## Visualising $\amalg [2]$ in Abelian surfaces

Nils Bruin (PIMS, SFU, UBC)







## **Setting**

- *K* is a number field.
- Elliptic Curve  $E: y^2 = x^3 + a_2 x^2 + a_4 x + a_6 = F(x)$  with  $F(x) \in K[x]$ .
- Rational points E(K) form a finitely generated commutative group.
- $E(K) \simeq \mathbb{Z}^r \oplus E(K)^{\text{tor}}$ . Torsion  $E(K)^{\text{tor}}$  is finite. The rank of E(K) is r.
- The group  $E(K)^{\text{tor}}$  can effectively and practically be determined.
- $E(K)/2E(K) \simeq E[2](K) \oplus (\mathbb{Z}/2\mathbb{Z})^r$ , where  $E[2](K) \subset E(K)^{\text{tor}}$ .
- We focus on determining E(K)/2E(K).

### The Selmer group

From

$$0 \to E[2] \to E \xrightarrow{2} E \to 0$$

we obtain

$$0 \mapsto E(K)/2E(K) \to H^1(K, E[2]) \to H^1(K, E)[2].$$

The set  $H^1(K, E[2])$  is represented by the *twists* of  $E \xrightarrow{2} E$ :

**That is:** Covers  $T \to E$  that are isomorphic to  $E \xrightarrow{2} E$  over  $\overline{K}$ .

The image E(K)/2E(K) in  $H^1(K, E[2])$  are those T with  $T(K) \neq \emptyset$ .

**By:**  $P \in E(K) \mapsto$  the twist of T with a rational point above P.

An approximation is the 2-Selmer-group:

$$S^{(2)}(E/K) := \left\{ T \in H^1(K, E[2]) : T(K_p) \neq \emptyset \text{ for all primes } p \text{ of } K \right\}.$$

## The Tate-Shafarevich group

By definition,

$$0 \to E(K)/2E(K) \to S^{(2)}(E/K) \to \coprod (E/K)[2] \to 0.$$

The group  $\mathrm{III}(E/K)[2]$  is conjectured to be a square.

In practice it is often (but not always!) trivial.

A 2-descent determines  $S^{(2)}(E/K)$ . Gives upper bound on  $\operatorname{rk}(E(K))$ .

Finding points on E(K) gives lower bound on rank.

Need a way to get good lower bounds on #III(E/K)[2].

**Strategy:** Force a point on  $T \in H^1(K, E[2])$  (by base extension). Try and see if anything changed.

#### **Subcovers**

*E* is a double cover of  $\mathbb{P}^1$  by  $(x,y)\mapsto x$ . It is ramified above F(x)=0 and  $\infty$ .

$$T \to E$$
 is unramified and  $\operatorname{Aut}_{\overline{K}}(T/E) = E[2](\overline{K}) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ .

$$\operatorname{Aut}_{\overline{K}}(T/\mathbb{P}^1) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.$$

Let *L* be the maximal subcover of  $T \to \mathbb{P}^1$  unramified at  $\infty$ .

Then  $T = E \times_{\mathbb{P}^1} L$ .



L is of genus 0. By Hasse's principle, if  $T \in S^{(2)}(E/K)$ , then  $L(K) \neq \emptyset$ .

## Twisting $\coprod[2]$ away

(Example with 2-torsion over  $\mathbb{Q}$  in Kenneth Kramer, *Arithmetic of elliptic curves upon quadratic extension*, TAMS 1981)

Let  $Q \in L(K)$  with image  $x_Q \in \mathbb{P}^1(K)$ .

Take d such that  $F(x_O) = d \cdot \square$ .

$$E^{(d)}: dy^2 = F(x) \text{ and } T^{(d)} = E^{(d)} \times_{p1} L.$$

The curve  $E^{(d)}$  has a rational point above  $x_Q$ . So has  $T^{(d)}$ .

Over  $K(\sqrt{d})$ , we have  $E \simeq E^{(d)}$  and  $T \simeq T^{(d)}$ .

We know  $\operatorname{rk}(E(K(\sqrt{d}))) = \operatorname{rk}(E(K)) + \operatorname{rk}(E^{(d)}(K)).$ 

We hope  $\operatorname{rk}(S^{(2)}(E/K(\sqrt{d}))) < \operatorname{rk}(S^{(2)}(E/K)) + \operatorname{rk}(S^{(2)}(E^{(d)}/K))$ .

### An example

Take  $K = \mathbb{Q}$  and consider the curve (from Schaefer, Stoll):

$$E: y^2 = x^3 - 22x^2 + 21x + 1.$$

It has rank at least 2:  $(0,1),(1,1) \in E(\mathbb{Q})$ 

$$(0,1)+(1,1)=(21,-1)$$
 and  $(0,1)-(1,1)=(25,49)$ .

We compute

$$S^{(2)}(E/\mathbb{Q}) \simeq (\mathbb{Z}/2\mathbb{Z})^4$$

We suspect

$$\coprod (E/\mathbb{Q})[2] = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.$$

# Information on $S^{(2)}(E/\mathbb{Q})$

We write  $T^{[\mathrm{nr}]}$  for elements of  $S^{(2)}(E/\mathbb{Q})$  and  $L^{[\mathrm{nr}]}$  for the curve below it.

| nr | some $x$ -coordinates of points on $L^{[nr]}$ | corresponding ds |
|----|-----------------------------------------------|------------------|
| 0  | $\infty$                                      | 1                |
| 1  | 9/10,13/17                                    | 10,17            |
| 2  | 1                                             | 1                |
| 3  | -4/3, -1/20                                   | -3, -5           |
| 4  | 1/2                                           | 2                |
| 5  | -1/4, -16/23                                  | -1, -23          |
| 6  | -25/4, -9/8, -4/11, -16/15                    | -1, -2, -11, -15 |
| 7  | 1/6,1/17                                      | 6,17             |
| 8  | -1/7, -1/14                                   | -7, -14          |
| 9  | 1/4,1/8,4/13                                  | 313, 2, 13       |
| 10 | 1/12,12/13                                    | 3,13             |
| 11 | -1/2, -1/6                                    | -2, -4038        |
| 12 | $\mid 0$                                      | 1                |
| 13 | -9/2, -1/15, -13/23                           | -2, -15, -23     |
| 14 | 21, 25, -1/18, -1/22                          | 1,1,-2,-2        |
| 15 | 4/5,25/24                                     | 5,6              |

## **Rank information**

| Nail Million attorn |                                                      |                              |                                     |  |
|---------------------|------------------------------------------------------|------------------------------|-------------------------------------|--|
| d                   | x-coords $[nr]$                                      | $\operatorname{rk}(E^{(d)})$ | $\operatorname{rk}(E(K(\sqrt{d})))$ |  |
| -4038               | $-1/6^{[11]}$                                        | 2                            | 4                                   |  |
| -23                 | $[-16/23^{[5]}, -13/23^{[13]}]$                      | 2                            | 4                                   |  |
| -22                 | $-1/22^{[14]}$                                       | 2                            | 6                                   |  |
|                     | $-16/15^{[6]}, -1/15^{[13]}$                         | 3                            | 5                                   |  |
| -14                 | $-1/14^{[8]}$                                        | 2                            | 4                                   |  |
| -11                 | $-4/11^{[6]}$                                        | 1                            | 5                                   |  |
| <b>-7</b>           | $[-1/7^{[8]}]$                                       | 2                            | 4                                   |  |
| -5                  | $-1/20^{[3]}$                                        | 2                            | 4                                   |  |
| -3                  | $-4/3^{[3]}$                                         | 2                            | 4                                   |  |
| -2<br>-1            | $-9/2^{[13]}, -9/8^{[6]}, -1/2^{[11]}, -1/18^{[14]}$ | 3                            | 5                                   |  |
| -1                  | $-25/4^{[6]}, -1/4^{[5]}$                            | 2                            | 4                                   |  |
| 1                   | $0^{[12]}, 1^{[2]}, 21^{[14]}, 25^{[14]}$            |                              | •                                   |  |
| 2                   | $1/8^{[9]}, 1/2^{[4]}$                               | 24                           | 4                                   |  |
| 3                   | $1/12^{[10]}$                                        | 13                           | 5                                   |  |
| 5                   | $4/5^{[15]}$                                         | 13                           | 5                                   |  |
| 6                   | $1/6^{[7]}, 25/24^{[15]}$                            | 24                           | 4                                   |  |
| 10                  | $9/10^{[1]}$                                         | 24                           | 4                                   |  |
| 13                  | $4/13^{[9]}, 12/13^{[10]}$                           | 3                            | 5                                   |  |
| 17                  | $1/17^{[7]}, 13/17^{[1]}$                            | 24                           | 4                                   |  |
| 313                 | $1/4^{[9]}$                                          | 24                           | 6                                   |  |

## Visualisation of III[2]

Idea from Cremona, Mazur. Studied in Modular setting by William Stein.

Put 
$$A=\mathfrak{R}_{K(\sqrt{d})/K}(E)$$
. We have  $0\to E\to A\to E^{(d)}\to 0$ .

Note that E[2] and  $E^{(d)}[2]$  are isomorphic.



## Visualisation of III[2]

Idea from Cremona, Mazur. Studied in Modular setting by William Stein.

Put 
$$A=\mathfrak{R}_{K(\sqrt{d})/K}(E)$$
. We have  $0\to E\to A\to E^{(d)}\to 0$ .

Note that E[2] and  $E^{(d)}[2]$  are isomorphic.



## Visualisation of III[2]

Idea from Cremona, Mazur. Studied in Modular setting by William Stein.

Put 
$$A=\mathfrak{R}_{K(\sqrt{d})/K}(E)$$
. We have  $0\to E\to A\to E^{(d)}\to 0$ .

Note that E[2] and  $E^{(d)}[2]$  are isomorphic.



The map  $E^{(d)}(K) \to H^1(K,E)$  sends  $P \in E^{(d)}(K)$  to the fiber of A over P.

### A more general construction

We don't need  $A=\Re_{K(\sqrt{d})/K}(E)$ .

Take  $E_1$ ,  $E_2$  with  $E_1[2] \simeq E_2[2]$ . We construct A isogenous to  $E_1 \times E_2$ .

$$E_1: y^2 = F(x) = x^3 + a_2 x^2 + a_4 x + a_6$$

$$L_0: y^2 = d(x - a) \qquad C = E_1 \times_{\mathbb{P}^1} L_0: z^2 = F(\frac{y^2}{d} + a)$$

$$E_2: y^2 = d(x - a)F(x)$$



Solve a and d so that  $E_2$  visualises 2 elements of  $S^{(2)}(E_1/K)$  in  $\mathrm{Jac}_C$ .

## **Example of bi-elliptic construction**

Consider (again)  $E_1: y^2 = x^3 - 22x^2 + 21x + 1 = F(x)$  over  $\mathbb{Q}$ .

Take  $x_1 = 9/10^{[1]}$  and  $x_2 = 1/2^{[4]}$ .

Take a and d so that  $d(x_1-a)F(x_1)=\square$  and  $d(x_2-a)F(x_2)=\square$ :

$$a = 1, d = -1.$$

$$C: z^2 = F(-y^2 + 1) = -y^6 - 19y^4 + 20y^2 + 1, \quad E_2: y^2 = -(x+1)F(x)$$

We find

$$\mathrm{rk}(\mathrm{Jac}_C(\mathbb{Q})) \leq 5, \quad \mathrm{rk}(E_2(\mathbb{Q})) = 3.$$

Since  $\operatorname{Jac}_C$  is isogenous to  $E_1 \times E_2$ :

$$\mathrm{rk}(E_1(\mathbb{Q})) = \mathrm{rk}(\mathrm{Jac}_C(\mathbb{Q})) - \mathrm{rk}(E_2(\mathbb{Q}))$$

Again, we find  $\operatorname{rk}(E_1(\mathbb{Q})) = 2$  and  $\operatorname{III}(E_1/\mathbb{Q})[2] = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ .