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We prove that the minimum value of the Mahler
measure of a nonreciprocal polynomial with all
odd coefficients is the golden ratio.

A Littlewood polynomial has all its coefficients
equal to £1. We determine the smallest mea-
sures among reciprocal Littlewood polynomials
with degree at most 72.



Introduction

The Mahler measure of a polynomial

@)= az'=an [] (= — o)
i=0 i=1

is defined by

M(f) = lan| [] max{1,]oyl}. (1)

1 =1

The measure is unchanged if coefficients are
reversed. So if

[ (z) =" f(1/x)

then M(f*) = M(f). If f = £f* then f is
reciprocal.

For polynomials with integer coefficients Kro-
necker’'s Theorem states that M(f) =1 if and
only if f(x) is a product of cyclotomic polyno-
mials and the monomial =x.



In 1933, D. H. Lehmer asked if for any € > 0O
there exists f(x) € Z[x] with

1< M(f)<l+e

and this problem remains open.

Lehmer noted that
() =20422—2"—25—2°—2* 23+ 241
has measure

M(¢) = 1.1762808...

and this remains the smallest known measure
greater than 1 of a polynomial with integer
coefficients.

Smyth in 1971 answered Lehmer’s question for
the case of nonreciprocal polynomials, proving
that if f(x) € Z[x] is nonreciprocal and f(0) #
O then

M(f) > M(z®—z—1) =1.324717...



A Littlewood polynomial f(z) = ¥ _4a;z* has
a; = £1 for each 1.

We (PB and Stephen Choi) characterize the
Littlewood polynomials of even degree with
measure 1, providing a sharper version of Kro-
necker’'s theorem for this class of polynomials.

Recall that &, is given by
dn(z)= ] (z——exp(jQWd/n)).

1<j<n
gcd(j,n)=1

Conjecture. A Littlewood polynomial P(z) of
degree N — 1 has Mahler measure 1 if and only
if P can be written in the form

P(Z) — j:cbpl(iz)cpr (:l:zpl) T cbpr (izppo.“pr_l) )

where N = pipo---pr and the p; are primes,
not necessarily distinct.



Our main result provides a lower bound on
the measure for a larger class of nonrecipro-
cal polynomials.

Theorem 1 Suppose f is a monic, nonrecip-
rocal polynomial with integer coefficients sat-
isfying f = &= f* mod m for some integer m > 2.
Then

m + \/m2 + 16
4 ’
and this bound is sharp when m is even.

M(f) >

(2)

Taking m = 2, we immediately obtain the golden
ratio as a sharp lower bound for the measure
of a nonreciprocal Littlewood polynomial.

Corollary 1 If f is a monic, nonreciprocal poly-
nomial whose coefficients are all odd integers,
then M(f) > M(z? —x—1) = (1 ++5)/2. In
particular, this bound holds for nonreciprocal
Littlewood polynomials.



A Pisot number is a real algebraic integer greater
than 1, all of whose conjugates lie inside the
open unit disk. Smyth’'s lower bound is the
smallest Pisot number; the golden ratio is the
smallest limit point of Pisot numbers.

Later we describes some computations for re-
ciprocal Littlewood polynomials through de-
gree 72 and list fifteen measures of Littlewood
polynomials less than 1.6.

The smallest measure we find is 1.496711...,
associated with the polynomial

a:19—|—a:18—|—a:17—|—a:16—x15+x14—:c13—|—:c12—x11—xlo
—:r;9—:c8—|—:c7—:c6—|—x5—az4+:c3-l—:c2—|—x—|—1
Proof of Theorem

Our proof follows Smyth 1971. We require

the following inequality regarding coefficients
of power series.



Lemma 1 (Schinzel p. 392.) Suppose ¢(z) =
Sis0 2t with ~v; € C is analytic in an open
disk containing |z| < 1 and satisfies |p(z)| <1
on |z|=1. Then fori>1

vl < 1= |v0l?

Proof of Theorem Suppose

n

F)=Y aiz' =[] (z— )
i=0

i=1
Write

n .
() =) di7
=0
SO dgp =1, and let

Z eizi

i>0
be the power series for 1/f*(z). Note that the
e; are integers.



Let

G(z) = f(2)/f* () = Y a7,

i>0
SO q; € Z for ¢+ > 0. Clearly qo = ap.

The key observation is that since
f=4+f* modm
we have
aj = qod; mod m.
So by an easy induction, for 3 > 1,

m|Qj

and, if g; # 0, then m < |g]|



Now let e = +1 and let

gD =c [] Z=% and hz)= ] -

lag|<1 T T P2 ag>1 T %

SO

9(=) _ IMP_y(z - a)
h(z) Ty (1 - @2)

M7y (2 — i) _ f(2)
721 (1 —az)  f*(2)
Clearly all poles of both ¢g(z) and h(z) lie out-
side the unit disk, so both functions are ana-
lytic in a region containing |z| < 1.

= G(2).

Further, if |zl =1 and B € C then

D ()
1—-08z)\1—-p3z 1—-082)\1-73/z ’

s0 |g(2)| = |h(z)] =1 on |z| = 1.




Let

g(z) = Z b;z* and h(z) = Z ;2.
i>0 i>0
Let k£ be the smallest integer for which q; # O,
SO |gg| = m.

Since g(z) = h(2)G(z),

b; = ¢iqo
for 0 <1< k and

by, = coqr + crq0
Thus

[com| < |cogr| = [b — ckaol < 2max{|bg|, |cx|}-

(3)

Assume without loss of generality that |c| >
|br|. By Lemma 1,

x| <1 —cB.



So with the observation that

lcol = 1R(O)| = ]| 1/leul =1/M(f)

|Oé7;|>1
we have

M(f)m < 2(M(f)? —1).

The theorem follows, and the bound is achieved
when m is even by

f(2) = 2° +mz/2 — 1.



Reciprocal Littlewood polynomials with small
measure

We describe an algorithm for searching for re-
ciprocal Littlewood polynomials with small Mahler
measure.

Algorithm Given a positive integer d, we wish
to determine all reciprocal Littlewood polyno-
mials f(z) = 2% ja;z* having 1 < M(f) < M,
where M is a fixed constant.

Following Boyd, we use the Graeffe root-squaring
algorithm to screen out most polynomials f
having M(f) > M and all polynomials with
M(f) =1 in an efficient way.



Recall that the Graeffe operator G applied to
a polynomial f(x) written as

f(z) = g(z?) + zh(z?)
yields the polynomial

Gf(z) = g(x)* — zh(z)?.

The roots of Gf are precisely the squares of
the roots of f, and M(Gf) = M(f)2.



Let ay ,, denote the coefficient of F in G f(x).

Boyd shows that
k| < () + (0 3) (2" 172" - 2) (@)
for all m

If in addition a1 4, > d—4 and m > 1, then

o] < () + (,_5) (W7 4 M2 - 2) 4

2 (M2 a2 -2) (294 G2D)
(5)

We apply the Graeffe operator to each poly-
nomial at most mg times, where mg is another
fixed parameter of the algorithm.

A polynomial f is rejected at stage m if the
appropriate inequality (4) or (5) is not satisfied
for some k, or if GMf =Ggm—1f.



In the latter case, Kronecker’'s theorem implies
that f is a product of cyclotomic polynomials.

Let &, denote the nth cyclotomic polynomial.
If n = 2"s with s odd, then

r—1
G dory = P2

when m > r, so the Graeffe method is guaran-
teed to detect a product of cyclotomic poly-
nomials with total degree d if m > 1 4 log» d.



Results and analysis

We ran our program at HPCQSFU, the high
performance computing centre at Simon Fraser
University, on The Bugaboos, a Beowulf clus-
ter with 96 nodes, each with two AMD Athlon
1.2 GHz processors.

In two weeks we searched through degree 72,
using as many as 64 processors at once and
totaling 426 days of CPU time.

Our program finds 1643 Littlewood polynomi-
als with degree at most 72 that survive ten it-
erations of root-squaring; of these, 1487 have
measure less than M = 5/3.

Only 127 distinct measures less than 5/3 ap-
pear, since most measures occur several times.



15 known measures of Littlewood polyno-
mials less than 1.6.

1.49671107561
1.50613567955
1.50646000575
1.53691794778
1.55107223951
1.55603019132
1.57930874185
1.58234718363
1.58501169305
1.59185616779
1.59287323067
1.59341317381
1.59504631133
1.59700500917
1.59918220880

The seventh polynomial above is the only one
listed whose noncyclotomic part is reducible.



There are certainly an infinite number of poly-
nomials having {—1,0, 1} coefficients with smaller
measure. For example, the measure of

approaches 1.255433... as n — oo. This is
the smallest known limit point of measures of
integer polynomials.

There are in fact an infinite number of limit
points of measures of polynomials with {—1,0,1}
coefficients less than 1.382.

There are also infinitely many integer polyno-
mials with reducible noncyclotomic part having
measure less than 1.4967, since two noncyclo-
tomic polynomials are known with measure less
than 1.4967/1.2554 ~ 1.1922.

It therefore seems quite possible that Little-
wood polynomials with Mahler measure smaller
than 1.496711... exist. It appears likely how-
ever that additional techniques would be re-
quired in further searches.



