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Summary. In this article, we will determine the primitive integral solutions x, y, z
to equations of the form

xn + yn = Dz2

with n = 4, 5, 6, 7, 9, 11, 13, 17 and D ∈ {2, 3, 5, 6, 10, 11, 13, 17}.
These equations form the small exponent cases of the equations considered by

Bennett and Skinner in [1], where their modular techniques do not apply.
The computations necessary form a nice showcase of the arithmetic geometric

functionality in the Magma computer algebra system. We will show how to construct
curves, how to test curves for local solubility, how to analyse elliptic curves over
number fields and how to use Chabauty-techniques to determine the rational points
on a curve.

1 Introduction

The following result is stated in the paper [1] by Bennett and Skinner.

Theorem 1. If n ≥ 4 is an integer and

D ∈ {2, 3, 5, 6, 10, 11, 13, 17}

then the equation
xn + yn = Dz2

has no solutions in nonzero coprime integers (x, y, z) with, say, x > y, unless
(n, D) = (4, 17) or (n, D, x, y, z) ∈ {(5, 2, 3,−1,±11), (5, 11, 3, 2,±5)}.

In that paper the authors use techniques based on Galois representations
on torsion subgroups of elliptic curves and modular forms to prove a large
part of this theorem, but these methods do not apply to all combinations of
1 The research described in this paper is partly funded by NSERC and the Univer-

sity of Sydney.
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n, D that occur in the statement and for each n ≤ 17, there are some values
of D for which they refer to this paper rather than give a proof. Indeed, here
we we will prove the following result.

Theorem 2. If n ∈ {5, 6, . . . , 17} and D ∈ {2, 3, 5, 6, 10, 11, 13, 17} then the
equation

xn + yn = Dz2

has no solutions in coprime nonzero integers except those arising from the
identities 1n + 1n = 2 · 12, 35 − 15 = 2 · 112 and 35 + 25 = 11 · 52.

We will also prove

Proposition 1. The equation x4+y4 = Dz2 has no integral solutions for D ∈
{3, 5, 6, 10, 11, 13}. For D = 2, the only integral solutions with gcd(x, y, z) =
1 are (x, y, z) = (±1,±1,±1). For D = 17, it has infinitely many integral
solutions with distinct values of x/y.

We will use the proofs to introduce the reader to some of the very powerful
tools that Magma offers for solving arithmetic geometric questions. The article
is laid out in the following way.

As an introduction we give an easy proof to Proposition 1. It shows the
basic mechanisms that are available in Magma to define arithmetic geometric
objects and answer questions about them. We try to point out that many
questions can be formulated and answered using Magma in a language that
is very close to the one that mathematicians are used to.

Next, we review some mathematical concepts and constructions that will
prove indispensible in the rest of the paper. We recall a theorem from [5] that
translates questions like the one in Theorem 2 to questions about rational
points on some algebraic curves.

In Section 4, we apply those results to x5 + y5 = Dz2 and, using Magma,
obtain some curves that parametrise the primitive solutions to the equation
under consideration. We then construct elliptic subcovers of those curves such
that an application to them of the methods from [5] yields the rational points
on the original curves. We defer the actual application to Section 7.

We trust that after this demonstration of the problem solving capability
of Magma, the reader will be interested in knowing some of the algorithms
employed. In Section 5 we give a full account of the algorithms the author has
implemented in Magma to test schemes for local solvability. A highlight is an
algorithm that decides local solvability of hyperelliptic curves in time that is
essentially independent of the size of the residue class field in the odd residue
characteristic case.

In Section 6, we explain how 2-Selmer groups and 2-isogeny Selmer groups
of elliptic curves over number fields can be computed, how they can be used
to bound the free ranks of Mordell-Weil groups and how they can be used to
find generators for Mordell-Weil groups. We also explain how one can do this
in Magma using the implementation of the author, based on [3].
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In Section 7, we explain how the techniques first introduced in [2] can be
applied to use elliptic curves over number fields to find the rational points
on curves. We outline how one can use the implementation by the author to
prove the result in Theorem 2 for n = 5.

In the last section, we give an outline of successfull strategies to solve
the remaining cases from Theorem 2. For full details and a transcript of the
Magma session that obtains all computational results in this paper, we refer
the reader to the electronic resource [6].

2 Proof of Proposition 1

To get a taste for things to come, we first prove Proposition 1. It is very
straightforward. First note that any solution to x4 + y4 = Dz2 corresponds
to a rational point (u, v) = (x/y,Dz/y) on the curve

D(u4 + 1) = v2.

We can simply ask Magma to compute for each desired value of D, whether
this curve has any points over, say, Q2 (see Section 5.4).

> _<x>:=PolynomialRing(Rationals());
> Dset:={2,3,5,6,10,11,13,17};
> {D:D in Dset| IsLocallySolvable(HyperellipticCurve(D*(x^4+1)),2)};
{ 2, 17 }

So just by testing local solvability at 2, we have already proved the lemma
for all values of D except 2 and 17. Let’s first consider D = 2. Clearly, the
curve 2u4 + 2 = v2 has a rational point (u, v) = (1, 2), so it is isomorphic
to an elliptic curve E. The rational points of an elliptic curve form a finitely
generated group. Magma can compute an upper bound on the free rank of
that group (see Section 6) and as it turns out, it is 0.

> C2:=HyperellipticCurve(2*(x^4+1));
> p0:=C2![1,2];
> E,C2toE:=EllipticCurve(C2,p0);
> RankBound(E);
0
> #TorsionSubgroup(E);
4

We find an upper bound of 0 on the free rank, so E(Q) consists entirely of
torsion points, of which there are 4. Indeed, there are 4 obvious points:

(u, v) = (1, 2), (−1, 2), (1,−2), (−1,−2).

and these all correspond to solutions with x = ±y.
For D = 17 we proceed similarly. We find the point (u, v) = (2, 17) on the

curve 17u4 +17 = v2. This time we find an upper bound of 2 on the free rank.
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> C17:=HyperellipticCurve(17*(x^4+1));
> p0:=C17![2,17];
> E,C17toE:=EllipticCurve(C17,p0);
> RankBound(E);
2

In fact, Magma can find two independent points on E (note that the command
MordellWeilGroup in principle could return a group of smaller rank, so one
should always check that the rank of the returned group corresponds to the
expected rank).

> G,GtoE:=MordellWeilGroup(E);
> G;
Abelian Group isomorphic to Z/2 + Z/2 + Z + Z
Defined on 4 generators
Relations:

2*G.1 = 0
2*G.2 = 0

> [Inverse(C17toE)(GtoE(g)):g in OrderedGenerators(G)];
[ (-1 : 17 : 2), (-2 : -17 : 1), (13 : 697 : 2), (314 : 3097553 : 863) ]

The last solution corresponds to the primitive solution:

(2 · 157)4 + 8634 = 17 · (182209)2

and, using the group law on E, arbitrarily many can be constructed.

3 Construction of parametrising curves

In this section, we recall a result from [14] in an explicit form, occurring in
[2], which relates integer solutions (x, y, z) of equations like xn + yn = Dzm

with gcd(x, y, z) = 1 to rational points on some algebraic curves.
First we need some notation.
Let f(x, y) ∈ Z[x, y] be a square-free homogeneous form of degree n and

assume for simplicity that f(x, 1) is monic of degree n, i.e, f(x, y) = xn +
y(· · · ). We construct the algebra A = Q[θ] = Q[x]/f(x, 1). This allow us to
express f as a norm form

f(x, y) = NA[x,y]/Q[x,y](x− θy).

Let S be a finite set of rational primes and let K be a number field. For
a prime p of K we write p - S is p does not extend any prime in S to K.
Following [21], we define

K(p, S) := {a ∈ K∗ : vp(a) ≡ 0 (mod p) for all primes p - S}/K∗p.

Following Magma’s terminology, we refer to this set as the (p, S)-Selmer group
of K. It is a finite, effectively computable group. An algorithm for computing
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it is described in [19] and the implementation and optizations in MAGMA are
due to Fieker [15].

Since f is square-free, the algebra A is isomorphic to a direct product of
number fields K1 × · · · ×Kr. We generalise the notation above to

A(p, S) := K1(p, S)× · · · ×Kr(p, S) ⊂ A∗/A∗p.

Furthermore, we will identify elements of A(p, S) with some set of represen-
tatives in A∗.

Since {1, θ, . . . , θn−1} forms a Q[Z0, . . . , Zn−1]-basis of the vector space
A[Z0, . . . , Zn−1], for any δ ∈ A∗ there are unique homogeneous forms Qi =
Qδ,i ∈ Q[Z0, . . . , Zn−1] of degree m such that

Q0 + Q1θ + · · ·+ Qn−1θ
n−1 = δ(Z0 + Z1θ + · · ·+ Zn−1θ

n−1)m.

We define the projective curve

Cδ := {Q2 = Q3 = · · · = Qn−1 = 0} ⊂ Pn−1

and the map φδ : Cδ → P1 defined by

φδ : (Z0 : · · · : Zd−1) 7→ −
Q0(Z0, . . . , Zn−1)
Q1(Z0, . . . , Zn−1)

.

From [2, Theorem 3.1.1], it follows that Cδ is absolutely irreducible of genus
1 + mn−2( 1

2n(m − 1) −m) and that φδ is a Galois cover with Galois-group
(Z/mZ)n−1, ramified exactly at {(x : y) ∈ P1(Q) : f(x, y) = 0}.

For given nonzero integer D and m ≥ 1, we consider the equation

f(x, y) = Dzm.

Let S be a finite set of primes containing the prime divisors of DDisc(f).

∆ := {δ ∈ A(m,S) : NA/Q(δ)/D ∈ Q∗m}.

A consequence of [2, Lemma 3.1.2] is

Theorem 3. Let f,D,m, θ,A, ∆ be defined as above. Then{
(x : y) : x, y, z ∈ Z, f(x, y) = Dzm, gcd(x, y, z) = 1

}
⊂

⋃
δ∈∆

φδ(Cδ(Q))}

One can easily recover (x, y, z) from (x : y) in the following way. Let
(x0 : y0) ∈ P1(Q). If (x, y, z) is a solution with (x : y) = (x0 : y0), then there
is a λ ∈ Q∗ such that

x = λx0,

y = λy0,

z = m

√
λnf(x0, y0)

D
.
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Given x0, y0, it is straightforward to determine for which values of λ the above
system has solutions with gcd(x, y, z) = 1 and what those solutions are.

The strategy for proving Theorem 2 is to determine the relevant curve Cδ

for each of the combinations (n, D) and to find the rational points on Cδ. In
some cases we get away with only constructing a subcover of Cδ/P1.

In the particular, when m divides n, then the weighted projective equiva-
lence classes of solutions to f(x, y) = Dzm are in bijection with the rational
points of the curve given by the weighted projective model C ′ : f(x, y) = Dzm,
where (x, y, z) have weights (1, 1, n/m). In the special case that m = 2, we
see that C ′ is a double cover of a projective line. The curves Cδ are twists of
the unramified cover of C ′ obtained by embedding C ′ in its jacobian Jac(C ′)
and taking the pullback along the multiplication-by-2 map on Jac(C ′). These
properties are explained and exploited in [8] and in a trivial way in Section 8.

In the particular case that m = 2 and n = 4, we recover the multiplication-
by-2 covers of curves of genus 1 that play a role in 2-descents and 4-descents. If
f has a rational root, then C ′ is isomorphic to its jacobian and the Cδ are the
homogeneous spaces that play a role in 2-descents as described in Section 6.

If f does not have a rational root, then C ′ can still be expressed as a
Z/2Z × Z/2Z cover of its jacobian. The Cδ are then homogeneous spaces
associated to a 4-descent on the jacobian. See [18] and [25].

4 The equation x5 + y5 = Dz2

We begin putting the construction from Section 3 into Magma. In our case
f = x5 + y5. We model this by defining a univariate polynomial in Magma.
This allows us to construct the algebra straight away.

> _<x>:=PolynomialRing(Rationals());
> f:=x^5+1;
> A<theta>:=quo<Parent(x)|f>;

Next we construct the rings A[Z0, . . . , Z4], Q[Z0, . . . , Z4] and the correspond-
ing projective space. Note that, while mathematically

Q[θ][Z0, . . . , Z4] ' Q[Z0, . . . , Z4][θ]

in a canonical way, this is not the case in a computer algebra system. We
first construct the left hand side (PA) and then obtain the right hand side
(AP) using SwapExtension. We also get the appropriate isomorphism swap.
We then extract Q[Z0, . . . , Z4] as the base ring of AP.

> PA<Z0A,Z1A,Z2A,Z3A,Z4A>:=PolynomialRing(A,5);
> AP<thetaP>,swap:=SwapExtension(PA);
> _<Z0,Z1,Z2,Z3,Z4>:=BaseRing(AP);
> P4:=Proj(BaseRing(AP));
> P1:=ProjectiveSpace(Rationals(),1);
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Given δ ∈ A, it is now straightforward to construct Cδ and φδ. We present a
Magma routine that takes δ as input and returns both Cδ and φδ. Note that
Coefficients on an element of AP returns a sequence of coefficients with
respect to the power basis [1, θ, . . . , θ4], i.e., the Qi for us.

> function Cdelta(delta)
function> g:=delta*(&+[PA.i*theta^(i-1): i in [1..5]])^2;
function> Q:=Coefficients(swap(g));
function> Crv:=Scheme(P4,[Q[3],Q[4],Q[5]]);
function> phi:=map<Crv->P1|[Q[1],-Q[2]]>;
function> return Crv,phi;
function> end function;

Given D, we can compute the set ∆ as well. For that, we need to represent Q
as a number field Q and A as an algebra over Q. We also compute the decom-
position of A = Q ×K, where K = Q(ζ), the field generated by a primitive
5th root of unity. By giving an explicit representation to AbsoluteAlgebra,
we make sure the system uses that representation.

> Q:=NumberField(x-1:DoLinearExtension);
> OQ:=IntegerRing(Q);
> Qx<xQ>:=PolynomialRing(Q);
> AQ:=quo<Qx|Polynomial(Q,f)>;
> AQtoA:=hom<AQ->A|[theta]>;
> K<zeta>:=NumberField(x^4 - x^3 + x^2 - x + 1);
> OK:=IntegerRing(K);
> Aa,toAa:=AbsoluteAlgebra(AQ:Fields:={Q,K});

We can now compute ∆ in the following way. We take S to be the set of
primes that divide DDisc(f). We compute the subgroup of A(2, S) that has
square norm and we translate it over the class of D in A(2, S).

> function DeltaForD(D)
function> S:=Support(D*Discriminant(f)*OQ);
function> slmA,slmAmap:=pSelmerGroup(AQ,2,S);
function> slmQ,slmQmap:=pSelmerGroup(2,S);
function> slmNorm:=map<slmA->slmQ|a:->slmQmap(Norm(a@@slmAmap))>;
function> slmSquareNorm:=Kernel(hom<slmA->slmQ|
function> [slmNorm(a):a in OrderedGenerators(slmA)]>);
function> classD:=slmAmap(D);
function> return {AQtoA( (d-classD)@@slmAmap):d in slmSquareNorm};
function> end function;

We gather all δs that are relevant together (remember we can always recover
the corresponding D from NA/Q(δ)) and throw out any for which Cδ is not
locally solvable at 2, 5 or 11 (other primes turn out to make no further con-
tributions).
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> Dset:={2,3,5,6,10,11,13,17};
> BigDelta:=&join{DeltaForD(D):D in Dset};
> Delta:=BigDelta;
> Delta:={delta:delta in Delta| IsLocallySolvable(Cdelta(delta),2:
> AssumeIrreducible,AssumeNonsingular)};
> Delta:={delta:delta in Delta| IsLocallySolvable(Cdelta(delta),5:
> AssumeIrreducible,AssumeNonsingular)};
> Delta:={delta:delta in Delta| IsLocallySolvable(Cdelta(delta),11:
> AssumeIrreducible,AssumeNonsingular)};

This eliminates already 4/5th of the parametrising curves. Now we construct a
subcover, derived from the ring homomorphism m1 : A→ Q given by θ 7→ −1.
From x− θy = δc2

0, it follows that f(x, y) = NA/Q(δ)NA/Q(c0)2. Hence,

x4 − x3y + x2y2 − xy3 + y4 = f(x, y)/m1(x− θy) = N(δ)/m1(δ)N(c0)2.

Putting d = N(δ)/m1(δ), it follows that Cδ covers

Ed : u4 − u3 + u2 − u + 1 = dv2.

We compute which curves occur.

> m1:=hom<A->Rationals()|-1>;
> {PowerFreePart(Norm(delta)/m1(delta),2):delta in Delta};
{ 1, 5, 55 }

Unfortunately, Ed has infinitely many rational points for d = 1, 55. For d = 5
we do get some useful information.

> E5:=HyperellipticCurve(5*(x^4-x^3+x^2-x+1));
> p0:=E5![-1,5];
> ell:=EllipticCurve(E5,p0);
> RankBound(ell);
0
> #TorsionSubgroup(ell);
2

We see that E5 only has two rational points (−1,±5). It is straightfor-
ward to check that these correspond to the obvious solutions (x, y, z) =
(1,−1, 0), (−1, 1, 0) for x5 + y5 = Dz2. If we take heed of these solutions,
we can discard any δ for which Cδ covers E5.

> Delta:={delta:delta in Delta|PowerFreePart(Norm(delta)/m1(delta),2) ne 5};
> #Delta;
16

For these remaining values, we use the same idea as above, but now we use
the map m2 : A → K given by θ 7→ ζ. We define d = N(δ)/m2(δ) and we
obtain the following subcover of Cδ/P1.
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Ed : u4 + ζu3 + ζ2u2 + ζ3u + ζ4 = dv2

where the cover φδ : Cδ → P1 induces the cover u : Ed → P1. Since the value
of d only matters up to squares, we take unique representatives by mapping
through K(2, S′) for an appropriate S′.

> m2:=hom<A->K|zeta>;
> slmK,slmKmap:=pSelmerGroup(2,Support(2*3*5*11*13*17*OK));
> dset:={K|(slmKmap(Norm(delta)/m2(delta)))@@slmKmap:delta in Delta};
> dset;
{

2*zeta^3 - 2*zeta^2 - 2,
1,
15*zeta^3 - 5*zeta^2 + 8*zeta - 17,
-3*zeta^3 - 7*zeta^2 - 8*zeta - 9,
-2*zeta^2 - 2

}

For our subsequent operations, it is beneficial to compute a Weierstrass model
of Ed using the point (u, v) = (−1, 0). We express the function u in the
coordinates of that model. We obtain

Ed : Y 2 = X3 − d(3ζ3 + ζ − 1)X2 − d2(ζ2 + ζ + 1)X

and

u =
−X + d(ζ3 − 1)
X − d(ζ3 + ζ)

.

Using Magma, one can verify this using a few lines of code. Notice that the
elliptic curve is represented as a projective curve.

> Kd<d>:=RationalFunctionField(K);
> KdX<X>:=PolynomialRing(Kd);
> FEd1:=(X^4+zeta*X^3+zeta^2*X^2+zeta^3*X+zeta^4)/d;
> Ed1:=HyperellipticCurve(FEd1);
> Ed2,toEd2:=EllipticCurve(Ed1,Ed1![-1,0]);
> umap:=map<Ed1->P1|[Ed1.1,Ed1.3]>;
> FEd:=X^3+(-3*zeta^3-zeta+1)*d*X^2+(-zeta^2-zeta-1)*d^2*X;
> Ed<xE,yE,zE>:=EllipticCurve(FEd);
> bl,toEd:=IsIsomorphic(Ed2,Ed);
> u:=Expand(Inverse(toEd2*toEd)*umap);
> u:Minimal;
(xE : yE : zE) -> ((-2*zeta^3 + 3*zeta^2 - 3*zeta + 2)/d^2*xE + (-zeta^3 - 2*zeta + 2)/d*zE :

(2*zeta^3 - 3*zeta^2 + 3*zeta - 2)/d^2*xE + (2*zeta^2 - zeta + 2)/d*zE)

We have the following diagram of covers.
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Cδ π
((RRRRRR

φδ

��
Ed

uwwnnnnnn

P1
/Q

Clearly,
φδ(Cδ(Q)) ⊂ u(Ed(K)) ∩ P1(Q).

We can now complete the proof of Theorem 2 for n = 5 by computing the right
hand side of the above inclusion. By techniques we will explain in Section 7,
we find the following table.

d u(Ed(K)) ∩ P1(Q)
1 {−1, 0,∞}

−2ζ2 − 2 {−1, 1}
2ζ3 − 2ζ2 − 2 {−3,−1,−1/3}

−3ζ3 − 7ζ2 − 8ζ − 9 {−1, 3/2}
15ζ3 − 5ζ2 + 8ζ − 17 {−1, 2/3}

It is straightforward to check that all of these values for x/y lead to solutions
with xyz = 0 or solutions that are mentioned in Theorem 2.

5 Deciding local solvability

As we have seen in Sections 2 and 4, the first step in solving arithmetic geo-
metric questions often involves deciding if, for a projective variety X over a
number field K, the set X(Kp) is empty for some prime p. In this section, we
outline several algorithms that have been implemented in Magma by the au-
thor to test local solvability. They include tools for determining the Kp-points
of separated 0-dimensional schemes, Kp-solvability of complete intersections,
Kp-solvability of smooth projective curves, given by a possibly singular planar
model and Kp-solvability of hyperelliptic curves.

For the rest of this section, O will be a complete local ring of characteristic
0 with maximal ideal p and finite residue field O/p. We write π for a generator
of p and L for the field of fractions of O. We use ν : L∗ → Z to denote
the normalised valuation, i.e., ν(πe) = e and use the customary extension
ν(0) =∞.

For any object f (vector, matrix, polynomial) defined over O, we write f
for the corresponding reduced object over O/π. We also write ν(f) for the
minimum of ν(c), where c runs through the coefficients of f .

5.1 Determining X(L) for a reduced 0-dimensional projective
scheme

Let Pn be n-dimensional projective space over K with variables (X0 : . . . : Xn)
and let X be a reduced 0-dimensional projective scheme, defined by
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f1 = · · · = fm = 0,

where fi ∈ K[X0, . . . , Xm]. Without loss of generality, we can assume fi ∈
O[X0, . . . , Xm].

Note that any point in Pn(L) has a representative (x0 : · · · : xn) such that
for some 0 ≤ N ≤ n, we have

(x1, . . . , xN−1, xN , xN+1, . . . , xn) ∈ O × · · · × O × {1} × p× · · · × p

Hence, it is sufficient to solve the problem of finding O-integral points on an
affine separated 0-dimensional scheme Y , given by equations fi ∈ O[y] =
O[y1, . . . , yn].

In principle, one could solve the problem in the same way as one does for
exactly representable fields like Q, Fq and number fields, by using resultants
and univariate factorisation. In practice, however, the objects considered are
not exactly represented and it is almost impossible to make such algorithms
numerically stable. Therefore, we will present an algorithm here that simply
builds solutions one π-adic digit at the time, until the solution is verifyably
separated and Hensel liftable. We simply reduce the system of equations to
O/p, determine the solutions over that finite field and interpret what these
solutions mean over O.

The first step is to pick gi ∈ O[y] such that

(g1, . . . , gm)O[y]

is as close as possible to

I = (f1, . . . , fm)K[y] ∩ O[y].

Let

Mf =
(

∂

∂yj
fi

)
i,j

∈ Om×n

Algorithm Saturate(f1, . . . , fm):

1. REPEAT
2. Let T ∈ GLm(O) such that T (Mf (0, . . . , 0)) is in row echelon form.
3. (f1, . . . , fm)t ← T (f1, . . . , fm)t.
4. FOR i ∈ {1, . . . ,m}:
5. fi ← fi/πν(fi)

6. UNTIL in step 5 no fi was changed.
7. RETURN (f1, . . . , fm)

This algorithm does not always find generators of I. However, if (0, . . . , 0) is
sufficiently close to a non-singular point of Y , then for all f ∈ I, the minimal
valuation of the coefficients of f is attained by the coefficient of a linear term.
It is clear that in this situation, the algorithm will find gi that generate I.
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In practice, the coefficients of fi are only given up to finite precision. Hence,
in step 5, it might happen that a coefficient has no precision left. In that case,
an error should be generated.

It is now straightforward to determine the integer points of Y up to some
precision bound r:

Algorithm IntegerPoints(r, f1, . . . , fm):

1. (f1, . . . , fm)← Saturate(f1, . . . , fm).
2. Let V ⊂ On be a set of representatives of the solutions of f1 = · · · = fm =

0 in O/p.
3. Let V0 ⊂ V represent the points over O/p with 0-dimensional tangent

space.
4. W ← {}; V1 = V \ V0

5. FOR v ∈ V0:
6. v ← Hensel lift of v to precision r using a suitable subset {fi1 , . . . , fin

}
7. IF for all i we have ν(fi(v)) ≥ r THEN
8. Add v to W
9. ELSE

10. Discard v
11. FOR v ∈ V1:
12. gi ← fi(v1 + πy1, . . . , vn + πyn) for i = 1, . . . ,m
13. FOR w ∈ IntegerPoints(r− 1, g1, . . . , gm):
14. Add (v1 + πw1, . . . , vn + πwn) to W
15. RETURN W

Obviously, if Y has some higher multiplicity O-point, then succesive ap-
proximations to it will be in V1 and never in V0. The algorithm recurses
infinitely. Therefore, if IntegerPoints gets called with r ≤ 0, an error should
be generated, indicating that the scheme Y has points that do not separate
below the requested precision level. An alternative is to return such points as
non-separating approximations to possible solutions and return them. These
give the user neighbourhoods that could not be resolved at the requested
precision.

It should also be clear, and this is an essential problem, that step 7 only
tests that v is approximately on Y . While v can be uniquely lifted to arbitrary
precision r′ using {fi1 , . . . , fin} (provided the fi themselves are given to suf-
ficient precision), it may be that this lift does not satisfy the other equations
to precision r′, but that it did to precision r. Obviously, if Y is presented as a
complete intersection and n = m, then this problem will not arise. Otherwise,
the best one can do is to assume that the user supplies a sufficiently high r
to begin with.

5.2 Determining solvability of complete intersections

Let X ⊂ Pn be a complete intersection defined over a number field K of
dimension d. We assume that X is equidimensional, which means that its
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maximal components are all of dimension d. This condition is certainly met
if X is irreducible. Let X ′ denote the reduced singular subscheme.

Let L be the completion of K at some finite prime. First we assume X ′(L)
is empty. In this case, our task is to decide if X(L) contains any non-singular
points. We follow the same approach as in Section 5.1 and note that, again,
it is sufficient to solve the problem for integral points on affine complete
intersections Y :

Algorithm HasNSIntegralPoints(f1, . . . , fn−d):

1. (f1, . . . , fn−d)← Saturate(f1, . . . , fn−d).
2. Let V ⊂ On be a set of representatives of the solutions of f1 = · · · =

fn−d = 0 in O/p.
3. IF any of the points in V represent a point over O/p with a d-dimensional

tangent space:
4. RETURN true
5. FOR v ∈ V :
6. gi ← fi(v1 + πy1, . . . , vn + πyn) for i = 1, . . . , n− d
7. IF HasNSIntegralPoints(g1, . . . , gn−d):
8. RETURN true
9. RETURN false

Since we assume that Y is a complete intersection, the problem of step 7
in Section 5.1 does not arise.

The strategy to determine if X(L) is empty is now straightforward:

Algorithm CIHasPoints(X,L):

1. if X ′(L) is nonempty, then X(L) is nonempty
2. otherwise, use HasNSIntegralPoints on the affine patches of X to decide

if X(L) is nonempty.

Obviously, step 1 can only be decided if X ′ is of one of the types we have
considered before, i.e., X ′ is empty, dim X ′ = 0 or X ′ is a complete intersec-
tion. One may be able to show that X ′(L) is empty by showing that some
complete intersection containing X ′ has no points over L, but the converse
does not hold.

In order to compute X ′, it is essential that X is represented exactly over
some field allowing exact arithmetic, because only then do Groebner basis
algorithms allow for the computation of the radical of an ideal.

5.3 Solvability of smooth curves

In this section we consider a reduced scheme X ⊂ P2 given by a single equation
f(x, y, z) = 0. We present an algorithm to determine the local solvability of
the desingularisation X̃ of X. As in Section 5.2, we note that it is sufficient
to solve the problem for integral points on affine curves Y : f(x, y) = 0
and to a large extent, the algorithm is the same. The only difference occurs
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in how singular points in Y (O) are treated. Instead of considering them as
rational points, we blow up Y at the singularity and remove the exceptional
component. We then look for L-valued points on the resulting scheme.

First, let us study how to blow up an affine curve in (0, 0). Therefore, let
f ∈ O[x, y] describe a curve in A2 with a singularity at (0, 0) and no other
O-valued singularities. We resolve the singularity by blowing up A2 at (0, 0).
This means we take the inverse image under

β : {xv = yu} ⊂ P2 × A2 → A2

(u : v;x, y) 7→ (x, y)

Note that any point (u : v;x, y) that has an image (x, y) ∈ A2(O) under β has
a representative of one of the forms (u : 1;x, y) or (1 : πv;x, y) with u, v ∈ O.
Hence, any integral point on β−1Y is covered by an integral point on one of
β−1

1 Y or β−1
2 Y , where

β1 : A2 → A2,
(u, y)→ (uy, y)

β2 : A2 → A2,
(v, x)→ (x, πxv)

To remove the exceptional component from β−1
1 Y : f(uy, y) = 0, compute

Y1 : f1(u, y) = f(uy, y)/u(highest possible power).

The curve Y1 may have new singularities, but since Y1 is isomorphic to Y
outside u = 0, any integral-valued singularities will have u = 0. The singular
points of Y1 can be easily described as

Y ′
1(O) =

{
(u, 0) : u ∈ O and f1(u, 0) =

∂f1

∂u
(u, 0) =

∂f1

∂y
(u, 0) = 0

}
and can be computed using univariate root finding for polynomials over O.
Of course, in practice, an expression like “= 0” should be interpreted as “is
indistinguishable from 0 at the given precision”. For β−1

2 Y we can proceed
similarly.

Given a list S of integral-valued singularities, one can check the desingu-
larisation of Y : f(x, y) = 0 for integral points:

Algorithm HasSmoothIntegralPoints(f,S):

1. f ← f/πν(f)

2. IF S = {(x0, y0)}:
3. f ← f(x + x0, y + y0)
4. f1 ← f(uy, y)/u(highest possible power)

5. S1 ←
{

(u, 0) : u ∈ O and f1(u, 0) = ∂f1
∂u (u, 0) = ∂f1

∂y (u, 0) = 0
}

6. IF HasSmoothIntegralPoints(f1, S1): RETURN true
7. f2 ← f(x, πxv)/v(highest possible power)
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8. S2 ←
{

(v, 0) : v ∈ O and f2(v, 0) = ∂f2
∂v (v, 0) = ∂f2

∂x (v, 0) = 0
}

9. IF HasSmoothIntegralPoints(f2, S2): RETURN true
10. ELSE
11. Let V ⊂ O2 be a set of representatives of the solutions of f = 0 in O/p.
12. IF a point in V represents a nonsingular point over O/p: RETURN true
13. FOR (x0, y0) ∈ V :
14. g ← f(x0 + πx, y0 + πy)
15. S′ ← {((x1 − x0)/π, (y1 − y0)/π) : (x1, y1) ∈ S}
16. Remove any non-integral entries from S′

17. IF HasSmoothIntegralPoints(g, S′): RETURN true
18. RETURN false

To determine local solvability of the desingularisation of a reduced projec-
tive plane curve X ⊂ P2, one can determine the reduced singular subscheme
X ′ of X, find X ′(L) using Section 5.1 and apply HasSmoothIntegralPoints to
each affine patch of X, using X ′(L) to initialise S.

5.4 Solvability of hyperelliptic curves

In this section, we adopt Magma’s terminology and understand hyperelliptic
curve to mean nonsingular double cover of P1. Some geometric hyperelliptic
curves can be represented in this category (but not the ones that have a
twisted P1 as a canonical model). Conics and some curves of genus 1 also fit
in this category.

We represent such curves as a nonsingular curve in weighted projective
space P(1,d,1) with coordinates (x, y, z) and a model of the form

C : y2 + h(x, z)y = f(x, z).

Over fields of odd characteristic we can complete the square and without loss
of generality, we can assume h = 0. In this case, the nonsingularity of C
means that f(x, z) is a square-free form of degree 2d and a simple application
of Riemann-Hurwitz shows that C is of genus d− 1.

Of course, to decide if a hyperelliptic curve has points over L, one could
cover it with two non-singular affine patches and use Section 5.3. One can also
use [2, Appendix A.2], which is slightly more efficient. Both these algorithms
are essentially polynomial in #O/p, though. We can do better if O/p is of
odd characteristic and satisfies

(#O/p)− 2(d− 1)
√

#O/p > 0.

We generalise an algorithm that is presented for d = 2 in [20] and [18]. It is
based on the fact that a curve defined over a finite field of large cardinality
compared to the genera of the components, must be very singular not to have
any nonsingular rational points.
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Since multiplying f with an even power of π does not change the local
solvability of y2 = f(x, z), we can assume f ∈ O[x, z] with 0 ≤ ν(f) ≤ 1.

Note that if ν(f) = 0, any point (x : y : z) ∈ P(1,d,1)(O/p) satisfying
y2 = f(x, z) with y 6= 0 or (x : z) a zero of f of multiplicity 1 is a nonsingular
point on C and hence Hensel-lifts to a point in C(L). If we can show such a
point exists, then C(L) is not empty. We distinguish the following cases.

1. ν(f) = 1. If x, z ∈ O such that f(x, z) is a square, then in particular,
ν(f(x, z)) ≡ 0 mod 2. Hence, (x : z) must be a root of f/π in O/p. For
any such root we take a representative (x0, z0) ∈ sO2 and we test y2 =
f(x0+πx, z0+πz)/π2 for local solvability. If any of those cases is solvable,
then so is the original equation. If none is, or if no roots are avaliable, then
y2 = f(x, z) has no solutions.

2. ν(f) = 0 and f = α(g(x, z))2 with α a non-square in O/p. If x, z ∈ O such
that f(x, z) is a square, then g(x, z) = 0. Hence we take representatives
(x0, z0) ∈ O2 for the roots of g and test y2 = f(x0 + πx, z0 + πz) for
local solvability. If any of those cases is solvable, then so is the original
equation. If none is, or if no roots are avaliable, then y2 = f(x, z) has no
solutions.

3. ν(f) = 0 and f = α(g(x, z))2 with α a nonzero square in O/p. We take
(x0, z0) ∈ O to represent a non-root of g in P1(O/p). Note that g has at
most d roots, while #P1(O/p) = #O/p + 1 > 2(d − 1) points, so this is
easy. Then f(x0, z0) is a square, because it represents a non-zero square
in O/p. Therefore, the original equation is solvable.

4. In all other cases, f = g1(x, z)(g2(x, z))2, where g1 is square-free and
deg(g1) + 2 deg(g2) = 2d. The curve D : y2

1 = g1(x, z) is a hyperelliptic
curve over O/p of genus (deg(g1) − 2)/2 and hence, by the Hasse-Weil
bounds, has at least

(#O/p)− 2(d− 1)
√

#O/p + (2 deg g2 + 2)
√

#O/p

points. It follows that D must have points (x, y1, z) with g2(x, z) 6= 0. Since
the higher multiplicity roots of f are exactly the roots of g2, it follows that
y2 = f(x, z) has a non-singular point, which is Hensel-liftable. It follows
that C(L) is non-empty.

These cases lead directly to a recursive algorithm, where the most difficult
operation is factorisation of univariate polynomials of degree at most 2d over
a finite field. The branching degree of the algorithm is bounded by 2d as well
and not (as is the algorithm in Section 5.3), essentially by #O/p.
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6 Mordell-Weil groups of Elliptic curves

The Mordell-Weil group of an abelian variety A over a number field K is the
set of K-rational points A(K). The abelian variety structure of A induces a
group structure on A(K). A celebrated theorem of Weil, which for elliptic
curves over Q was already proved by Mordell, states that A(K) is a finitely
generated commutative group. Actually determining A(K), even in the case
where A is an elliptic curve and K = Q, is still more an art than a science.
However, even an artist works better if he has proper tools available. In this
chapter, we introduce the tools that Magma offers to determine Mordell-Weil
groups of elliptic curves over number fields. The Magma implementation is
based on [3].

First, we review some of the fundamental definitions connected to the
subject. We do not give much detail, since many other excellent descriptions
already exist (see for instance [21]). Computational concerns that arise specif-
ically when applying the methods outlined here to elliptic curves over number
fields are addressed in [22].

Let E be an elliptic curve over a number field K. In order to bound the
free rank of E(K), we bound the size of E(K)/2E(K). For this, we use the
2-Selmer group of E over K. From the exact Galois-cohomology sequence

0→ E(K)/2E(K)→ H1(K, E[2])→ H1(K, E)

we derive a set that approximates the image of E(K)/2E(K) in H1(K, E[2])
everywhere locally. We define S(2)(E/K) to be the intersection of the kernels
of H1(K, E[2])→ H1(Kp, E) for all primes p of K:

0→ S(2)(E/K)→ H1(K, E[2])→
∏
p

H1(Kp, E).

Clearly, S(2)(E/K) provides a sharp bound, unless H1(K, E[2]) maps to any
cocycle in H1(K, E) that trivialises under all restrictions Gal(Kp) ⊂ Gal(K).
The group consisting of such cocycles is called the Shafarevich-Tate group
III(E/K) and we have the exact sequence

0→ E(K)/2E(K)→ S(2)(E/K)→ III(E/K)[2]→ 0.

The group S(2)(E/K), as a Galois-module, can be represented in the fol-
lowing way (see [9]). For an elliptic curve

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

we define the following algebra:

A[θ] = K[X]/(X3 + a2X
2 + a4X + a6 + (a1X + a3)2/4).

The Galois-module H1(K, E[2]) can be identified with the subgroup of A∗/A∗2

consisting of the elements of square norm and for some suitable, effectively
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computable, set S of primes of K, we have S(2)(E/K) ⊂ A(2, S). The map
µ : E(K)→ S(2)(E/K) is induced by (x, y) 7→ x− θ where x− θ ∈ A∗.

Magma computes S(2)(E/K) by computing the local images of

E(Kp)→ A∗/A∗2 ⊗Kp

and computing the elements from A(2, S) of square norm that land in these
local images. Wherever possible, elements of A(2, S) are left in product rep-
resentation, to avoid coefficient blowup.

As an example, we compute S(2)(Ed/K) for d = 2ζ3 − 2ζ2 − 2, as defined
in Section 4.

> _<x>:=PolynomialRing(Rationals());
> K<zeta>:=NumberField(x^4-x^3+x^2-x+1);
> OK:=IntegerRing(K);
> d:=2*zeta^3-2*zeta^2-2;
> E<X,Y,Z>:=EllipticCurve([0,(-3*zeta^3-zeta+1)*d,0,(-zeta^2-zeta-1)*d^2,0]);
> two:=MultiplicationByMMap(E,2);
> mu,tor:=IsogenyMu(two);
> S2E,toS2E:=SelmerGroup(two);S2E;
Abelian Group isomorphic to Z/2 + Z/2 + Z/2 + Z/2
Defined on 4 generators in supergroup:

S2E.1 = $.1 + $.2 + $.6 + $.7 + $.8 + $.9
S2E.2 = $.2 + $.4 + $.7 + $.8
S2E.3 = $.1 + $.2 + $.5 + $.7
S2E.4 = $.3 + $.9

Relations:
2*S2E.1 = 0
2*S2E.2 = 0
2*S2E.3 = 0
2*S2E.4 = 0

So we see that E(K)/2E(K) ⊂ (Z/2Z)4. Part of this corresponds to the image
of the torsion subgroup of E.

> Etors,EtorsMap:=TorsionSubgroup(E);
> sub<S2E|[toS2E(mu(EtorsMap(g))):g in OrderedGenerators(Etors)]>;
Abelian Group isomorphic to Z/2 + Z/2
Defined on 2 generators in supergroup S2E:

$.1 = S2E.3 + S2E.4
$.2 = S2E.1 + S2E.4

Relations:
2*$.1 = 0
2*$.2 = 0

Mapping from: Abelian Group isomorphic to Z/2 + Z/2
Defined on 2 generators in supergroup S2E:

$.1 = S2E.3 + S2E.4
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$.2 = S2E.1 + S2E.4
Relations:

2*$.1 = 0
2*$.2 = 0 to GrpAb: S2E

We conclude that the free rank of E(K) is at most 2. We look for rational
points on E, up to some tiny bound and we see that the found points already
generate E(K)/2E(K).

> V:=MyRationalPoints(E,5);
> sub<S2E|[toS2E(mu(P)):P in V]> eq S2E;
true

We then select some minimal subset of V that generates E(K)/2E(K) and
construct a group homomorphism from an abstract abelian group into G.

> gs:=[E![0,0],
> E![-2*zeta^3 - 2*zeta + 2,0],
> E![-2*zeta^3,-4*zeta^2],
> E![-2*zeta^3 - 4*zeta + 4,-4*zeta^3 + 4*zeta]];
> assert S2E eq sub<S2E|[toS2E(mu(g)):g in gs]>;
> G:=AbelianGroup([2,2,0,0]);
> mwmap:=map<G->E|g:->&+[c[i]*gs[i]:i in [1..#gs]] where c:=Eltseq(g)>;

In fact, we could have left this all to the system and just executed:

> success,G,mwmap:=PseudoMordellWeilGroup(E);
> assert success;

Here, it is of the utmost importance to check that success is true. Only then
is there a guarantee that the returned group is of finite (odd) index in E(K).
If the value false is returned, then only a subgroup is returned that will itself
be 2-saturated in E(K) (meaning that, if 2P ∈ G and P ∈ E(K) then P ∈ G
as well), but need not be of finite index.

In fact, the computation done by PseudoMordellWeilGroup is not com-
pletely equivalent to the computation we did above. By default, if possible,
PseudoMordellWeilGroup uses a 2-isogeny descent (see [21]). For any non-
trivial element of E[2](K), there is an associated 2-isogeny

φ : E → E′,

together with a dual isogeny φ̂ : E′ → E, such that φ̂ ◦ φ = 2|E . In complete
analogy to the 2-Selmer group, we define the φ-Selmer group by considering
the exact sequence

0→ E′(K)/φE(K)→ H1(K, E[φ])→ H1(K, E)

and we define S(φ)(E/K) by insisting on exactness of

0→ S(φ)(E/K)→ H1(K, E[φ])→
∏
p

H1(Kp, E).
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From the exact sequence

0→ E[φ](K)→ E[2](K)→ E′[φ̂](K)→
E′(K)/φE(K)→ E(K)/2E(K)→ E(K)/φ̂E′(K)→ 0

it follows that

4#E(K)/2E(K) = #E′(K)/φE(K) ·#E(K)/φ̂E′(K) ·#E[2](K).

Therefore, we can use φ-Selmer groups to bound the free rank of E(K) as
well. One can compute φ-Selmer groups in the same way as 2-Selmer groups.

> phi:=TwoIsogeny(E![0,0]);
> Sphi,toSphi:=SelmerGroup(phi);
> phihat:=DualIsogeny(phi);
> Sphihat,toSphihat:=SelmerGroup(phihat);
> 4*#S2E, #Sphi, #Sphihat, #TwoTorsionSubgroup(E);
64 2 8 4

Apart from providing an upper bound on the rank of E(K), Selmer groups
also contain information about possible generators of E(K). To access this
information, it is useful to interpret S(2)(E/K) ⊂ H1(K, E[2]) as a set of
twists of the cover E

2→ E. The second return value of IsogenyMu gives a
map that computes such a cover from an element of H1(K, E[2]). The covering
space is represented as an intersection X of two quadrics in P3, with a map
φ : X → E. If the cover represents an element from S(2)(E/K), however, one
can construct a model of X of the form C : v2 = f0u

4 + · · · + f4. A call to
Quartic realises this.

> delta:=S2E.2;
> psi:=tor(delta@@toS2E);
> XX:=Domain(psi);
> C,CtoXX:=Quartic(XX);

One can then search for points on C, which can be mapped back to E.

> V:=MyRationalPoints(C,10);
> assert #V gt 0;
> P:=psi(CtoXX(Rep(V)));P;
(-zeta^3 - 4*zeta^2 - 2*zeta - 2 : -14*zeta^3 + zeta^2 - 6*zeta + 10 : 1)
> assert delta eq toS2E(mu(P));

Note, however, that it is a rarity for it to make sense to search for points on
C as computed. The model computed for C generallly does not have particu-
lary small coefficients and there is no reason to expect that the point we are
looking for will be easier to find on C than on E. Over Q, a rather satisfactory
solution to this problem has been found in the form of a proper minimization
and reduction theory [24], [12]. For other number fields, a satisfactory theory
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is woefully lacking and Magma leaves it to the art and ingenuity of the user
to find a suitable model from the returned one.

The same functionality is available for 2-isogenies as well. Here, the cover
corresponding to an element in the Selmer group naturally has a model of
the form C : v2 = f0u

4 + f2u
2 + f4, and therefore it does make sense

to look for rational points on the covering curve. Therefore, the routine
PseudoMordellWeilGroup uses the following default strategy:

1. If a 2-isogeny is available, this is chosen as isogeny φ, Otherwise full
multiplication-by-2 is used as φ.

2. The φ-Selmer group is computed and, if φ 6= 2, then also the φ̂-Selmer
group is computed.

3. The image of the torsion subgroup is determined in the computed Selmer
groups.

4. The elliptic curve is searched for rational points up to a preset bound
and, if relevant, also the 2-isogenous curve is searched. If the found points
already generate the Selmer group(s), we are done.

5. Otherwise, if φ is a 2-isogeny or if the elliptic curve is defined over Q, the
covers corresponding to elements of the Selmer group that are not repre-
sented by rational points are constructed (and, if reduction is available,
reduced) and searched for points.

6. If this still leaves some elements of the Selmer group(s) not corresponding
to found rational points, then false is returned, together with the group
generated by the found points. Otherwise, true is returned.

One can override the default choice of isogeny and whether or not homoge-
neous spaces should be used for searching for rational points.

If III(E/K)[2] is nontrivial, then obviously neither a 2-descent nor a 2-
isogeny descent will provide a sharp bound on E(K)/2E(K). In this situ-
ation, a 4-descent may give more information ([18] and [25]). For K = Q,
Tom Womack has implemented routines to perform such a computation in
MAGMA. Another option consists of using the Cassels-Tate pairing to obtain
more information (see [10]).

Alternatively, one may use visualisation (see [13]) to obtain more informa-
tion. See [7] for an explicit approach using MAGMA.

7 Chabauty methods using elliptic curves

In this section, we show how, given an elliptic curve E over a number field
K and a map u : E → P1, one can try to determine {p ∈ E(K) : u(p) ∈
P1(Q)}. The method is an adaptation of Chabauty’s partial proof of Mordell’s
conjecture [11] and is described in [5] and [2]. A similar method applied to
bielliptic genus 2 curves is described in [16]. We quickly review the theory
here.
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We write O for the ring of integers of K. and we fix models of E and P1

over O. We choose a prime p such that the primes p1, . . . , pt of K over p are
unramified and such that the cover u : E → P1 has good reduction at each
pi, as a scheme morphism over O.

Let p be a rational prime which is unramified in K. Let p1, . . . , pt be the
primes of K over p. Suppose that u : E → P1 has good reduction at all pi. We
write O for the ring of integers of K, E(O/pi) for the points in the special
fibre of E, considered as a scheme over Opi

and E(1)(Kpi
) for the kernel of

reduction:
0→ E(1)(Kpi)→ E(Kpi)

ρi→ E(O/pi)→ 0

Let g1, . . . , gr ∈ E(K) be generators of the free part of E(K). Then if P0 =
T + n1g1 + · · · + nrgr ∈ E(K) has u(P0) ∈ P1(Q), then certainly (abusing
notation), u(ρi(P0)) ∈ P1(Fp) and in fact u(ρi(P0)) = u(ρj(P0)). The points
P0 ∈ E(K) define a collection of cosets of

Λp =
t⋂

i=1

(
E(K) ∩ E(1)(Kpi)

)
Let Vp be this coset collection and let b1, . . . , br be generators of Λp. In Magma,
both Vp and Λp are easily computed.. We take the the same elliptic curve as in
the previous chapter, together with its (finite index subgroup of the) Mordell-
Weil group and the cover suggested in Section 4.

> P1:=ProjectiveSpace(Rationals(),1);
> u:=map<E->P1|[-X + (zeta^3 - 1)*d*Z,X+(-zeta^3-zeta)*d*Z]>;
> V3:=RelevantCosets(mwmap,u,Support(3*OK));
> Lambda3:=Kernel(V3[1]);
> GmodLambda3:=Codomain(V3[1]);
> V3;
<Mapping from: GrpAb: G to GrpAb: GmodLambda3, {

0,
11*GmodLambda3.2,
GmodLambda3.2,
GmodLambda3.1 + 10*GmodLambda3.2,
5*GmodLambda3.2,
7*GmodLambda3.2,
GmodLambda3.1 + 2*GmodLambda3.2

}>

As is clear, the coset data is returned as a tuple consisting of the map G →
G/Λp, together with the collection of cosets, represented as elements of G/Λp.
We can compute a similar coset collection Vq and intersect it with Vp. This
gives a new coset collection mod Λp + Λq. Alternatively, one could project
Vp ∩ Vq down to get again a coset collection modulo Λp. This is what in
Magma is called a Weak coset intersection.
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> V11:=RelevantCosets(mwmap,u,Support(11*OK));
> V3i11:=CosetIntersection(V3,V11:Weak);
> V3i11;
<Mapping from: GrpAb: G to GrpAb: GmodLambda3, {

0,
11*GmodLambda3.2,
GmodLambda3.2,
5*GmodLambda3.2,
7*GmodLambda3.2

}>

In order to bound the number of points P ∈ E(K) with u(P ) ∈ P1(Q), we
make use of the formal group description of the group structure on E. Let
b1, . . . , br be generators of Λp ⊂ E(K). In terms of formal power series, there
are isomorphisms

ExpE : K[[z]]→ E(K[[z]]),LogE : E(K[[z]])→ K[[z]],

where z is a local coordinate on E around the origin. These power series
converge on E(1)(Kp) for unramified primes of odd residue characteristic and
establish an isomorphism E(1)(Kp) ' pOp. Therefore, for each prime pi we
obtain a power series

θP0,i(n1, . . . , nr) = u

P0 + ExpE

 r∑
j=1

njLogE(bj)

 ∈ Opi [[n1, . . . , nr]].

If u(P0+n1b1+· · ·+nrbr), then θP0,i(n1, . . . , nr) ∈ Qp and θP0,i(n1, . . . , nr) =
θP0,j(n1, . . . , nr). Using that Opi

is a finite Zp-module, we can decompose

Opi [[n1, . . . , nr]] = ⊕Zp[[n1, . . . , nr]]

and express the above equations as [K : Q] − 1 equations in Zp[[n1, . . . , nr]].
We can do this in Magma:

> P0:=mwmap(G.3+G.4);
> u(P0);
(-3 : 1)
> theta:=ChabautyEquations(P0,u,mwmap,Support(3*OK));
> PrintToPrecision(theta[1],1);"";PrintToPrecision(theta[2],1);"";PrintToPrecision(theta[3],1);
O(3^5) - (3 + O(3^5))*$.1 + (3^2*10 + O(3^5))*$.2
O(3^5) - (3*29 + O(3^5))*$.1 - (3*32 + O(3^5))*$.2
O(3^5) - (3^2*5 + O(3^5))*$.1 - (3^4 + O(3^5))*$.2>

A consequence of the shape of ExpE(z) is that the power series returned by
ChabautyEquations have the property that the coefficient c of a monomial
of total degree d satisfies ordp(c) ≥ d − bordp(d!)c. In particular, from the
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power series above, one can see that any integral solution (n1, n2) must satisfy
n1 ≡ n2 ≡ 0 mod 3 and, since

det
(
−1 0
−29 −32

)
6≡ 0 mod 3,

by Hensel’s lemma such an integral solution lifts uniquely to (0, 0). In other
words, there is at most one point in the coset G3 +G4 +Λ3 that has a rational
image under u. One can do similar arguments for the other fibres of reduction:

> N,V,R,C:=Chabauty(mwmap,u,3:Aux:={7});
> assert N eq #V;
> assert #C[2] eq 0;
> R;
4
> V;
{

0,
G.3 - G.4,
-G.3 + G.4,
G.3 + G.4,
-G.3 - G.4

}
> {EvaluateByPowerSeries(u,mwmap(P)):P in V};
{ (-1 : 1), (-1/3 : 1), (-3 : 1) }

To interpret the above results, consider that in the previous computations,
we have not really used that we have generators of E(K). In fact, for this
particular example, we don’t know we have. We only know we have generators
of some finite odd index subgroup G. For the finite field arguments, we only
need that the [E(K) : G] is prime to [E(O/pi) : ρi(G)] for each of the i.
Since the power series argument works for n1, n2 ∈ Zp, we only need that
that [E(K) : G] is prime to p as well. However, when computing LogE(bj),
we can often already deduce that p - [E(K) : G].

We only need G to be q-saturated in E(K) for finitely many l. The l that
are encountered during the computations, are collected as prime divisors of
R. In our case, this is only 2 and since we already know G to be 2-saturated
in E(K), any conclusions we draw from G will also be valid for E(K). The
interpretation of the other return values can be stated as follows.

#{P ∈ E(K) : u(P ) ∈ P1(Q)} ≤ N

V ⊂ {P ∈ E(K) : u(P ) ∈ P1(Q)} ⊂ V ∪ C

Here, C is a coset collection of the type we described before. Note that if
#V = N then all inequalities above are identities.

The routine Chabauty only tries a limited number of techniques to de-
termine p-adic solution and only with finite precision. It uses an adaptation
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of the algorithm in Section 5.1 to find solutions of multiplicity 1 and it uses
a generalisation of [2, Lemma 4.5.1] to test if the solution (0, . . . , 0) is the
only integral solution of possibly higher multiplicity. It may therefore fail to
produce a finite bound at all. In that case, N =∞ is returned.

As an advanced example, we also give the computation for d = −3ζ3 −
7ζ2 − 8ζ − 9.

> d:=-3*zeta^3-7*zeta^2-8*zeta-9;
> E<X,Y,Z>:=EllipticCurve([0,(-3*zeta^3-zeta+1)*d,0,(-zeta^2-zeta-1)*d^2,0]);
> P1:=ProjectiveSpace(Rationals(),1);
> u:=map<E->P1|[-X + (zeta^3 - 1)*d*Z,X+(-zeta^3-zeta)*d*Z]>;
> success,G,mwmap:=PseudoMordellWeilGroup(E);
> assert success;
> [mwmap(P):P in OrderedGenerators(G)];
[ (-41*zeta^3 + 18*zeta^2 - 14*zeta + 42 : 0 : 1), (0 : 0 : 1), (-5*zeta^3 + 6*zeta^2 + 9 :

-69*zeta^3 + 17*zeta^2 - 34*zeta + 60 : 1), (-6*zeta^3 + 3*zeta^2 - zeta + 6 : 57*zeta^3 -
16*zeta^2 + 27*zeta - 51 : 1), (-36*zeta^3 + 8*zeta^2 - 20*zeta + 32 : 10*zeta^3 + 72*zeta^2 +
60*zeta + 62 : 1) ]

> N,V,R,C:=Chabauty(mwmap,u,3);
> C31,R31:=RelevantCosets(mwmap,u,Support(31*OK));
> R:=LCM(R,R31);
> Cnew:=CosetIntersection(C,C31:Weak);
> assert #Cnew[2] eq 0;
> R;
2
> V;
{

0,
G.4 - G.5,
-G.4 + G.5

}
> {EvaluateByPowerSeries(u,mwmap(P)):P in V};
{ (3/2 : 1), (-1 : 1) }

An interesting feature of this example is, that the 3-adic argument by itself is
not sufficient. We see that there are two 3-adic “ghost” solutions. The 3-adic
computation did come up with a rather precise 3-adic approximation of these
putative solutions. The cosets are disjoint from V31, so we proved that they
indeed only correspond to Z3-solutions and not rational ones.

Incidentally, specifying 31 as an “auxiliary” prime, such that V3 and V31

get intersected before the 3-adic argument, would have solved this particular
equation as well, as would 191 by itself.

The other 3 values of d mentioned in Section 4 can be solved in a similar
way, either with p = 31 or p = 191.



26 Nils Bruin

8 The equations xn + yn = Dz2 for n = 6, 7, 9, 11, 13, 17

The proof of Theorem 2 for the remaining cases is straightforward and, in
many cases, easier than for n = 5, because there are no non-trivial solutions.
For each n, we outline a successful strategy. For full details, we refer the reader
to the accompanying electronic resource [6].

x6 + y6 = Dz2: Since 6 is even, we can reduce the genus (and the number)
of the curves to consider tremendously. Note that a solution with y 6= 0
corresponds to a rational point on the genus 2 curve Y 2 = DX6 + D. For
D ∈ {2, 3, 5, 6, 10, 11, 13, 17}, we conclude that only for D = 2 does this
curve have points over Q2 and Q7. Following the same approach as in [4],
we write 2X6 + 2 = (2X2 + 2)(X4 −X2 + 1) and we conclude that any
point (X, Y ) corresponds to a solution (X, Y1, Y2) of

dY 2
1 = 2X2 + 2, dY 2

2 = X4 −X2 + 1

for d ∈ Q(2, {2, 3}). Only for d = 1 does this system of equations have
solutions over Q2. The curve Y 2

2 = X4 −X2 + 1 only has rational points
with X ∈ {−1, 0, 1,∞}.

x7 + y7 = Dz2: We note that any solution corresponds to a solution to

Cd : Y 2 = d(X6 −X5 + X4 −X3 + X2 −X + 1)

for some d ∈ Q(2, S), where S contains the prime divisors of 7D. For
the relevant values of D, only d = 1, 7 yield curves with points over
R, Q2, Q7, Q11.
With [23] it is straightforward to check that Jac(C7)(Q) is of free rank
1 and using Stoll’s implementation of [17], (3-adically), one finds that all
rational points have X = −1.
For C1, one uses [5] and the techniques outlined in Section 7 to show that
all rational points have X ∈ {−1, 0, 1,∞}

x9 + y9 = Dz2: We factor:

y2
1 = d1(x6 − x3z3 + z6)

y2
2 = d2(x2 − xz + z2)

y2
3 = Dd1d2(x + 1)

and note that any primitive solution (x, y, z) gives rise to a solution of the
system above for d1, d2 ∈ Q(2, S), where S contains the prime divisors of
3D. Furthermore, because gcd(x, z) = 1, we have gcd(d1, d2) | 3.
We can dehomogenize the first two equations and if we test them for
simultaneous solvability over R, Q2, Q3, Q5, we are only left with d1 ∈
{1, 3}. The first equation gives rise to a curve of genus 2 with a Mordell-
Weil group of free rank 1. Again, [17] yields that all points have X ∈
{−1, 1, 0,∞}.



Some ternary Diophantine equations of signature (n, n, 2) 27

x11 + y11 = Dz2: Using the same argument as for n = 7, we find all that
solutions correspond to rational points on

Cd : Y 2 = d(X10 −X9 + · · · −X + 1)

for d ∈ {1, 11}. Rather than applying [8] to Cd directly, we substitute
(U, V ) = ((X2 + 1)/X, Y + Y/X) to find the covered curve

Dd : V 2 = d(U6 + U5 − 6U4 − 5U3 + 9U2 + 5U − 2).

For d = 1 the free rank of the Mordell-Weil group is bounded above by
2 and for d = 11 the free rank is bounded by 1, but we could not find
a generator. Using the techniques from [5], we find that U(D1(Q)) ⊂
{−2,−1, 2,∞} and that U(D11)(Q)) ⊂ {−2,−1, 1, 2,∞}. From this, it
follows easily that Cd only has rational points above X ∈ {−1, 0, 1,∞}
for d = 1, 11.

x13 + y13 = Dz2: Using the same argument as for n = 7, we find that all
solutions correspond to rational points on

Cd : Y 2 = d(X12 −X9 + · · · −X + 1)

for d ∈ {1, 13}. For d = 13 we substitute (U, V ) = ((X2 + 1)/X, Y/X3) to
obtain

Dd : V 2 = 13(U6 − U5 − 5U4 + 4U3 + 6U2 − 3U − 1).

Following [17] yields that U(D13(Q)) ⊂ {−2}, which corresponds to X =
−1.
For d = 1 we get a bound on the Mordell-Weil rank of 2, so we use that
over Q(β) with β3 − β2 − 4β + 1 = 0, we have a quartic factor

X4 + βX3 + (β2 + β − 1)X2 + βX + 1

of (X13 + 1)/(X + 1). Using [8] and [5] we find X(C1(Q)) ⊂ {0, 1,∞}.

x17 + y17 = Dz2: Using the same argument as for n = 7, we find that all
solutions correspond to rational points on

Cd : Y 2 = d(X16 −X9 + · · · −X + 1)

for d ∈ {1, 17}. Over K = Q(β) with β4 + β3 − 6β2 − β + 1 = 0 we have

R(X) := X4 + βX3 + 1/2(−β3 + 6β + 1)X2 + βX + 1

with NK/QR(X) = (X17 + 1)/(X + 1). Hence, any rational point on Cd

has an X-coordinate corresponding to a rational point on

Dδ : V 2 = δR(X).
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for some δ ∈ K(2, S) with dNK/Q(δ) a square, where S contains the primes
above 2 · 17 · δ.
Local arguments show that only δ = 1, β3+2β2−3β+1 need consideration.
The techniques from Section 7 then show that X(Cd(Q)) ⊂ {−1, 0, 1,∞}
for d = 1, 17.
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l’irrégularité est supérieure à la dimension. C. R. Acad. Sci. Paris, 212:1022–
1024, 1941.

12. J. E. Cremona. Reduction of binary cubic and quartic forms. LMS J. Comput.
Math., 2:64–94 (electronic), 1999.

13. John E. Cremona and Barry Mazur. Visualizing elements in the Shafarevich-
Tate group. Experiment. Math., 9(1):13–28, 2000.

14. Henri Darmon and Andrew Granville. On the equations zm = F (x, y) and
Axp + Byq = Czr. Bull. London Math. Soc., 27(6):513–543, 1995.

15. Claus Fieker. p-Selmer groups of number fields. Private communication.
16. E. Victor Flynn and Joseph L. Wetherell. Finding rational points on bielliptic

genus 2 curves. Manuscripta Math., 100(4):519–533, 1999.
17. E.V. Flynn. A flexible method for applying chabauty’s theorem. Compositio

Mathematica, 105:79–94, 1997.
18. J. R. Merriman, S. Siksek, and N. P. Smart. Explicit 4-descents on an elliptic

curve. Acta Arith., 77(4):385–404, 1996.



Some ternary Diophantine equations of signature (n, n, 2) 29

19. Bjorn Poonen and Edward F. Schaefer. Explicit descent for jacobians of cyclic
covers of the projective line. J. reine angew. Math., 488:141–188, 1997.

20. Samir Siksek. Descent on curves of genus 1. PhD thesis, University of Exeter,
1995.

21. Joseph H. Silverman. The Arithmetic of Elliptic Curves. GTM 106. Springer-
Verlag, 1986.

22. Denis Simon. Computing the rank of elliptic curves over number fields. LMS J.
Comput. Math., 5:7–17 (electronic), 2002.

23. Michael Stoll. Implementing 2-descent for Jacobians of hyperelliptic curves.
Acta Arith., 98(3):245–277, 2001.

24. Michael Stoll and John E. Cremona. Minimal models for 2-coverings of elliptic
curves. LMS J. Comput. Math., 5:220–243 (electronic), 2002.

25. Tow Womack. Four descent on elliptic curves over Q. PhD thesis, University
of Nottingham, 2003.





Index

AbsoluteAlgebra, 7
ChabautyEquations, 23
Chabauty, 24
IsogenyMu, 20
MordellWeilGroup, 4
PseudoMordellWeilGroup, 19
Quartic, 20
SwapExtension, 6

abelian, 17, 19
affine, 11, 13–15
algebra, 2, 4–7, 17
algebraic, 2, 4
algorithm, 2, 4, 10–13, 15, 16, 25
arithmetic, 2, 10, 13

Bennett, 1
bijection, 6
blowup, 18
branching, 16

cardinality, 15
Cassels, 21
Chabauty, 21
characteristic, 2, 10, 15, 23
cocycle, 17
cohomology, 17
commutative, 17
completion, 13
component, 13–15
Conics, 15
connected, 17
coset, 22, 24, 25
cover, 2, 5–9, 14, 15, 20–22, 27

covering, 20, 21
covers, 2, 6, 8, 9, 21
cremona, 20
curve, 1–6, 8–10, 13–17, 21, 22, 26, 27
curves, 1–4, 6, 8, 10, 13, 15, 17, 21, 26

decomposition, 7
descent, 6, 19, 21, 26
descents, 6
desingularisation, 13–15
dimension, 10–13
divisors, 5, 24, 26
dual, 19

echelon, 11
Elliptic, 17
elliptic, 1–3, 9, 10, 15–17, 21, 22
embedding, 6
equidimensional, 12
exact, 5, 11, 13, 16, 17, 19, 20
exactness, 19
extension, 10

factorisation, 11, 16
Fermat, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19,

21, 23, 25, 27, 29
Fieker, 5
formal, 23

Galois, 1, 5, 17
genus, 1, 5, 6, 15, 16, 26
geometric, 2, 10, 15
Groebner, 13

Hasse, 16



32 Index

Hensel, 11, 12, 16, 24
homogeneous, 4–6, 21
homomorphism, 8, 19
Hurwitz, 15
hyperelliptic, 2, 10, 15, 16

intersection, 10, 12, 13, 17, 20, 22
isogenies, 21
isogenous, 21
isogeny, 2, 19, 21
isomorphism, 6, 23
isomorphisms, 23

jacobian, 6

kernel, 17, 22
kernels, 17

lift, 11, 12, 16, 24
liftable, 11, 16
lifted, 12
lifts, 16, 24

mapped, 20
mapping, 9
maps, 5, 8, 14, 17, 18
maximal, 10, 13
minimal, 11, 19, 20
minimization, 20
minimum, 10
model, 6, 9, 10, 15, 20–22
models, 22
modular, 1
Mordell, 2, 4, 16, 17, 19, 21, 22, 26, 27
morphism, 6, 8, 19, 22, 23

neighbourhoods, 12
nonsingular, 15, 16
nonsingularity, 15
norm, 1, 4, 7, 10, 17, 18
normalised, 10

pairing, 21
parametrise, 2
parametrising, 4, 8
planar, 10
plane, 15
primitive, 2, 4, 7, 26
pullback, 6

quadrics, 20
quartic, 27

radical, 13
ramified, 5, 6, 22, 23
rank, 2–4, 17, 19, 20, 26, 27
ranks, 2, 17
reduce, 10, 11, 13, 15, 21, 26
reduced, 10, 13, 15, 21
reduction, 20–22, 24
represent, 1, 5, 7, 9, 11–18, 20–22
representable, 11
representation, 1, 7, 18
representations, 1
representative, 5, 9, 11–16
representatives, 5, 9, 12, 13, 15, 16
represented, 9, 11, 13, 15, 17, 20–22
represents, 15, 16, 20
residue, 2, 10, 23
restrictions, 17
resultants, 11
Riemann, 15

Saturate, 11–13
saturated, 19, 24
scheme, 2, 10–15, 22
schemes, 2, 10
Selmer, 2, 4, 17, 19–21
Shafarevich, 17
siksek, 15
singularities, 14
singularity, 14, 15
Skinner, 1
smooth, 10, 13, 15, 16
solution, 1–6, 8, 10–13, 15, 16, 20, 24–27
solutions, 1–4, 6, 8, 10–13, 15, 16, 25–27
Solvability, 13, 15
solvability, 2, 3, 10, 12, 13, 15, 16, 26
solvable, 7, 16
Stoll, 26
subcover, 2, 6, 8
subcovers, 2
subgroup, 1, 7, 17–19, 21, 22, 24
subgroups, 1
subscheme, 13, 15
Supp, 1, 22

Twist, 1
twisted, 15



Index 33

twists, 6, 20

unramified, 6, 22, 23

visualisation, 21

Weak, 22

Weierstrass, 9

weighted, 6, 15

Weil, 2, 4, 16, 17, 19, 21, 22, 26, 27

Womack, 21

words, 24




