}$.

14.
$$\int_{1}^{\infty} \frac{dx}{4x^{2}+1} = \lim_{t \to \infty} \frac{1}{2} \tan^{-1}(2x) \Big]_{1}^{t} = \lim_{t \to \infty} \frac{1}{2} [\tan^{-1}(2t) - \tan^{-1}2] = \frac{1}{2} \left(\frac{\pi}{2} - \tan^{-1}2 \right)$$
By the integral test, the series $\sum_{n=1}^{\infty} \frac{1}{4n^{2}+1}$ converges also.

18. For $x \ge 3$, $\ln x > 1$ and $\ln(\ln x) > 0$. Applying the integral test, $\int_{-3}^{\infty} \frac{dx}{x \ln x \ln(\ln x)} = \lim_{t \to \infty} \ln(\ln(\ln x)) \Big]_{-3}^{t} = \lim_{t \to \infty} \left[\ln(\ln(\ln t)) - \ln(\ln(\ln 3))\right] = +\infty,$ and therefore the series $\sum_{n=3}^{\infty} \frac{1}{n \ln n \ln(\ln n)}$ diverges to $+\infty$ also. 20. We saw in Exercise 18 that when p = 1, $\sum_{n=3}^{\infty} \frac{1}{n \ln n [\ln (\ln n)]^p}$ diverges to $+\infty$. If p > 0 and $p \neq 1$ then $\frac{1}{x \ln x [\ln (\ln x)]^p}$ is positive, continuous, and decreasing for $x \ge 3$, so we may apply the integral test. $\int_{3}^{\infty} \frac{dx}{x \ln x (\ln (\ln x))^p} = \lim_{t \to \infty} \frac{1}{1-p} (\ln (\ln x))^{1-p} \Big]_{3}^{t} = \frac{1}{1-p} \lim_{t \to \infty} [(\ln (\ln t))^{1-p} - (\ln (\ln 3))^{1-p}].$ This converges to $\frac{[\ln (\ln 3)]^{1-p}}{p-1}$ if p > 1 but diverges to $+\infty$ if $0 , so the series <math>\sum_{n=3}^{\infty} \frac{1}{n \ln n [\ln (\ln n)]^p}$ converges if p > 1 and diverges to $+\infty$ if 0 .If <math>p = 0 the series becomes $\sum_{n=3}^{\infty} \frac{1}{n \ln n}$ and if we apply the integral test we see that $\int_{3}^{\infty} \frac{dx}{x \ln x} = \lim_{t \to \infty} \ln (\ln x) \Big]_{3}^{t} = \lim_{t \to \infty} [\ln (\ln t) - \ln (\ln 3)] = +\infty$. Therefore the series diverges to $+\infty$ in this case also. If p < 0, the integrand $\frac{1}{x \ln x [\ln (\ln x))^p}$ is positive, continuous, and **eventually** decreasing (as soon as $\ln (\ln x) \cdot [\ln x + 1] + p > 0$). Applying the integral test (but not starting at 3; starting wherever we must so that the integrand will be decreasing) we obtain the same indefinite integral $\frac{1}{1-p} [\ln (\ln x)]^{1-p}$ as before and since this diverges to $+\infty$ as $x \to +\infty$, the series diverges to $+\infty$ in this case too.

24. (a) For the series $\sum_{n=1}^{\infty} \frac{1}{n^4}$, $s_{10} = \frac{43635917056897}{40327580160000}$ exactly (I used *Maple*). To 10 significant figures, $s_{10} \approx 1.082036583$ according to *Maple*; by comparison, the entry in the ninth decimal place is 4 according to my TI–36 calculator, with agreement earlier. Asking Maple for 20 significant figures yields 1.0820365834937565468. If s is the sum of the infinite series then $s_{10} < s < s_{10} + \int_{10}^{\infty} \frac{dx}{x^4} = s_{10} + \frac{1}{3(10)^3}$ and thus $0 < s - s_{10} < \frac{1}{3000}$. (b) $s_{10} + \frac{1}{3(11)^3} = s_{10} + \int_{11}^{\infty} \frac{dx}{x^4} < s < s_{10} + \int_{10}^{\infty} \frac{dx}{x^4} = s_{10} + \frac{1}{3(10)^3}$.

To nine decimal places this says 1.082287022 < s < 1.082369917. The midpoint of this interval is 1.082328470, so $|s-1.082328470| \le .000041448$.

(c) If we want a value of n such that $0 < s - s_n < 0.00001$ then we select n so that $\int_n^\infty \frac{dx}{x^4} \le 0.00001$. This means that we want $\frac{1}{3 \cdot n^3} \le 0.00001$, or $3 \cdot n^3 \ge 10^5$. Since $3 \cdot 32^3 = 98304 < 10^5$ and $3 \cdot 33^3 = 107811 > 10^5$, we need n = 33 terms to be sure that $0 < s - s_n < 0.00001$.

2. Since
$$0 \le \frac{3}{4^n + 5} \le \frac{3}{4^n}$$
 and $\sum_{n=1}^{\infty} \frac{3}{4^n}$ is a convergent geometric series,
 $\sum_{n=1}^{\infty} \frac{3}{4^n + 5}$ converges by the comparison test.
6. Since $0 \le \frac{\sin^2 n}{n\sqrt{n}} \le \frac{1}{n^{1.5}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{1.5}}$ is a convergent p-series,
 $\sum_{n=1}^{\infty} \frac{\sin^2 n}{n\sqrt{n}}$ converges by the comparison test.
8. Since $0 \le \frac{1}{\sqrt{n(n+1)(n+2)}} \le \frac{1}{n^{1.5}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{1.5}}$ is a convergent p-series,
 $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)(n+2)}}$ converges by the comparison test.
12. Since $0 \le \frac{n}{(n+1)2^n} \le \frac{1}{2^n}$ and $\sum_{n=1}^{\infty} \frac{1}{2^n}$ is a convergent geometric series,
 $\sum_{n=1}^{\infty} \frac{n}{(n+1)2^n}$ converges by the comparison test.
16. Since $0 \le \frac{\arctan n}{n^4} \le \frac{\pi/2}{n^4}$ and $\sum_{n=1}^{\infty} \frac{\pi/2}{n^4}$ is $(\pi/2)$ times a convergent p-series,
 $\sum_{n=1}^{\infty} \frac{\arctan n}{n^4}$ converges by the comparison test.
22. Notice that $0 \le \frac{(3n-2)n^2}{n^4+n^2+1} = \frac{3n^3-2n^2}{n^4+n^2+1}$ for all positive integers n.
 $\lim_{n\to\infty} \frac{\frac{3n^3-2n^2}{n^1+n^n+1}}{\frac{1}{n}} = \lim_{n\to\infty} \frac{3n^4-2n^3}{n^4+n^2+1} = \lim_{n\to\infty} \frac{3-2n^2}{n^4+n^2+1}$ diverges by the limit form of the

comparison test.

26. Notice that $0 \le \frac{2n^2 + 7n}{3^n(n^2 + 5n - 1)}$ for all positive integers n. $\lim_{n \to \infty} \frac{\frac{2n^2 + 7n}{3^n(n^2 + 5n - 1)}}{\frac{1}{3^n}} = \lim_{n \to \infty} \frac{2n^2 + 7n}{n^2 + 5n - 1} = \lim_{n \to \infty} \frac{2 + \frac{7}{n}}{1 + \frac{5}{n} - \frac{1}{n^2}} = 2.$ Since $\sum_{n=1}^{\infty} \frac{1}{3^n}$ is a convergent geometric series, $\sum_{n=1}^{\infty} \frac{2n^2 + 7n}{3^n(n^2 + 5n - 1)}$ converges by the limit form of the comparison test.

30. There are many ways to show that $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ converges. Here is one. Notice that $0 \le \frac{n!}{n^n} = \frac{1 \cdot 2 \cdots n}{n \cdot n \cdots n} \le \frac{2}{n^2}$ for $n \ge 2$ (and even for n = 1). Since $\sum_{n=1}^{\infty} \frac{2}{n^2}$ is a constant multiple of a convergent p-series, $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ converges by the comparison test.

34. Since $-1 \le \cos n \le 1$, $\sum_{n=1}^{\infty} \frac{1 + \cos n}{n^5}$ converges by comparison with $\sum_{n=1}^{\infty} \frac{2}{n^5}$. My TI–36 calculator gives $s_{10} \approx 1.559723537$, and *Maple* agrees. To 20 significant figures, *Maple* gives 1.5597235374638962825 for s_{10} . To estimate the error, $0 < \sum_{n=11}^{\infty} \frac{1 + \cos n}{n^5} < \sum_{n=11}^{\infty} \frac{2}{n^5} < \int_{10}^{\infty} \frac{2}{x^5} dx = \frac{2}{4 \cdot 10^4} = 0.00005$.