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Given a curve X of genus g over Q, find X(Q)

» Eg., y2 = x(x —1)(x — 2)(x — 5)(x — 6)
» There are two parts to the problem

> generating points
» knowing when to stop.

» Knowing when to stop includes knowing when not to bother
starting, i.e., deciding if X(Q) is non-empty.

» From now on we assume we are given a point O € X(Q).

» If g =0, we can find an explicit algebraic parameterization of
X(Q) by Q.

» If g =1 we have pretty good methods for finding explicit
generators for X(Q) ~ Z" x (finite group).

> If g > 2, there are only finitely many points (Faltings).
Generating points is easy in practice but knowing when to
stop is hard.



Strange idea: identify X(Q) as a subset of J(Q)

» J, the jacobian of X, is a proper g-dimensional group variety:
why should it be easier to work with?

» Good cohomological machinery for bounding
J(Q) ~ Z" x (finite group) without knowing equations for J.

» Use the Gal(Q/Q)-equivariant isomorphism

{Divisors on X}
{Divisors of functions}

J(Q) ~

L2 X(Q) = J@), P—I[P-0]

» Given [D] € J(Q), look for non-zero functions f with
(f) > =D — O, then P =D + O + (f) is rational.

» What if J(Q) is not finite?



If J(Q) is infinite, we seek analytic functions that vanish
on the rational points

X(Qp)c—> J(Qp)

J

J(Q)

» Chabauty: if dim J(Q) < g, then X(Qp) N J(Q) should be
finite.
» Two approaches to finding the elements of this set explicitly:
> look for analytic functions on J(Q,) that vanish on J(Q) and
find their zeroes X(Q,) (Coleman)
» look for analytic functions on J(Q)) that vanish on X(Q,) and

find their zeroes on J(Q) (Flynn).




Digression: why not use real points?

X(R)— J(R)

J

J(Q)

> Mazur conjectures that J(Q) is open in the Zariski closure of
J(Q).

> Thus, if dim J(Q) < g, then there is a non-trivial quotient A
of J such that A(Q) is finite.

» Could work with X — A.



Find analytic functions using p-adic integration on J(Q))

> For wy € H%(Jg,,Q2"), we have

Q
ns: JQp) — Qp, QH/O wy

characterized uniquely by the following two properties:

1. It is a homomorphism.
2. It is calculated by formal integration on some open U C J(Q)).

» Translation invariance of w gives homomorphism property:
ns(P+ Q) =ny(P)+ C.
» Putting all these together we get the logarithm

log : J(Qp) — T,

where T = Hom(H(Jg,, '), Qp), the tangent space.
» There is a one-to-one correspondence between linear
functionals A on T and differentials w; such that Aolog = 7.



Structure of the closure of the rational points

Lemma
Define r' := dim J(Q) and r := rank J(Q). Then r' <'r.

Proof:

¥ = dim J(Q) = dim log (@) ., and log (J(@)) — Tog J(Q)
r' = rankg, (Zplog J(Q)) < rankz log J(Q) < rankz J(Q) = r.

Theorem (Chabauty)
Suppose g > 2 and that there is a prime p such that r' < g. Then

X(Qp) N J(Q) is finite (and hence so is X(Q)).

» The hypothesis yields 1, on J(Q,) that vanishes on J(Q).

> Restricting this to X(Qp) gives us a locally-analytic function
that vanishes on X(Q).

» Why only finitely many zeros? How to count them?



p-adic integration on the curve X

v

Suppose Xg, has good reduction, with model X over Z.
Then Jg, has a Néron model J, and J, is the jacobian of XF,-
Restriction from Jp, to Xg, induces an isomorphism

A\ 4

H(Jg,, Q) ~ H(Xg,, Q).

v

If w is the restriction of w, to Xg,, define

Q [Q'-Q]
/ W = / wy.
Q 0

If >°(Q! — Q) is the divisor of a function, then Zf(gj’{w =0.
If Q@ and Q' are in the same residue class, then

v

v

B
/ w=F(Q)-FQ)

Q

for a power series F in a local parameter t on X with dF = w.



Integration on residue classes

v

A residue class is the preimage of a point under the reduction
map X(Qp) — X(Fp).

» A parameter t is a regular function on an open neighborhood
of Qin Xp,, whose restriction to the special fiber is a
uniformizer at Q.

» The function t maps the residue class bijectively to pZ,.

> If w is scaled so that it reduces to a nonzero & € H°(Xg,, Q2),
then w = w(t) dt on the residue class for some power series
w(t) € Zp[[t]] such that w(t) # 0 (mod p).

» The function 1 on the residue class is represented by a series
I(t) € Qp[[t]] (possibly no longer in Zp[[t]]) whose derivative
is w(t).



Counting zeros of power series on pZj,

Lemma (Baby Newton)
Suppose f(t) € Qp|[t]] is such that f'(t) € Zp[[t]]. Let

m = ords—o(f'(t) mod p)

If m< p—2, then f has at most m+ 1 zeros in pZp.

Proof. .
Write f(t) = ) ajt’. We have

Vp(ams1) =0,  vp(ai) > —vp(i), i>m+1.

So the Newton polygon of f has slopes greater than —1 to the
right of (m+ 1,0). O

» Coleman gives an estimate for an arbitrary p-adic field.

> If the coefficient of tP~! in f/(t) is in pZp, then one need
assume only m < 2p — 2 to obtain the same conclusion.



In summary: an integral vanishing on rational points

If ' < g, we have w such that

(i) If Qi, Q) € X(Qp) are such that ) (Q! — Q;) is the divisor of
a rational function, or more generally [Z(Q’ Q)] is a

torsion element of J(Q,), then ZIQ w=0.
(i) If Q, Q" € X(Qp) have the same reduction in X(F,), then

/
fg w can be calculated by expanding in power series in a
local parameter t on the curve X.

(iii) If Q;, Q' € X(Qp) are such that [> (Q! — Q)] € J(Q), then
3 fé‘?’/ w = 0.



Theorem (Coleman)
Let X, J,p,r" be as in Chabauty's theorem, suppose p is a prime of
good reduction.
1. Let w satisfy (i)-(iii), and scale so & # 0. Suppose
Q € X(Fp). Let m=ordp&. If m < p — 2, then the number
of points in X(Q) reducing to Q is at most m + 1.

2. If p>2g, then #X(Q) < #X(Fp) + (2g — 2).

Proof.
1. Fix Q € X(Q) reducing to Q. Then fglw =0 for any

Q" € X(Q) reducing to Q. As a function of @', fg/w can be
expressed as a power series /(t). The Lemma applied to /(t)
shows that /(t) has at most m + 1 zeros, so there are at most
m + 1 rational points Q' in the residue class.

2. By the Riemann-Roch theorem, the total number of zeros of

& in X(Fp) is 2g — 2. In particular, m <2g —2 < p—2. Sum
(1) over all Q € X(F,).



Computational effectiveness

» Can have r > g, which makes r’ < g unlikely.
» Could be computationally difficult to bound r, and hence r’.

» The zero set of the integral of w may be strictly larger than
J(Q), even if one uses enough independent integrals.

> If the p-adic submanifolds X(Qp) and J(Q) in J(Qp) are
tangent, it may be impossible to prove that they intersect.
» Even if # (X(QP) N J(Q)) is computed exactly, the true

value of #X(Q) could be smaller; in other words, some of the
intersection points could be irrational points in X(Qp).




Example: y? = x(x — 1)(x — 2)(x — 5)(x — 6)

» This curve has good reduction at p =7, and
X(F7) = {0, (0,0),(1,0),(2,0),(5,0),(6,0),(3,6), (3, =6)}.
» A descent calculation by Gordon and Grant shows that J(Q)

has rank 1. Coleman'’s theorem says #X(Q) < 10.

X(Q) = {,(0,0),(1,0),(2,0),(5,0),(6,0), (3, £6),(10,£120)}.



Example: y? = x% 4+ 8x> + 22x* 4+ 22x3 +5x2 + 6x + 1

Theorem (Flynn-Poonen-Schaefer)

X(Q) = {ocot, 007, (0,£1), (-3, £1)}.
Out of the box, Coleman’s Theorem needs p = 5, which gives
#X(Q) < 9. However X has good reduction at 3, and
X(F3) = {OO+, 0o, (07 :l:]-)}
dx x dx

B =a— + b2
y y

= /X6 £ 8x5 +22x4 +22x3 +5x2 £ 6x +1=1+x2+ -

(I):ﬂ:(X—X?’-f-'--)dX
y

#X(Q) < #X(F3) + (28 —2) =4+ (2-2—-2) =6.



Calculating integrals explicitly

(-3.1) gy -3
/ n :/ (14 6x 4 5x2 + 22x3 + 22x* + 8x> + x0) 12 dx
(0,1) 0
-3
:/ (1 —3x 4 11x% —56x> + - ) dx
0
-3

X2 X3 X4
= —32_ 4115 —856— ...
<X 32 + 3 564 + >

= (-3) = S (3P G (3 -

=2-3+3% (mod 3°)
and similarly

(_371) 2 3 4 5
/ de:<x—3x+llx—56x+--->
(0,1) y 2 3 4 5

=2-32+2-3% (mod 3%).




(Continued)

dx  xdx /(3’1)
W =€ — + — w = O
y (0.1)

(2-343* 4+ )e+(2-3242.33+...) =0,
e=2-343242-3% (mod 3%).

Q:
I(t) = / w, Q= (t, (146t +5¢2+ 226> 4+ 22¢* + 8t° + t°)1/2)
(0.1)

/Q‘ ( dx x dx)
= € — _|_ -
(0,1) y y

t
N / (€ + x)(1 + 6x + 5x% + 22x% + 22x* + 8x° 4 x®)71/2 dx
0

t2 £3
= et+(—3e+1)5+(116—3)§+...



Computing integrals between residue classes

1. Restrict from J(Qp):
> Inside each residue class of J there is torsion point T, which
can be used to set the constant of integration since fOT wy=0.
» Can be chosen to be rational over Q, if it has order prime to p.
2. Set the constant directly on X(Qp) using Coleman’s theory of
p-adic integration and the idea of a Teichmiiller point.

3. Ultimately we care only about the residue classes in J(Qp)
containing a point of J(Q). For each of these residue classes,
we compute an explicit divisor representing a point in J(Q) in
the residue class, and use it to set the constant of integration.
This idea is due to Wetherell.



Elliptic Chabauty

» Can replace X — J by any morphism to an abelian variety
X — A

» Factors through J — A; Chabauty’s argument applies if
rank A(Q) < dim A.

» Special case: X, — E for an elliptic curve E over some finite
extension k of Q

> We get a map from X to A := Resy g E, an abelian variety of
dimension [k : Q] such that A(Q) ~ E(k).

» Typically the induced map J — A will be surjective; in this
case one needs rank E(k) < [k : Q] to apply Chabauty's
argument.



Example: y? = x® + x?> + 1 (Diophantus)

» J is isogenous over QQ to a product of elliptic curves, each of
rank 1,so r' =r = 2.

» Wetherell used descent to replace the problem with the
problem for finite étale covers of higher genus to which the
method could be applied.

» He succeeded in proving that

X(Q) = {(£1/2,49/8),(0,£1),00", 00" }.



Stoll's improvement

Coleman’s theorem requires r' < g, but if ' < g — 1, then one can
improve the bound. For instance, if p > 2g, one can prove

#X(Q) < #X(Fp) +2r'.



Bad reduction

Theorem
Let X, p,r" be as in Chabauty’s theorem, let X over Z, be a

minimal regular model for Xq,, and let Xs over I, be its special
fiber.

1. Let w be a nonzero 1-form in H(Xg,, Q") satisfying
conditions (i)—(iii). Let C be a component of multiplicity 1 in
X,, and define C5™°°th .= C N Asmo°th  Scale w by a power of
p so that it reduces to a nonzero 1-form & € HO(Cs™o°th Q).
Let Q € C™°"(F,). Let m = ordg @. If m < p—2, then the
number of points in X(Q) reducing to Q is at most m + 1.

2. If p>2g, then

#X(Q) < #XN(F,) + (28 — 2).



