3:5.3; We will show that $\sum a_n b_n$ is absolutely convergent. To do this note that $\sum_{n=1}^{m} |a_n b_n| \leq \sum_{n=1}^{m} |a_n| \cdot \sum_{n=1}^{m} b_n$ but $\sum |a_n|$ and $\sum b_n$ are both absolutely convergent then $\sum |a_n b_n|$ is bounded and so it is convergent.

3:5.4: Example:

Let $a_n = b_n = \frac{(-1)^{n+1}}{\sqrt{n}}$ it is easy to show that $\sum |a_n| = \sum b_n$ are convergent but they are not absolutely convergent because $\sum |a_n| = \sum \frac{1}{\sqrt{n}} > \sum \frac{1}{n}$. But $\sum a_n b_n = \sum \frac{1}{n}$ and we know that it is divergent.

3:5.5; Let $\sum a_n$ be the new series which is obtained from $\sum \frac{1}{k}$ by deleting a specified digit and let $P_m = \sum \frac{1}{k}$ where sum is over all m digit numbers which do not have that specified digit. Clearly $\sum a_n = \sum P_m$. Note that for a specified m each term in the sum $P_m = \sum \frac{1}{k}$ is at most $\frac{1}{10^{m-1}}$, also note that there is at most 9^m terms in this sum then $P_m \leq \frac{9^m}{10^{m-1}}$ so $\sum P_m \leq 9 \sum_{m=1}^{\infty} (\frac{9}{10}^{m-1}) = 9 \times \frac{1}{1-\frac{9}{10}} = 90$. Hence $\sum P_m$ is bounded then $\sum a_n$ is bounded and it is convergent.

3:5.12; For one of the best known proofs consider the binomial

$$F(x) = (a_1x - b_1)^2 + (a_2x - b_2)^2 + \dots + (a_nx - b_n)^2$$

= $(\sum a_i^2)x^2 - 2(\sum a_ib_i)x + \sum b_i^2$

F(x) is always nonnegative so $\Delta' \leq 0$ and equivalently we have

$$(\sum a_i b_i)^2 \le \sum a_i^2 \cdot \sum b_i^2$$

.

3:6.2;

(a) It is divergent because

$$\lim_{n\to\infty} \frac{n(n+1)}{(n+2)^2} = 1$$

(b) It is divergent because

$$\sum \frac{3n(n+1)(n+2)}{n^3 \sqrt{n}} > \sum \frac{3n^3}{n^3 \sqrt{n}} = \sum \frac{3}{\sqrt{n}}$$

.

(c) For s > 1 it is convergent since $\frac{1}{n^s \log n} < \frac{1}{n^s}$,

For s = 1 it is divergent by Cauchy's Condensation test,

For s < 1 from inequality $\frac{1}{n^s \log n} > \frac{1}{n^s}$ it follows that $\sum \frac{1}{n^s \log n}$ is divergent too.

- (e) This series is divergent for all nonnegatives a except a=1 to prove this consider the case a>1 and let $a=1+\epsilon$ from Bernoli's inequality we know that $(1+\epsilon)^{1/n}>1+\frac{1}{n}\epsilon$, so $\sum a^{1/n}-1>\sum \frac{1}{n}\epsilon=\epsilon\sum \frac{1}{n}$. For the case a<1 use the second part of Bernoli's inequality, $(1-x)^{1/n}<1-\frac{1}{n}\epsilon$.
- (f) By Cauchy's Condensation test it is easy to show that it is convergent if t > 1 and it is divergent for $t \le 1$.
- (g) The case s=1 has been answered in the previous one, for the cases s<1 or s>1 one can compare this series with $\sum \frac{1}{n^s}$ to obtain that the series is convergent for s>1 and it is divergent for s<1.
- (h) Note that $\lim_{n\to\infty} (1-\frac{1}{n})^n = e^{-1}$, then

$$\lim_{n \to \infty} \frac{(1 - \frac{1}{n})^{n^2}}{e^n} = 1$$

but $\sum \frac{1}{e^n}$ converges and we obtain from Comparison Test that $\sum (1-\frac{1}{n})^{n^2}$ converges too.

3:6.2;

- (a) Note that $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = x$, then this series converges for |x| < 1 and diverges for |x| > 1. For the case x = 1 one can compare it with $\sum \frac{1}{n}$ to obtain that the series is convergent and for the case a = -1 the Alternating series Test can be used to obtain that it is convergent.
- (b) Again by Ratio Test it is easy to see that the series converges for |x| < 1 and it diverges for |x| > 1. For the cases |x| = 1 it is divergent too because of trivial test.
- (c) Since $\lim_{n\to\infty} \sqrt[n]{a_n} = e^{-x}$ then by Root test we obtain that this series is convergent for x > 0 and divergent for x < 0. It is trivial to see that it is divergent for the case x = 0 too.
- (d) By Ratio Test:

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} (1 + \frac{1}{n})^n \cdot x = e \cdot x$$

So it is convergent for |x| < 1/e and it is divergent for |x| > 1/e.

3:6.6; Answer is negative, for an example consider the series $\sum \frac{1}{n^2}$.

3:6.18; The sequence $\frac{(-1)^{k-1}}{k^p}$ decreases monotonically to zero for all positive value of p and then by Alternating Series Test it is convergent for all p > 0. Also the series abtained from its absolute values is well known series which is convergent only for $0 . Then this series is nonabsolutely convergent for <math>0 and it is absolutely convergent for <math>p \ge 1$.

3:6.22; By the methods have been used in the proof of Integral Test we know that limit existes and $0 < \gamma < 1 - \int_n^{n+1} \frac{1}{x} dx < 1$. It remains to prove that $\gamma > 1/2$ and to do this note that $1 - \int_1^2 \frac{1}{x} dx > 1/2$ and use the above inequality again to show that the remining terms i.e. $\sum_{k=2}^n - \int_2 n + 1 \frac{1}{x} dx$ is positive.