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1. Multiple polylogs

Define

L(k1,...,km)(z) :=
∑

0<n1<···<nm

znm

nk1
1 · · ·nkm

m

.

For example,

L(k)(z) =
∑
n>0

zn

nk
.

Their special values are related to zeta and L-values. But we will be interested in the
functions themselves.

Index them with words w on {A, B}. Define

L∅(z) = 1

LAn(z) =
1

n!
(log z)n

LAw(z) =

∫ z

0

dt

t
Lw(t), if w 6= An

LBw(z) =

∫ z

0

dt

1− t
Lw(t), if w 6= An.

These are multivalued functions on P1 − {0, 1,∞}. For z near 0, we have L(k1,...,km) = Lw

where w := Ak1−1B · · ·Akm−1B.
Define

G(z) =
∑

w

Lw(z)[w],

a function with values in C〈〈A, B〉〉. Then dG =
(
Adz

z
+ B dz

1−z

)
G(z). One can define p-adic

versions. The coefficients are then p-adic multiple polylogs.

2. S-unit equations

Let S be a finite set of primes. Consider solutions to x + y = 1 with x, y ∈ Z[1/S]×.
If S = {∞, `, q} and p /∈ S, There exists a polynomial P (Lw) in the Lw with |w| ≤ 4 and

having Qp-coefficients such that P (Lw)(x) = 0 for every solution (x, y) = 0.
For larger S, we need |w| ≤ N , where N is explicitly computable.
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3. Integral points on an elliptic curve

Let E be the affine curve y2 = x3 + 2 over Z. Let α = dx
y

and β = x dx
y

. Let p = 5.

The fundamental group of E(C) is a free group on two generators. Let a = (−1, 1). Define
Coleman functions

LA(z) =

∫ z

a

dx

y

LB(z) =

∫ z

a

x dx

y

LAB(z) =

∫ z

a

dx

y
LB

on E(Zp). Then there exists a polynomial P (LA,LB,LAB) such that P (L)(x, y) = 0 for
(x, y) ∈ E(Z).

4. General curves

Let R = Z[1/S]. Let X → Spec R be a smooth proper curve of genus g minus a finite
étale divisor whose fibers are of degree t. So t is “the number of points at infinity”. Define

m =

{
2g if t = 0

2g + t− 1 if t > 0

Pick p /∈ S. One can define Lw(z) where w runs over words on {A1, . . . , Am} on X (Zp). The
Ai correspond to generators αi of H1

dR(X ).
Assume “motivic conjectures” (e.g., Bloch-Kato on surjectivity on p-adic Chern class maps

or Fontaine-Mazur conjecture on representations of geometric origin). Then we can compute
N = N(X , S, p) such that there exists a polynomial P (Lw) in the Lw for |w| ≤ N such that
P (Lw)(x) = 0 for all x ∈ X (R). This would imply the theorems of Faltings and Siegel for
curves over Q.

5. Origin of polylogs

They come from algebraic functions on classifying spaces associated to unipotent π1’s.
Let X be a variety over a number field. Fix b, x ∈ X. Let UM = πM

1 (X, b) and PM(x) =
πM

1 (X; b, x).
For a topological space X and points b, x, the space π1(X; b, x) is a torsor for π1(X; b).

We have a map from X to a classifying space of torsors sending x to π1(X; b, x). Analogous
statements hold for the other manifestations of π1.

As in Kiran’s talk we have

X (R) //

��

X (Rp)

��

multiple polylogs

**VVVVVVVVVVVVVVVVVVVVVVVVV

Cet
glob

// Cet
loc

p-adic Hodge theory

CdR

where the space at lower left is nonabelian cohomology. The left map sends x to πet,un
1 (X; b, x).
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The objects in the bottom row map to corresponding quotients for each n (we add a
subscript n to each object), and these quotients are algebraic varieties. The vertical (and
diagonal) maps are transcendental. The diagonal map has Zariski-dense image.

Inside CdR
n the intersection of the images of Cet

glob and X (Rp) should be finite. This is

true for P1 − {0, 1,∞} and for elliptic curves of rank 1, and in general assuming motivic
conjectures.

There exists a nonzero algebraic function α on CdR
n such that α restricted to the image of

Cet
glob is 0. But X (Rp) has Zariski-dense image in CdR

n , so α pulls back to a nonzero function
on X (Rp), and hence has finitely many zeros. Thus we get a bound on X (R).

6. Profinite case

Let b ∈ Z be a variety. Let Cov(Z) be the set of finite étale covers Y of Z. Let Fb be the
functor sending Y → Z to the fiber Yb considered as a finite set. Define π̂1(Z, b) := Aut(Fb).
Define π̂1(Z; b, x) := Isom(Fb, Fx); this is a torsor for π̂1(Z, b) with continuous action.

If Z = X where X is over Q and x, b ∈ X(Q), then G := Gal(Q/Q) acts on Cov(X),
so G acts on π̂1(Z, b) and π̂1(Z; b, x). In particular, the latter is a G-equivariant torsor for
π̂1(Z, b); such G-equivariant torsors T are classified by H1(G, π̂1(X, b)). Namely, given T ,
choose t ∈ T and for each g ∈ G, find the γg ∈ π̂1(X, b) such that g(t) = tγg; then g 7→ γg is
a 1-cocycle representing an element of H1(G, π̂1(X, b)).

Let Z be a variety. Let Z̃ be its universal covering (as a pro-variety, represented by a
cofinal inverse system of Zi’s).

For x ∈ Z,

Z̃x ' π̃1(Z; b, x).

If Y → Z and y ∈ Yb, then there exists φy : Z̃ → Y mapping b̃ to y, and φy(x̃) ∈ Yx.
For an arbitrary manifold M ,

M ← M̃ =
⋃

m∈M

π1(M ; b, x).

Let X/Q be a variety and b ∈ X(Q). Then we have a map

X(Q)→ H1(G, π̂1(X, b))

x 7→ [π̂1(X; b, x)].

If X = Z is an elliptic curve, then π̂1(E, e) is the Ẑ Tate module T (E). The map
E(Q)→ H1(G, π̂1(E, e)) is the map from Kummer theory. (The H1 is defined as an inverse
limit, or using continuous cocycles.) Conjecturally it is an isomorphism (this is equivalent
to the finiteness of the p-primary part of X(E) for all p).

If X/Q is a curve of genus ≥ 2, then

X(Q)→ H1(G, π̂1(X, b))

is conjectured to be a bijection. (This is the version of Grothendieck’s section conjecture in
which a base point is fixed. This can be viewed as a nonabelian analogue of the conjecture
that X is finite.) It is injective by the Mordell-Weil theorem for the Jacobian of X.

Remark 6.1. For any variety V over Q with b ∈ V (Q), injectivity of V (Q)→ H1(G, π̂1(V , b))
should be viewed as a “nonabelian Mordell-Weil theorem”.
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7. Unipotent version

Let X/Q be a smooth curve.
Let U = U et = U et(X) be the pro-unipotent completion of π̂1(X, b) over Qp. The groups

Un = Ln+1\U are algebraic groups over Qp. Let E be the completed universal enveloping
algebra of Lie U et. Let I ⊆ E be the augmentation ideal (the ideal generated by the Lie
algebra). Let En = E/In+1. Then E is a projective system of continuous Qp-representation
of π̂1(X, b). We get an étale pro-sheaf E on X such that Eb ' E. Let e ∈ E be the identity
of the group. The pair (E , e) is the universal Qp unipotent locally constant sheaf on X: for
any other pair (L, `) with ` ∈ Lb, there is a unique E → L mapping e to `. In particular,
there is a unique map E → E ⊗ E sending e to e⊗ e ∈ (E ⊗ E)b.

Let Un(X) be the set of locally constant sheaves L of Qp-vector spaces that are unipotent,
i.e., admitting a filtration L = L0 ⊃ L1 ⊃ · · · ⊃ Ln+1 = 0 with Li/Li+1 ' Qri

p (a trivial local
system). Define

P et(x) = πet,u
1 (X, b, x) := Isom(Fb, Fx)

where Fx is the functor from Un(X) to Qp-vector spaces taking L to Lx. Then πet,u
1 (X; b, x)

is the set of grouplike elements in Ex.
Given b, x ∈ X(Q), the set P et

n (x) carries a G-action, and [P et
n (x)] ∈ H1(G, U et

n ). We get
X(Q)→ H1(G, U et

n ).
Given X → R = Z[1/S] and p /∈ S, T := S ∪ {p}, we get

[P et
n (x)] ∈ H1(GT , U et

n )

where GT := Gal(QT /Q) where QT is the maximal extension unramified outside T .
Let Un = U/Un. We have

0→ Un

Un+1
→ Un+1 → Un → 0

and U1 = U , U2 = [U,U ]. So U2 = U/[U,U ] ' H1(X, Qp) = H1(X, Qp)
∧. We have

0→ H1(GT , Un/Un+1)→ H1(GT , Un+1)→ H1(GT , Un)→ H2(GT , Un/Un+1).

In particular,

0→ H1(GT , U2/U3)→ H1(GT , U3)→ H1(GT , U2)
δ→ H2(GT , U2/U3).

Here δ is an algebraic map between Qp-varieties.

Consider X(R) ↪→ X(Rp). Effectively separate the p-adic distance between points in
X(R). This would lead to an effective injection X(R)→ J(R)/NJ(R).

H1(π)

��
X(R)

::ttttttttt

$$JJJJJJJJJ
// H1(πab)

J(R)

OO
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X(R) //

��

X(Rp)

��
H1(GT , U et

n ) // H1(Gp, U
et
n )

0→ H1(GT , Un/Un+1)→ H1(GT , Un+1)→ H1(GT , Un)
δ→ H2(GT , Un/Un+1)

One can define variety structures on these such that H1(GT , Un+1) ' Zn×H1(GT , Un/Un+1)
where Zn = δ−1(0).

For P1−{0, 1,∞}, it turns out (by a deep theorem of Soulé) that δ = 0. Then H1(GT , Un) '
H1(GT , U2)×H1(GT , U2/U3)× · · · ×H1(GT , Un−1/Un), and this maps to UdR

n /F 0.
We can make

H1(GT , Un)
δ→ H2(GT , Un/Un+1)

from

0→ Un/Un+1 → Un+1 → Un → 0.

Let ω be a 2-cocycle for Un with values in Un/Un+1 representing this extension. Then
δ(c)(g1, g2) = ω(c(g1), c(g2))g

−1
1 α(g1, c(g2)), where α : Un × GT → Un/Un+1 is defined by

α(g, u) = g(ũ)ũ−1, where u 7→ ũ is a splitting Un → Un+1 of the surjection above.

8. de Rham picture

Let F be a field of characteristic 0. Let X/F be a smooth affine curve. Let α1, . . . , αm be
regular 1-forms giving a basis of H1

dR(X). Then UdR
n (X) is the category of unipotent vector

bundles with flat connection (U ,∇); i.e.,

U = U0 ⊃ U1 ⊃ · · · ⊃ Un+1 = 0

with (U i/U i+1,∇) ' (Or
X , d).

Fact: (U ,∇) ' (Or
X , d +

∑m
i=1 Niαi) where the Ni are constant strictly upper triangular

matrices.
Fix b ∈ X(F ). Let Fb : UdR

n (X) → (F -vector spaces) be the fiber functor sending (U ,∇)
to Ub.

Let F 〈〈A〉〉 be the algebra of free noncommutative power series in variables Ai. There is
a comultiplication F 〈〈A〉〉 → F 〈〈A〉〉⊗̂F 〈〈A〉〉 sending Ai to Ai⊗ 1 + 1⊗Ai. Let UdR(X) =
πdR(X; b) := Aut⊗(Fb). Fact: UdR(X) is isomorphic to the set of grouplike elements in
F 〈〈A〉〉 := F 〈〈A1, . . . , Am〉〉

Also define P dR(x) = πdR
1 (X; b, x) := Isom⊗(Fb, Fx). This is isomorphic to the set of

grouplike elements in F 〈〈A〉〉.
If F = C, then

[γ] ∈ P dR(x) ⊂ C〈〈A〉〉
Parallel transport along γ is P (γ) : Vb ' Vx.

[γ] =
∑ ∫

γ

αw[w].

Here w = Ai1 · · ·Aik and
∫

γ
αw =

∫
γ
αi1 · · ·αik .

Define the discrete subgroup of topological paths LdR ⊂ UdR
n (X) ⊃ F 0UdR.

5



Consider triples (T, LT , F 0) where T is a torsor for UdR, F 0 is given by the Hodge filtration
on T and is an F 0UdR-torsor, and LT ⊂ T is an LdR-torsor.

Such triples are classified by F 0\UdR
n (x)/L. These are the higher Albanese varieties that

Hain introduced. There is a map θ : X(C)→ F 0\UdR
n (x)/L sending x to [P dR(x)].

In the case of P1−{0, 1,∞} (containing b and x), we have UdR ⊂ C〈〈A, B〉〉 and F 0 turns
out to be 0. Then θ(x) = [

∑∫
γ
αw[w]] ∈ UdR/L.

Now suppose X/Qp. We have UdR ⊃ F 0 with φ-action. Consider P dR(x) ' P dR(x mod p).
Consider (T, F 0, φ) where φ acts compatibly on U and T . Then we have

F 0\UdR/(UdR)φ=id

with (UdR)φ=id = {e}.
We get

θ : X(Zp)→ F 0\UdR

defined θ(x) = [
∑

w

∫ x

b
αw[w]].

X(R) //

��

X(Rp)

&&NNNNNNNNNNN

��

H1(GT , U et
n ) // H1

f (Gp, U
et
n ) D // F 0\UdR

n

H1
f (Gp, U

et
n ) is the set of elements of H1(Gp, U

et
n ) representing torsors that trivialize over

Bcrys.
And D(T ) := Spec((T ⊗Bcrys)

Gp) where T = Spec T .

9. Example

Let X = P1 − {0, 1,∞}. Let T = S ∪ {p}.

H1(GT , U3) // H1
f (Gp, U3) // UdR

3

��
H1

f (GT , U2) // H1
f (Gp, U2) HdR

1 (X)

The group U2 is Qp(1)2, and H1(GT , U2) = Z[T−1]××Z[T−1]× and H1
f (GT , U2) = Z[S−1]××

Z[S−1]× and H1
f (Gp, U2) = Z×

p × Z×
p . The vertical isomorphism at left is there because

H1(GF , U2/U3) ' H1(GT , Qp(2)) = 0.
Recall Un = U/Un. We have

0→ Un

Un+1
→ Un+1 → Un → 0.

Let rn = dim Un

Un+1 .
For a genus-g curve minus t points (with t > 0), set m = 2g + t− 1. Then

∑
i-n iri = mn.

For example, for P1 − {0, 1,∞}, we have m = 2, and r1 = 2, r1 + 2r2 = 4 so r2 = 1,
r1 + 3r3 = 8 so r3 = 2, r1 + 2r2 + 4r4 = 16 so r4 = 3.

dim H1(GT , Un/Un+1)− dim H2(GT , Un/Un+1) = dim(Un/Un+1)−
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where the − means the minus part for complex conjugation. We have Un/Un+1 ' Qp(n)rn ,
and H2(GT , Qp(n)) = 0 for all n ≥ 2, so dim H1(GT , U/U2) = 2(|T |−1), and dim H1(GT , Un/Un+1)
is rn if n is odd and 0 if n is even. Thus

dim H1(GT , Un) = 2(|T | − 1) + r3 + r5 + · · ·
dim Un = r1 + r2 + · · ·+ rn−1,

so dim Un > dim H1(GT , Un) eventually.

10. Elliptic curve analogue

Let E be an elliptic curve over Q of rank 1. Let X = E − {e}, e.g., y2 = x3 + 2.

H1
f (GT , U2/U3) //

��

UdR
3 /F0

��

Qp(1)

H1
f (GT , U3) //

��

UdR
3 /F0

��
H1

f (GT , U2) // UdR
2 /F0

The space at lower right is 1-dimensional, so the space above it is 2-dimensional. The closure
of the image of X(Z) maps into H1

Σ(GT , U3) and H1
Σ(GT , U2).

When n = 2, the image of X(Z`)→ H1(G`, Un) (where Un is unipotent over Qp) is finite
(Tamagawa). This forces the global image to satisfy additional conditions.
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