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Given a curve X of genus g over Q, find X (Q)

I E.g., y2 = x(x − 1)(x − 2)(x − 5)(x − 6)
I There are two parts to the problem

I generating points
I knowing when to stop.

I Knowing when to stop includes knowing when not to bother
starting, i.e., deciding if X (Q) is non-empty.

I From now on we assume we are given a point O ∈ X (Q).

I If g = 0, we can find an explicit algebraic parameterization of
X (Q) by Q.

I If g = 1 we have pretty good methods for finding explicit
generators for X (Q) ' Zr × (finite group).

I If g ≥ 2, there are only finitely many points (Faltings).
Generating points is easy in practice but knowing when to
stop is hard.



Strange idea: identify X (Q) as a subset of J(Q)

I J, the jacobian of X , is a proper g -dimensional group variety:
why should it be easier to work with?

I Good cohomological machinery for bounding
J(Q) ' Zr × (finite group) without knowing equations for J.

I Use the Gal(Q/Q)-equivariant isomorphism

J(Q) ' {Divisors on X}
{Divisors of functions}

I

ι : X (Q) ↪→ J(Q), P 7→ [P − O],

I Given [D] ∈ J(Q), look for non-zero functions f with
(f ) ≥ −D − O, then P = D + O + (f ) is rational.

I What if J(Q) is not finite?



If J(Q) is infinite, we seek analytic functions that vanish
on the rational points

X (Qp)
� � // J(Qp)

J(Q)
?�

OO

I Chabauty: if dim J(Q) < g , then X (Qp) ∩ J(Q) should be
finite.

I Two approaches to finding the elements of this set explicitly:
I look for analytic functions on J(Qp) that vanish on J(Q) and

find their zeroes X (Qp) (Coleman)
I look for analytic functions on J(Qp) that vanish on X (Qp) and

find their zeroes on J(Q) (Flynn).



Digression: why not use real points?

X (R) � � // J(R)

J(Q)
?�

OO

I Mazur conjectures that J(Q) is open in the Zariski closure of
J(Q).

I Thus, if dim J(Q) < g , then there is a non-trivial quotient A
of J such that A(Q) is finite.

I Could work with X → A.



Find analytic functions using p-adic integration on J(Qp)

I For ωJ ∈ H0(JQp ,Ω
1), we have

ηJ : J(Qp) → Qp, Q 7→
∫ Q

0
ωJ

characterized uniquely by the following two properties:
1. It is a homomorphism.
2. It is calculated by formal integration on some open U ⊂ J(Qp).

I Translation invariance of ω gives homomorphism property:

ηJ(P + Q) = ηJ(P) + C .

I Putting all these together we get the logarithm

log : J(Qp) → T ,

where T = Hom(H0(JQp ,Ω
1), Qp), the tangent space.

I There is a one-to-one correspondence between linear
functionals λ on T and differentials ωJ such that λ ◦ log = ηJ .



Structure of the closure of the rational points

Lemma
Define r ′ := dim J(Q) and r := rank J(Q). Then r ′ ≤ r .

Proof:

r ′ = dim J(Q) = dim log
(
J(Q)

)
, and log

(
J(Q)

)
= log J(Q)

r ′ = rankZp (Zp log J(Q)) ≤ rankZ log J(Q) ≤ rankZ J(Q) = r .

Theorem (Chabauty)

Suppose g ≥ 2 and that there is a prime p such that r ′ < g. Then
X (Qp) ∩ J(Q) is finite (and hence so is X (Q)).

I The hypothesis yields ηJ on J(Qp) that vanishes on J(Q).

I Restricting this to X (Qp) gives us a locally-analytic function
that vanishes on X (Q).

I Why only finitely many zeros? How to count them?



p-adic integration on the curve X

I Suppose XQp has good reduction, with model X over Zp.

I Then JQp has a Néron model J, and JFp is the jacobian of XFp .

I Restriction from JQp to XQp induces an isomorphism

H0(JQp ,Ω
1) ' H0(XQp ,Ω

1).

I If ω is the restriction of ωJ to XQp , define∫ Q′

Q
ω :=

∫ [Q′−Q]

0
ωJ .

I If
∑

(Q ′
i − Qi ) is the divisor of a function, then

∑∫ Q′
i

Qi
ω = 0.

I If Q and Q ′ are in the same residue class, then∫ Q′

Q
ω = F (Q ′)− F (Q)

for a power series F in a local parameter t on X with dF = ω.



Integration on residue classes

I A residue class is the preimage of a point under the reduction
map X (Qp) � X (Fp).

I A parameter t is a regular function on an open neighborhood
of Q̃ in XFp , whose restriction to the special fiber is a

uniformizer at Q̃.

I The function t maps the residue class bijectively to pZp.

I If ω is scaled so that it reduces to a nonzero ω̃ ∈ H0(XFp ,Ω
1),

then ω = w(t) dt on the residue class for some power series
w(t) ∈ Zp[[t]] such that w(t) 6≡ 0 (mod p).

I The function η on the residue class is represented by a series
I (t) ∈ Qp[[t]] (possibly no longer in Zp[[t]]) whose derivative
is w(t).



Counting zeros of power series on pZp

Lemma (Baby Newton)

Suppose f (t) ∈ Qp[[t]] is such that f ′(t) ∈ Zp[[t]]. Let

m = ordt=0(f
′(t) mod p)

If m < p − 2, then f has at most m + 1 zeros in pZp.

Proof.
Write f (t) =

∑
ai t

i . We have

vp(am+1) = 0, vp(ai ) ≥ −vp(i), i > m + 1.

So the Newton polygon of f has slopes greater than −1 to the
right of (m + 1, 0).

I Coleman gives an estimate for an arbitrary p-adic field.

I If the coefficient of tp−1 in f ′(t) is in pZp, then one need
assume only m < 2p − 2 to obtain the same conclusion.



In summary: an integral vanishing on rational points

If r ′ < g , we have ω such that

(i) If Qi ,Q
′
i ∈ X (Qp) are such that

∑
(Q ′

i − Qi ) is the divisor of
a rational function, or more generally [

∑
(Q ′

i − Qi )] is a

torsion element of J(Qp), then
∑∫ Q′

i
Qi

ω = 0.

(ii) If Q,Q ′ ∈ X (Qp) have the same reduction in X (Fp), then∫ Q′

Q ω can be calculated by expanding in power series in a
local parameter t on the curve X .

(iii) If Qi ,Q
′
i ∈ X (Qp) are such that [

∑
(Q ′

i − Qi )] ∈ J(Q), then∑∫ Q′
i

Qi
ω = 0.



Theorem (Coleman)

Let X , J, p, r ′ be as in Chabauty’s theorem, suppose p is a prime of
good reduction.

1. Let ω satisfy (i)-(iii), and scale so ω̃ 6= 0. Suppose
Q̃ ∈ X (Fp). Let m = ordQ̃ ω̃. If m < p − 2, then the number

of points in X (Q) reducing to Q̃ is at most m + 1.

2. If p > 2g, then #X (Q) ≤ #X (Fp) + (2g − 2).

Proof.

1. Fix Q ∈ X (Q) reducing to Q̃. Then
∫ Q′

Q ω = 0 for any

Q ′ ∈ X (Q) reducing to Q̃. As a function of Q ′,
∫ Q′

Q ω can be
expressed as a power series I (t). The Lemma applied to I (t)
shows that I (t) has at most m + 1 zeros, so there are at most
m + 1 rational points Q ′ in the residue class.

2. By the Riemann-Roch theorem, the total number of zeros of
ω̃ in X (Fp) is 2g − 2. In particular, m ≤ 2g − 2 < p− 2. Sum
(1) over all Q̃ ∈ X (Fp).



Computational effectiveness

I Can have r ≥ g , which makes r ′ ≤ g unlikely.

I Could be computationally difficult to bound r , and hence r ′.

I The zero set of the integral of ω may be strictly larger than
J(Q), even if one uses enough independent integrals.

I If the p-adic submanifolds X (Qp) and J(Q) in J(Qp) are
tangent, it may be impossible to prove that they intersect.

I Even if #
(
X (Qp) ∩ J(Q)

)
is computed exactly, the true

value of #X (Q) could be smaller; in other words, some of the
intersection points could be irrational points in X (Qp).



Example: y 2 = x(x − 1)(x − 2)(x − 5)(x − 6)

I This curve has good reduction at p = 7, and

X (F7) = {∞, (0, 0), (1, 0), (2, 0), (5, 0), (6, 0), (3, 6), (3,−6)}.

I A descent calculation by Gordon and Grant shows that J(Q)
has rank 1. Coleman’s theorem says #X (Q) ≤ 10.

I

X (Q) = {∞, (0, 0), (1, 0), (2, 0), (5, 0), (6, 0), (3,±6), (10,±120)}.



Example: y 2 = x6 + 8x5 + 22x4 + 22x3 + 5x2 + 6x + 1

Theorem (Flynn-Poonen-Schaefer)

X (Q) = {∞+,∞−, (0,±1), (−3,±1)}.

Out of the box, Coleman’s Theorem needs p = 5, which gives
#X (Q) ≤ 9. However X has good reduction at 3, and

X (F3) = {∞+,∞−, (0,±1)}.

ω̃ = a
dx

y
+ b

x dx

y
.

y =
√

x6 + 8x5 + 22x4 + 22x3 + 5x2 + 6x + 1 ≡ 1 + x2 + · · ·

ω̃ =
x dx

y
= (x − x3 + · · · )dx

#X (Q) ≤ #X (F3) + (2g − 2) = 4 + (2 · 2− 2) = 6.



Calculating integrals explicitly

∫ (−3,1)

(0,1)

dx

y
=

∫ −3

0
(1 + 6x + 5x2 + 22x3 + 22x4 + 8x5 + x6)−1/2 dx

=

∫ −3

0
(1− 3x + 11x2 − 56x3 + · · · ) dx

=

(
x − 3

x2

2
+ 11

x3

3
− 56

x4

4
+ · · ·

)∣∣∣∣−3

0

= (−3)− 3

2
(−3)2 +

11

3
(−3)3 − 56

4
(−3)4 + · · ·

≡ 2 · 3 + 34 (mod 35)

and similarly∫ (−3,1)

(0,1)

x dx

y
=

(
x2

2
− 3

x3

3
+ 11

x4

4
− 56

x5

5
+ · · ·

)∣∣∣∣−3

0

≡ 2 · 32 + 2 · 33 (mod 33).



(Continued)

ω = ε
dx

y
+

x dx

y
,

∫ (−3,1)

(0,1)
ω = 0

(2 · 3 + 34 + · · · )ε + (2 · 32 + 2 · 33 + · · · ) = 0,

ε ≡ 2 · 3 + 32 + 2 · 33 (mod 34).

I (t) :=

∫ Qt

(0,1)
ω, Qt := (t, (1 + 6t + 5t2 + 22t3 + 22t4 + 8t5 + t6)1/2)

=

∫ Qt

(0,1)

(
ε

dx

y
+

x dx

y

)
=

∫ t

0
(ε + x)(1 + 6x + 5x2 + 22x3 + 22x4 + 8x5 + x6)−1/2 dx

= εt + (−3ε + 1)
t2

2
+ (11ε− 3)

t3

3
+ · · · .



Computing integrals between residue classes

1. Restrict from J(Qp):
I Inside each residue class of J there is torsion point T , which

can be used to set the constant of integration since
∫ T

0
ωJ = 0.

I Can be chosen to be rational over Qp if it has order prime to p.

2. Set the constant directly on X (Qp) using Coleman’s theory of
p-adic integration and the idea of a Teichmüller point.

3. Ultimately we care only about the residue classes in J(Qp)
containing a point of J(Q). For each of these residue classes,
we compute an explicit divisor representing a point in J(Q) in
the residue class, and use it to set the constant of integration.
This idea is due to Wetherell.



Elliptic Chabauty

I Can replace X ↪→ J by any morphism to an abelian variety
X → A.

I Factors through J → A; Chabauty’s argument applies if
rankA(Q) < dim A.

I Special case: Xk � E for an elliptic curve E over some finite
extension k of Q

I We get a map from X to A := Resk/Q E , an abelian variety of
dimension [k : Q] such that A(Q) ' E (k).

I Typically the induced map J → A will be surjective; in this
case one needs rank E (k) < [k : Q] to apply Chabauty’s
argument.



Example: y 2 = x6 + x2 + 1 (Diophantus)

I J is isogenous over Q to a product of elliptic curves, each of
rank 1, so r ′ = r = 2.

I Wetherell used descent to replace the problem with the
problem for finite étale covers of higher genus to which the
method could be applied.

I He succeeded in proving that

X (Q) = {(±1/2,±9/8), (0,±1),∞+,∞−}.



Stoll’s improvement

Coleman’s theorem requires r ′ < g , but if r ′ < g − 1, then one can
improve the bound. For instance, if p > 2g , one can prove

#X (Q) ≤ #X (Fp) + 2r ′.



Bad reduction

Theorem
Let X , p, r ′ be as in Chabauty’s theorem, let X over Zp be a
minimal regular model for XQp , and let Xs over Fp be its special
fiber.

1. Let ω be a nonzero 1-form in H0(XQp ,Ω
1) satisfying

conditions (i)–(iii). Let C be a component of multiplicity 1 in
Xs , and define C smooth := C ∩X smooth. Scale ω by a power of
p so that it reduces to a nonzero 1-form ω̃ ∈ H0(C smooth,Ω1).
Let Q̃ ∈ C smooth(Fp). Let m = ordQ̃ ω̃. If m < p− 2, then the

number of points in X (Q) reducing to Q̃ is at most m + 1.

2. If p > 2g, then

#X (Q) ≤ #X smooth
s (Fp) + (2g − 2).


