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Their special values are related to zeta and L-values. But we will be interested in the

functions themselves.
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Define

G(z) = 3 Lo(2)[w],

a function with values in C((4, B)). Then dG = (A% + B;%) G(z). One can define p-adic

1—z
versions. The coefficients are then p-adic multiple polylogs.

2. S-UNIT EQUATIONS

Let S be a finite set of primes. Consider solutions to x +y = 1 with =,y € Z[1/5]*.

If S={o00,,q} and p ¢ S, There exists a polynomial P(L,) in the £,, with |w| < 4 and
having Q,-coeflicients such that P(L,)(x) = 0 for every solution (z,y) = 0.

For larger S, we need |w| < N, where N is explicitly computable.
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3. INTEGRAL POINTS ON AN ELLIPTIC CURVE

Let &€ be the affine curve 3> = 23 + 2 over Z. Let a = df and § = %. Let p = 5.

The fundamental group of £(C) is a free group on two generators. Let a = (—1,1). Define
Coleman functions

*dx
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on £(Zy,). Then there exists a polynomial P(L4,Lp, Lap) such that P(L)(x,y) = 0 for
(z,y) € E(Z).

4. GENERAL CURVES

Let R = Z[1/S]. Let X — Spec R be a smooth proper curve of genus g minus a finite
étale divisor whose fibers are of degree t. So t is “the number of points at infinity”. Define

2¢ ift=20
m = .
204+t—1 ift>0
Pick p ¢ S. One can define £,,(z) where w runs over words on {A;,..., A} on X(Z,). The
A; correspond to generators «; of Hjg(X).
Assume “motivic conjectures” (e.g., Bloch-Kato on surjectivity on p-adic Chern class maps
or Fontaine-Mazur conjecture on representations of geometric origin). Then we can compute
N = N(X,S,p) such that there exists a polynomial P(L,,) in the £,, for |w| < N such that

P(L,)(x) = 0 for all z € X(R). This would imply the theorems of Faltings and Siegel for
curves over Q.

5. ORIGIN OF POLYLOGS

They come from algebraic functions on classifying spaces associated to unipotent 7’s.
Let X be a variety over a number field. Fix b,z € X. Let UM = 7 (X ,b) and PM(z) =
™(X;b,x).

For a topological space X and points b, z, the space 71 (X;b,x) is a torsor for m (X;0b).
We have a map from X to a classifying space of torsors sending z to 71 (X; b, x). Analogous
statements hold for the other manifestations of ;.

As in Kiran’s talk we have

X(R) — X(R,)
l \L ultiple polylogs
ot ot p-adic Hodge theory
et,un

where the space at lower left is nonabelian cohomology. The left map sends x to 77" (X; b, ).
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The objects in the bottom row map to corresponding quotients for each n (we add a
subscript n to each object), and these quotients are algebraic varieties. The vertical (and
diagonal) maps are transcendental. The diagonal map has Zariski-dense image.

Inside CI® the intersection of the images of Celop, and X(R,) should be finite. This is
true for P! — {0,1,00} and for elliptic curves of rank 1, and in general assuming motivic
conjectures.

There exists a nonzero algebraic function o on CI® such that « restricted to the image of
Colop, 18 0. But X(R,) has Zariski-dense image in C3R 50 a pulls back to a nonzero function

on X(R,), and hence has finitely many zeros. Thus we get a bound on X (R).

6. PROFINITE CASE

Let b € Z be a variety. Let Cov(Z) be the set of finite étale covers Y of Z. Let F}, be the
functor sending Y — Z to the fiber Y, considered as a finite set. Define 71(Z,b) := Aut(F}).
Define 71(Z; b, x) := Isom(Fy, F}); this is a torsor for 71(Z,b) with continuous action.

If Z = X where X is over Q and z,b € X(Q), then G := Gal(Q/Q) acts on Cov(X),
so G acts on 71(Z,b) and 71(Z;b, x). In particular, the latter is a G-equivariant torsor for
#1(Z,b); such G-equivariant torsors 1" are classified by H'(G,#1(X,b)). Namely, given T,
choose t € T and for each g € G, find the v, € 7,(X,b) such that g(t) = tv,; then g — 7, is
a l-cocycle representing an element of H'(G,#1(X,b)).

Let Z be a variety. Let Z be its universal covering (as a pro-variety, represented by a
cofinal inverse system of Z;’s).

For x € Z,

.~ (Z;b, ).

If Y — Z and y € Y}, then there exists ¢,: Z — 'Y mapping b to y, and 0y (Z) € Yy
For an arbitrary manifold M,

M «— M = U m(M;b, ).
meM

Let X/Q be a variety and b € X(Q). Then we have a map
X(Q) — HY(G, m1(X, b))
x> [ (X b, 7).

If X = Z is an elliptic curve, then 7#,(E,e) is the Z Tate module T(E). The map
E(Q) — HY(G,#,(E,e)) is the map from Kummer theory. (The H! is defined as an inverse
limit, or using continuous cocycles.) Conjecturally it is an isomorphism (this is equivalent
to the finiteness of the p-primary part of III(E) for all p).

If X/Q is a curve of genus > 2, then

X(Q) — HYG,#1(X, b))

is conjectured to be a bijection. (This is the version of Grothendieck’s section conjecture in
which a base point is fixed. This can be viewed as a nonabelian analogue of the conjecture
that III is finite.) It is injective by the Mordell-Weil theorem for the Jacobian of X.

Remark 6.1. For any variety V over Q with b € V(Q), injectivity of V(Q) — HY (G, #1(V, b))
should be viewed as a “nonabelian Mordell-Weil theorem”.
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7. UNIPOTENT VERSION

Let X/Q be a smooth curve.

Let U = U® = U®(X) be the pro-unipotent completion of (X, b) over Q,. The groups
U, = L"™\U are algebraic groups over Q,. Let E be the completed universal enveloping
algebra of LieU®. Let I C E be the augmentation ideal (the ideal generated by the Lie
algebra). Let E, = E/I". Then F is a projective system of continuous Q,-representation
of (X, b). We get an étale pro-sheaf & on X such that & ~ E. Let e € E be the identity
of the group. The pair (€, e) is the universal Q, unipotent locally constant sheaf on X: for
any other pair (£, ¢) with ¢ € L, there is a unique £ — £ mapping e to ¢. In particular,
there is a unique map € — € ® € sending e to e® e € (€ R E).

Let U, (X) be the set of locally constant sheaves £ of Q,-vector spaces that are unipotent,
i.e., admitting a filtration £ = L% D L' D --- D L™ = 0 with £'/L! ~ Q] (a trivial local
system). Define

P(x) = m$"" (X, b, x) := Isom(F}, Fy)

where [, is the functor from U, (X) to Q,-vector spaces taking £ to L,. Then 7{""(X;b, r)
is the set of grouplike elements in &,.

Given b,z € X(Q), the set P*(z) carries a G-action, and [P%(z)] € H'(G,US"). We get
X(Q) — H'(G, U%).

Given X - R=7Z[1/S]and p ¢ S, T := SU{p}, we get

[Py (2)] € HY(Gr, Uy')

where G := Gal(Qr/Q) where Qr is the maximal extension unramified outside 7.
Let U, = U/U". We have

n

U
O—>W—>Un+1—>Un—>O

and U' = U, U2 = [U,U]. So Uy = U/[U, U] ~ H(X,Q,) = H(X,Q,)". We have
0 — HY Gy, U" /U™ = H Gy, Upyr) — HY(Gr,U,) — HX(Gp, U /U™,
In particular,
0 — HY(Gr,U?/U%) — HY(Gr,Us) — H Gy, Us) > HX(Gr,U?JU).

Here § is an algebraic map between Q,-varieties.

Consider X(R) — X(R,). Effectively separate the p-adic distance between points in
X (R). This would lead to an effective injection X (R) — J(R)/NJ(R).

H ()

7
X(R) —= H'(z*)
S
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X(R) X(Ry)

| |

H' (GT7 Uf{t) - H1<Gp7 Uﬁt)

0 — HY(Gp, U™ /U™ — HY(Gr,Ups1) — H'(Gr,U,) > H(Gr, U" /U™
One can define variety structures on these such that H'(Gr, U,41) ~ Z, x HY(Gp, U™ /U™ 1)
where Z,, = §71(0).
For P!'—{0, 1, 00}, it turns out (by a deep theorem of Soulé¢) that § = 0. Then H!(Gr,U,,) =~
HY(Gr,Uy) x HY (G, U?/U3) x + - x HYG7,U"1/U™), and this maps to U /F°.
We can make
HY(Gr,U,) > HX(Gp, U™ /U™
from
0—U"/U - U,y — U, — 0.
Let w be a 2-cocycle for U, with values in U"/U"™"! representing this extension. Then
5(c)(g1,92) = wle(gr),c(g2))g;  algr, e(g)), where a: U, x Gy — U"/U™ is defined by
a(g,u) = g(a)a!, where u +— @ is a splitting U, — U, of the surjection above.

8. DE RHAM PICTURE

Let F be a field of characteristic 0. Let X/F be a smooth affine curve. Let ay, ..., a,, be
regular 1-forms giving a basis of H)g(X). Then U (X) is the category of unipotent vector
bundles with flat connection (U, V); i.e.,

U=U'DU D DU =0
with (U /U, V) ~ (0%, d).

Fact: (U,V) ~ (O%,d+ > ", N;o;) where the N; are constant strictly upper triangular
matrices.

Fix b € X(F). Let Fy: UR(X) — (F-vector spaces) be the fiber functor sending (U, V)
to Z/{b.

Let F({(A)) be the algebra of free noncommutative power series in variables A;. There is
a comultiplication F((A)) — F({A))QF((A)) sending A; to 4; ® 1 +1® A;. Let UR(X) =
7R(X;b) == Aut®(F,). Fact: UR(X) is isomorphic to the set of grouplike elements in
F((A)) := F{(Ay,..., An))

Also define P®(z) = 7i®(X;b,2) := Isom®(Fy, F,). This is isomorphic to the set of
grouplike elements in F'({A)).

If F =C, then

[h] € P™(x) € C((4))
Parallel transport along «y is P(v): V, ~ V.

] =Z[aw[w1-

Here w = A;, --- A;, and fyaw:fvail---aik.

Define the discrete subgroup of topological paths L¥® ¢ UIR(X) > FOU4R,
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Consider triples (T, Ly, F°) where T is a torsor for U F0 is given by the Hodge filtration
on T and is an FOU®-torsor, and Ly C T is an L®-torsor.

Such triples are classified by FO\U(z)/L. These are the higher Albanese varieties that
Hain introduced. There is a map 6: X(C) — FO\UR(z)/L sending x to [PI®(x)].

In the case of P — {0, 1, oo} (containing b and ), we have UR C C((A, B)) and F° turns
out to be 0. Then 0(x) = [ [ a[w]] € U/L.

Now suppose X/Q,. We have U4R D F with ¢-action. Consider P (z) ~ P (z mod p).
Consider (T, F°, ¢) where ¢ acts compatibly on U and T. Then we have

FO\UdR/ (UdR)qb:id

with (UR)9=id = fe}.
We get
0: X(Z,) — FO\U™
defined 0(z) = [3°,, [; cw[w

X(R) X(R,)
| L
HY(Gp,US) —— H}(G,, Ut) = FO\UIR

H(Gp, Us') is the set of elements of H'(G), Us') representing torsors that trivialize over
Bcrys~
And D(T) := Spec((T ® Bepys)©?) where T' = Spec 7T .

9. EXAMPLE
Let X =P!' —{0,1,00}. Let T =S U {p}.

HY(Gr,Us) HH}(GmUi%) U??R
HY (G Up) —— H}(Gy Up) — HER(x)

The group U, is Q,(1)?, and H'(Gp, Us) = Z[T~']* x Z[T~']* and H (G, Uy) = Z[S™']* x
Z[S7')* and H(Gy, Uy) = Z; x ZY. The vertical isomorphism at left is there because
HY(Gr,U?/U3) ~ HY(Gr,Q,(2)) = 0.

Recall U, = U/U™. We have

n

Un+1

0— —Upy1 — U, — 0.

Let r, = dim %

For a genus-g curve minus ¢ points (with ¢ > 0), set m =29+t — 1. Then Zi)m iy =m".
For example, for P! — {0,1,00}, we have m = 2, and ry = 2, ry +2ry = 4 50 15 = 1,
ry+3rs =8s0r3=2,1r +2ry+4ry =16 so ry = 3.

dim H' (G, U™ /U™ — dim H*(Gr, U™ /U™ = dim(U™ /U™ )~
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where the — means the minus part for complex conjugation. We have U™ /U™ ~ Q,(n)"™,
and H?(Gr,Qp(n)) = 0 foralln > 2, so dim H(Gr,U/U?) = 2(|T|-1), and dim H' (G, U"/U™1)
is r,, if n is odd and 0 if n is even. Thus

dim HY(Gp,U,) = 2(|T| — 1) +rs + 15 + - - -
dimU, =11 +ro+ -+ +rp1,
so dim U,, > dim H'(G7, U,) eventually.

10. ELLIPTIC CURVE ANALOGUE

Let E be an elliptic curve over Q of rank 1. Let X = E — {e}, e.g., y? = 2> + 2.

H}(GT, UQ/Ug) e U;R/Fo

| |

H}(GT, Ug) - > U:?R/FO

| l

H}(GT, Uy) —— UR/
The space at lower right is 1-dimensional, so the space above it is 2-dimensional. The closure
of the image of X(Z) maps into Hy,(Gr,Us) and Hy(Gr, Us).
When n = 2, the image of X (Z;) — H' (G, U,) (where U, is unipotent over Q,) is finite
(Tamagawa). This forces the global image to satisfy additional conditions.

Q,(1)




