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22. ∑
n=1

∞

 


 
1

2n−1 + 2
3n−1  = ∑

n=0

∞

 


 
1

2n + 2
3n  = ∑

n=0

∞ 1
2n + 2 ∑

n=0

∞ 1
3n   is the sum of two convergent

geometric series and converges to   
1

1 −
1
2

+ 2

1 −
1
3

= 5.

28. ∑
n=1

∞
ln( )n

2 n + 5   diverges because  lim
n→∞

ln( )n
2 n + 5  = ln

1
2 ≠ 0.

34.
1

n (n + 1)(n + 2) = 1/2
n − 1

n + 1 + 1/2
n + 2 = 1

2 ( )1
n − 1

n + 1  − 1
2 ( )1

n + 1 − 1
n + 2 .

The nth partial sum is  sn = ∑
i=1

n 1
i(i + 1)(i + 2) = ∑

i=1

n 1
2 ( )1

i − 1
i + 1  − ∑

i=1

n 1
2 ( )1

i + 1 − 1
i + 2  =

= 1
2 ( )1 − 1

n + 1  − 1
2 ( )1

2 − 1
n + 2   since the sums telescope.

Since  lim
n→∞

sn = 1
4 ,  the series converges to   

1
4 .

44. ∑
n=0

∞
3nxn = ∑

n=0

∞
(3x)n  converges if and only if  3 1x < .

This condition is equivalent to  x < 1
3

,  or to  − 1
3 < x <

1
3 .

For such values of  x  the series converges to   
1

1 − 3 x .

48. ∑
n=0

∞
tann x = ∑

n=0

∞
(tan x)n  converges if and only if  tan .x < 1

This condition is equivalent to  ( )k − 1
4 π < x < ( )k + 1

4 π  (for some integer  k).

For such values of  x  the series converges to   
1

1 − tan x .

64. ∑ (an + bn)  might converge if  ∑an  and  ∑ bn  both diverged.
For example consider what happens if  ∑ an  diverges and  bn = −an.

Then again it might not converge.
Consider what happens if  ∑ an  diverges and  bn = an.
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54. an = 3 n + 4
2 n + 5 .  Notice  an − 3

2 = 3 n + 4
2 n + 5 − 3

2 = − 7
2 (2n + 5) .

Then  an −

î





3
2

  is clearly increasing, because of the minus sign, and so is  {an}  itself.

56. If  an = 3 + (− 1)n

n    then  {an}  is not monotonic. When  n  is odd,  an < 3,  and when
n  is even,  an > 3.  So the terms oscillate from one side of  3  to the other, forever.

66. r rn n− =0 .  Assume  r ≠ 0.  Then if  ε  is any positive number, we can make

rn < ε   by making  n rln ln .< ε   For  0 1< <r ,  ln ,r < 0   so this inequality

n rln ln< ε   is equivalent to  n
r

> ln
ln

.ε   Take any integer  N  for which  N
r

≥ ln
ln

.ε

If  n > N  then  n
r

> ln
ln

,ε   so  n rln ln ,< ε   ln ln ,rn < ε   and  r rn n− = <0 ε .

What if  r = 0?  The above argument won’t work since  ln r   doesn’t exist. But to get

0 0n − < ε  is easy; it holds for every positive integer  n.  So take  N = 0  for instance.
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8. 1 − 1
2 + 1

4 − 1
8 + … = ∑

n=0

∞ ( )− 1
2

n
  is a geometric series.

Since  − <1
2

1,  it converges and its sum is   
1

1 − (− 1/2) = 2
3 .

10. − 81
100 + 9

10 − 1 + 10
9 − … = ∑

n=0

∞ ( )− 81
100 ( )− 10

9
n
  is a geometric series.

Since  − ≥10
9

1,  it diverges.

14. ∑
n=1

∞ 1
e2n = ∑

n=1

∞
( 1

e2)n
  is a geometric series.

Since  1
2

1
e

< ,  it converges and its sum is   
1
e2

1 −
1
e2

= 1
e2 − 1

.

18. ∑
n=1

∞
(− 1)n−1 32n

23n+1 = ∑
n=1

∞ ( )− 1
2 ( )− 9

8
n
  is a geometric series.

Since  − ≥9
8

1,  it diverges.
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This will make  − ε < arctan(2n) − π
2 .  On the other hand,  arctan(2n) − π

2 < 0 < ε

regardless of how large or small  n  may be. So if  n > N ≥ 1
2 tan( )π

2 − ε   then

− ε < arctan(2n) − π
2 < ε,  and  arctan( ) .2

2
n − <π ε

26. If  an = n!
(n + 2)!   then  {an}  converges to  0.

To see why, notice that  an = 1
(n + 1)(n + 2)   and thus  0 < an <

1
n2 .

To make  a an n− = <0 ε ,  where  ε  is any positive number, it will be more than

sufficient to have  n > N,  where  N  is any integer for which  N ≥ 1

ε
.  Then if  n > N,

we will have  0 < an <
1
n2 <

1
N2 ≤ ε,  so that  a an n− = <0 ε .

Actually this is overkill. By solving a quadratic equation you can show that

N ≥ − + + −1 5 0 25 1. . ε   will work, and that this is the best one can do.

30. If  an = ln (2 + en)
3 n    then  {an}  converges to   

1
3 .

Notice  ln( ) ln( ) ln( ) ln ln ln( ).2
3

1
3

2
3

2
3

1
3

2 1
3

1 2+ + − + − +− = = = = + −e
n

e n
n

e e
n n

e
e n

n n n n n

n
e n

The continuity of the natural logarithm function insures that if  (1 + 2e−n)  gets close
enough to  1,  ln(1 + 2e−n)  will get as close as we want to  0.  The  (3n)  in the
denominator makes things even better. And we can bring  (1 + 2e−n)  as close as we
want to  1,  since  en  can be made as large as we please by taking  n  large enough.

36. If  an = n cos n
n2 + 1

   then  {an}  converges to  0.

Since  cos ,n ≤ 1   a an n
n

n
− = ≤

+
0

2 1
.  We can make   

n
n2 + 1

< ε,  where  ε  is any

positive number, just by taking  n > N  where  N  is any integer for which  N ≥ 1
ε .

If  n > N  then  n >
1
ε   so   

n
n2 + 1

<
n
n2 = 1

n < ε.

(This argument shows that probably we can get away with a slightly smaller value of  N

than   
1
ε ,  since we have “thrown away” the  +1  in  n2 + 1.  Sometimes  cosn   is a lot

smaller than  1,  too, but then sometimes it is quite close to  1  so that won’t help.)

48. If  an = 1 ·3 ·5 … (2n − 1)
n!    then  {an}  diverges to  +∞.

To see why, write  an = 1
1 ·

3
2 ·

5
3

… 2 n − 1
n .

Notice   
3
2 <

5
3 <

7
4 < … <

2 n − 1
n ,  so  an > ( )3

2
n−1

 = 1.5n−1,  when  n > 2.

Since  1.5n−1  gets as large as you please and  an  is larger,  {an}  diverges to  +∞,

almost as fast as  2n−1  (not quite that fast, since   
3
2 < 2,  

5
3 < 2,  …  ,  and   

2n − 1
n < 2).

A good way to illustrate this with a graph would be to look at   
1
an

   instead of  an.
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y

x
r = θ

0 ≤ θ ≤ 2π

For Exercise 46

46. If  r = θ  then   
dr
dθ = 1.

The length of the portion of the
graph of  r = θ  with  0 ≤ θ ≤ 2π  is

L = ∫ 0

2π
θ θ2 1+ =d

= + + + + =













π1
2

2 2
0

2
1 1θ θ θ θln

= π π + + π+ π +( )4 1 2 4 12 21
2

ln .

See graph to the right.
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2. If  an = ( )− 2
3

n
  then  a1 = − 2

3 ,  a2 = 4
9 ,  a3 = − 8

27 ,  a4 = 16
81 ,  and  a5 = − 32

243 .

8. For the sequence  
  

1
2

1
4

1
6

1
8

, , , ,L

î




  it could be that  an = 1

2 n .  There are of course

infinitely many other sequences that start out that way for the first four terms.

14. If  a nn = 4   then  {an}  diverges to  +∞.

To insure that  4 n M> ,  where  M  is any positive number, all we need do is have

n > N,  where  N  is any integer for which  N ≥ M2

16 .  Then if  n > N,  we will have

n >
M2

16 ,  so  16n > M2  and  4 n M> .

16. If  an = 4 n − 3
3 n + 4   then  {an}  converges to   

4
3 .

To see why, notice that  4 3
3 4

4
3

25
3 3 4

n
n n

−
+ +

− =
( )

.

To make   
25

3 (3n + 4) < ε,  where  ε  is any positive number, all we need do is have

n > N,  where  N  is any integer for which  N ≥ 25 − 12ε
9 ε .  Then if  n > N,  we will have

n >
25 − 12ε

9 ε ,  so  9nε > 25 − 12ε,  3ε(3n + 4) > 25,  and   
25

3 (3n + 4) < ε.

24. If  an = {arctan(2n)}  then  {an}  converges to   
π
2 .

To make  arctan( ) ,2
2

n − <π ε   where  ε  is any positive number, all we need do is have

n > N,  where  N  is any integer for which  N ≥ 1
2 tan( )π

2 − ε .  Then if  n > N,  we will

have  n >
1
2 tan( )π

2 − ε ,  so  2n > tan( )π
2 − ε ,  and  arctan(2n) >

π
2 − ε.

(The last step uses the fact that the arctangent function is strictly increasing.)
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A

B

C

r = cos(3θ)

r =
 c

os
(3

θ)

r =  cos(3θ)

r = sin (3θ)r = sin (3θ)

r =
 sin

(3θ
)

Labels are
inside loops

x

y

For Exercise 38

38. The curve  r = cos(3θ)  has three
loops during  0 ≤ θ ≤ 2π,  and so does
the curve  r = sin(3θ).

If these two curves intersect with  r > 0
for both curves or with  r < 0  for both
curves then we have  cos(3θ) = sin(3θ),
so  tan(3θ) = 1,  and  θ  must be one of
π/12,  5π/12,  9π/12 = 3π/4,  13π/12,
17π/12,  or  21π/12 = 7π/4.

But the points defined by the last three
values of  θ  are duplicates of the ones
defined by the first three values of  θ  since
for example  π/12  and  13π/12  differ by  π
(one-half turn),  3·(π/12)  and  3·(13π/12)
differ by  3π  (one and one-half turns), and
thus the sine values for  3·(π/12)  and for
3·(13π/12)  are negatives of each other,
as are the cosine values.

If the graphs of the two curves intersect with the value for  r  for one graph positive and
the value for  r  for the other graph negative then  cos(3θ) = −sin(3(θ + π)),  but this
equation is equivalent to  cos(3θ) = sin(3θ)  and therefore leads to no new intersection
points. Of course there are lots of intersections at the origin where the values of  θ  for
the two curves need not have any relationship to each other. Since

cos sinπ = π =( ) ( ) +12 5 12 3 1

2 2
  (write  π/12 = π/3 − π/4  to see why),

sin cos ,π = π =( ) ( ) −12 5 12 3 1

2 2
  and  cos sin ,3 4 3 4 1

2
π = − π = −( ) ( )

the rectangular coordinates for the intersection points other than the origin are
(cos( ) , sin( ) ) (( ) , ( ) ) ,π π = + − =12 2 12 2 3 1 4 3 1 4 A

(cos( ) ( ), sin( ) ( )) (( ) , ( ) ) ,5 12 2 5 12 2 3 1 4 3 1 4π − π − = − + − − = B

(cos( ) , sin( ) ) ( , ) .3 4 2 3 4 2 1 2 1 2π π = − = C

See graph above and to the right.

y

x

r = e−θ

0 ≤ θ ≤ 3π

(1, 0)
For Exercise 44

44. If  r = e−θ  then   
dr
dθ = −e−θ.

The length of the portion of the
graph of  r = e−θ  with  0 ≤ θ ≤ 3π  is

L = ∫ 0

3π
( ) ( )e e d− −+ − =θ θ θ2 2

= ∫ 0

3π
2 2e d− =θ θ ∫ 0

3π
2 e d− =θ θ

= − ] = −( )− π − π2 2 1
0
3 3e eθ .

See graph to the right. As  θ  increases,
r = e−θ  decreases dramatically, so only
the portion with  0 ≤ θ ≤ 3π/2  is clearly
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x

y

r = 2 cos(4θ)

For Exercise 18

18. r = 2 cos(4θ)  has eight loops.
One loop occurs when  − π/8 ≤ θ ≤ π/8.
The area inside that loop is

A = ∫ −π/8

π/8 1
2 [2 cos(4θ)]2 dθ =

= ∫ −π/8

π/8
2 cos2(4θ) dθ =

= ∫ −π/8

π/8 [(1 + cos(8θ)] dθ =

= [ ]θ + 1
8 sin(8θ) ]−π/8

π/8
 = π

4 .

See graph to the right.

28. r = sin(2θ)  has four loops for
0 ≤ θ ≤ 2π,  one occurring for each of
0 ≤ θ ≤ π/2,  π/2 ≤ θ ≤ π,  π ≤ θ ≤ 3π/2,
and  3π/2 ≤ θ ≤ 2π.  The second and
fourth loops involve negative values for  r,
while the first and third involve positive r  values. The circle  r = sinθ  is traced out twice
for  0 ≤ θ ≤ 2π,  the entire graph occurring in the first and second quadrants. So in

x

y

r = sin(2θ)

r = sin(2θ)

r = sin(2θ)

r = sin(2θ)

r = sin θ

For Exercise 28

addition to meeting at the origin, the
two graphs also meet in the interiors of
the first and second quadrants, but the
second quadrant intersection uses a
fourth quadrant value for  θ  for the
graph of  r = sin(2θ).

If we solve  sin(2θ) = sin θ,  or in other
words if we solve  2 sinθcos θ = sin θ,
we obtain  sinθ = 0  or  cos θ = 1/2,  so
in addition to the intersections at the
origin we also have intersections when
θ = π/3  and when  θ = 5π/3,  at the
points with rectangular coordinates
( , )3 4 3 4   and  ( , ).− 3 4 3 4

For the interval  0 < θ < π/3,  and also
for  5π/3 < θ < 2π,  the curve closer to
the origin is the circle  r = sin θ.
For the interval  π/3 < θ < π/2,  and also for the interval  3π/2 < θ < 5π/3,  the curve
closer to the origin is  r = sin(2θ).

The first- and the second-quadrant portions have equal areas. Thus the total area is

A = 2∫ 0

π/3 1
2 (sinθ)2 dθ + 2∫ π/3

π/2 1
2 (sin(2θ))2 dθ) = ∫ 0

π/3
sin2 θdθ + ∫π/3

π/2
sin2(2θ) dθ =

= ∫ 0

π/3 1 − cos (2θ)
2 dθ + ∫π/3

π/2 1 − cos (4θ)
2 dθ = ( )2 θ − sin (2θ)

4 ]0

π/3
 + ( )4 θ − sin (4θ)

8 ]π/3

π/2
 =

= −π
4

3 3
16

.
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2. The area bounded by  r = eθ,  − π
2 ≤ θ ≤ π

2   is  A = ∫ −π/2

π/2 1
2 (eθ)2dθ =

= ∫ −π/2

π/2 1
2 e2θdθ = 1

4 e2θ]−π/2

π/2
 = 1

4 [eπ − e−π] =
e2π − 1

4 eπ = 1
2 sinh π.

See graph below and to the left.

6. The area bounded by  r = cos(3θ),  − π
12 ≤ θ ≤ π

12   is  A = ∫ −π/12

π/12 1
2 [cos(3θ)]2 dθ =

y

x

r = eθ

− π
2 ≤ θ ≤ π

2

For Exercise 2

= ∫ −π/12

π/12 1
2 cos2(3θ) dθ = ∫ −π/12

π/12 1
4 [1 + cos(6θ)] dθ =

= 1
4 [ ]θ + 1

6 sin(6θ) ]−π/12

π/12
 = 1

4 [ ]π
6 + 1

3  = π
24 + 1

12 .

See graph below and to the right.

x

y

r = cos(3θ)
θ = − π

12

θ =
π
12

For Exercise 6

y

x

r = 4(1 − cos θ)
0 ≤ θ ≤ 2π

(− 8, 0)

(0, − 4)

(0, 4)

For Exercise 8

8. r = 4(1 − cos θ)  is a cardioid, traced out
once for  0 ≤ θ ≤ 2π,  with enclosed area

A = ∫ 0

2π 1
2 [4(1 − cos θ)]2 dθ =

= ∫ 0

2π
8 [1 − 2cos θ + cos2θ] dθ =

= ∫ 0

2π[12 − 16 cos θ + 4cos(2θ)] dθ =

= [12θ − 16 sinθ + 2sin(2θ)]]0

2π
 = 24π.

See graph to the right.


