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RICHARD HAIN

Goal: Suppose X is a smooth variety over C and x ∈ X. We want to make a tower

��

Alb3(X, x)

��

Alb2(X, x)

��

X
θ1 //

θ2

::uuuuuuuuuu

θ3

DD������������������
Alb1(X, x)

where Alb1(X, x) is the classical Albanese variety of X.1

1. Unipotent completion

Let Γ be a discrete group. Let k be a field of characteristic 0. A unipotent group is a
closed subgroup of the subgroup of GLn(k) consisting of upper triangular matrices with 1s
on the diagonal. Unipotent groups correspond to nilpotent Lie algebras via the logarithm
and exponential maps, which are polynomial bijections.

Define the pro-unipotent group

Γun
/k := lim←−

ρ : Γ→U(k)
Zariski dense
U unipotent

U.

It is also π1 of the Tannakian category of unipotent representations of Γ over k.
Define the pro-nilpotent Lie algebra

Lie(Γun
/k) := lim←−Lie(U).

A homomorphism Γ → U(k) from Γ to the k-points of a unipotent k-group U induces a
homomorphism Γun

/k → U . The original representation factors Γ→ U(k)→ Γun
/k → Γun(k).

Let J be the kernel of the augmentation map kΓ
ε→ k sending each γ ∈ Γ to 1. Define

(kΓ)∧ := lim←−
r

(kΓ/Jr).

Then
Γun

/k = {x ∈ (kΓ)∧ : ∆x = x⊗ x} − {0}.
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Base change: if K/k is any field extension, then Γun
K = Γun

k ⊗kK. In particular, Γun
k = Γun

Q ⊗Qk.

Example 1.1. If Γ is the free group 〈x1, . . . , xn〉, then xj 7→ exp(Xj) defines a map Γ
to Q〈〈X1, . . . , Xn〉〉, which contains the completed free Lie algebra L(X1, . . . , Xn)∧. Then
Lie Γun

/Q = L(X1, . . . , Xn)∧.

Example 1.2.

Lie(πun
1 (genus-g curve, ∗)) = L(A1, . . . , Ag, B1, . . . , Bg)

∧/

(
g∑

j=1

[Aj, Bj]

)

2. Profinite case

Let Γ be profinite. Let ` be a prime number. Then

Γcts,un
/Q`

:= lim←−
ρ : Γ→U(Q`)

cts, Zariski dense
U unipotent

U.

Fact: If Γ is discrete, then

Γ̂cts,un
/Q`

= Γun
/Q`

.

3. De Rham version

Chen’s iterated integral:2 Let M be a smooth manifold. Let ω1, . . . , ωr ∈ E1(M) (smooth
1-forms). Let γ : [0, 1]→M be a piecewise smooth path. Chen defined∫

γ

ω1 · · ·ωr =

∫
· · ·
∫

0≤t1≤···≤tr≤1

f1(t1) · · · fr(tr) dt1 · · · dtr

where γ∗ωj = fj(t) dt.

Remark 3.1. This works equally well for ωj ∈ E1(M)⊗R A for any associative algebra A.

Example 3.2. Let M = C− {0, 1}. Then∫ x

0

dz

1− z

dz

z
=

∫ x

0

(
∞∑

n=0

zn dz

)
dz

z

=

∫ x

0

(
∞∑

n=1

zn

n

)
dz

z

=
∞∑

n=1

zn

n2

∣∣∣∣∣
x

0

=
∞∑

n=1

xn

n2

= ln2 x,

the dilogarithm function.

2Basic reference: K.-T. Chen, Bull. AMS, 1977. See R. Hain, The geometry of the MHS on the fundamental
group, Proc. Symp. Pure Math., 46 (1987) for an introduction.
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Proposition 3.3. For loops γ and µ starting at the same point,∫
γµγ−1µ−1

ω1ω2 =

∣∣∣∣
∫

γ
ω1

∫
γ
ω2∫

µ
ω1

∫
µ
ω2

∣∣∣∣
For fixed ω1, . . . , ωr, we may view ∫

ω1 · · ·ωr

as a function PM → R on the path space or Px,xM → R on the loop space.

Definition 3.4. Let Ch(Px,xM) be the R-span of {
∫

ω1 · · ·ωr : Px,xM → R}.

The space Ch(Px,xM) is a Hopf algebra, with operations inspired by the following identi-
ties:

Product: ∫
α

ω1 · · ·ωr

∫
α

ωr+1 · · ·ωr+s =
∑

σ∈Sh(r,s)

∫
α

ωσ(1) · · ·ωσ(r+s)

where Sh(r, s) is the set of permutations σ of {1, . . . , r + s} such that σ−1(1) < · · · < σ−1(r)
and σ−1(r + 1) < · · · < σ−1(r + s) (with the convention that

∫
γ
φ1 · · ·φs = 1 if s = 0).

Coproduct: ∫
αβ

ω1 · · ·ωr =
r∑

j=0

∫
α

ω1 · · ·ωj

∫
β

ωj+1 · · ·ωr.

Antipode: ∫
γ−1

ω1 · · ·ωr = (−1)r

∫
γ

ωr · · ·ω1.

Definition 3.5. F : Px,xM → A is a homotopy functional if all pairs of homotopic paths γ0

and γ1 (in which the homotopy does not move the endpoints) satisfy F (γ0) = F (γ1).

Let H0(Ch(Px,xM)) be the subspace of homotopy functionals. This is a Hopf subalgebra,
so Spec H0(Ch(Px,xM)) is a group scheme over R. Let LrH

0(Ch(Px,xM) be the span of the
elements of H0(Ch(Px,xM)) of length ≤ r. Since the diagonal preserves the length filtration

∆ : LrH
0(Ch(Px,xM)→

∑
s + t = rLsH

0(Ch(Px,xM)⊗ LtH
0(Ch(Px,xM).

This implies that LrH
0(Ch(Px,xM is a pro-unipotent group.

Let πun
1 (M, x)/R be Γun

R where Γ := π1(M, x). By the product identity given above, there
is an “integration” map

π1(M, x)→ HomR-algebras(H
0(Ch(Px,xM)), R) =

(
Spec H0(Ch(Px,xM))

)
(R).

With the group structure on the right hand side induced by the comultiplication and an-
tipode, this map is a group homomorphism. It induces a homomorphism of pro-algebraic
groups

πun
1 (M, x)/R → Spec H0(Ch(Px,xM)).

Theorem 3.6 (Chen). The following three equivalent statements hold:

(1) πun
1 (M, x)/R = Spec H0(Ch(Px,xM)) (i.e., the homomorphism just constructed is an

isomorphism).
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(2) O(πun
1 (M, x)/R) = H0(Ch(Px,xM)) as Hopf algebras.

(3) Let LrH
0(Ch(Px,xM)) be the space of iterated integrals of length ≤ r. Integration

gives an isomorphism

LrH
0(Ch(Px,xM))

∼→ HomR-vector spaces

(
Rπ1(M, x)

Jr+1
, R
)

.

Now suppose that X is a smooth projective variety over C. Let E•(X) =
⊕

Ep,q(X) be
the C-valued smooth forms on X. Let F pE•(X) =

⊕
s≥p Es,•(X). This extends to define

a Hodge filtration of Ch(Px,xX): namely, F p Ch(Px,xX) is defined as the span of
∫

ω1 · · ·ωr

with ωj ∈ F pj and
∑

pj ≥ p.
When X is the complement of a normal crossings divisor D in a smooth projective variety

Y , then one has the C∞ log complex ⊕Ep,q(Y log D), where

Ep,q(Y log D) := H0(Y, Ωp
Y (log D)⊗OY

E0,p
Y ).

It is a fact that every element of H0(Ch(Px,xX)) can be represented by iterated integrals of
elements of E•(Y log D). The Hodge filtration of H0(Ch(Px,xX)) is defined using the Hodge
filtration of E•(Y log D) as in the projective case.

Example 3.7. We have
∫

dz
1−z

dz
z
∈ F 2 and

∫
dz̄ dz ∈ F 1.

This restricts to define a Hodge filtration of H0(Ch(Px,xX)) compatible with product,
coproduct, and antipode.

Theorem 3.8. This is part of the natural mixed Hodge structure on πun
1 (X, x). (The weight

filtration is L• when X is smooth and projective.)

The Lie algebra of πun
1 (X, x) is the dual of m/m2, where m is the maximal ideal of

O(πun
1 (X, x)) = H0(Ch(Px,xX) corresponding to evaluation at the trivial loop. The bracket

is dual to the “cobracket” m/m2 → m/m2 ⊗m/m2, which is the linear map induced by

∆− τ ◦∆ : H0(Ch(Px,xX))→ H0(Ch(Px,xX))⊗H0(Ch(Px,xX)),

where τ(f ⊗ g) = g ⊗ f . This leads to a Hodge filtration on Lie π1(X, x) compatible with
[ , ] (this means that [F p, F q] ⊆ F p+q). On Lie π1(X, x)

· · · ⊇ F−3 ⊇ F−2 ⊇ F−1 ⊇ F 0 ⊇ F 1 = 0.

Let
G = πun

1 (X, x)/C

g = Lie G.

Then F 0g is a Lie subalgebra. So we have a subgroup F 0G of G.

4. Higher Albanese Manifolds

We have π1(X, x)
ρ→ G ⊇ F 0G. Let Γ be the image of ρ.

Definition 4.1.
Alb(X, x) = Γ\G/F 0G.

Let LrΓ be the r-th term of the lower central series of Γ; i.e., Γ = L1Γ ⊇ L2Γ ⊇ · · · where
Li+1Γ = [LiΓ, Γ]. For each r, define

Gr = G/Lr+1G,
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define Γr as the image of π1(X, x) in Gr, and define

Albr(X, x) = Γr\Gr/F
0Gr.

In general, these are not algebraic except when r = 1. Alb(X, x) should be considered as
the inverse limit of the Albr(X, x).

Example 4.2. If r = 1, then G1 = H1(X; C) = H−1,0 ⊕H0,−1. Then F−1 = H−1,0 ⊕H0,−1

and F 0 = H0,−1. We have

G1/F
0 = H−1,0 = H0(Ω1

X)∗

and

Γ1 = H1(X, Z)/torsion

so

Alb1 = H1(X, Z)\H0(Ω1
X)∗.

Example 4.3. Let A be a principally polarized abelian variety. Let Θ be the θ-divisor.
Assume that Θ is irreducible and 0 /∈ Θ. Let X = A − Θ. Let L be the line bundle
corresponding to the line sheaf OA(Θ). Let L∗ be L minus the zero section. Then

L∗ = Alb2(X, 0)

��

X

88qqqqqqqqqqqq // A = Alb1(X, 0)

5. Higher Albanese Mappings

Denote Lie(πun
1 (X, x)(C) by g. This is a quotient of the completion of the free complete Lie

algebra Lie(H1(X))∧ generated by H1(X; C). For simplicity, suppose that X is projective.
Then

H1(X; C) = H−1,0(X)⊕H0,−1(X).

Let {W ′
j} be a basis of H−1,0(X) and {W ′′

j } be the complex conjugate basis of H0,1. Let

{wj} be the dual basis of H0(Ω1
X).

Proposition 5.1. There is a g-valued 1-form

ω ∈ F 0
(
E1(X) ⊗̂ g

)
and which is congruent to ∑

j

wjW
′
j + wjW

′′
j mod [g, g]

and satisfies the integrability condition

dω +
1

2
[ω, ω] = 0.

When X is not compact, then one has ω ∈ W−1F
0
(
E1(X) ⊗̂ g

)
. These statements are

proved in Higher Albanese Manifolds, R. Hain, LNM 1246, 1987.
Define

T = 1 +

∫
ω +

∫
ωω +

∫
ωωω + · · ·
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This is a Ûg-valued iterated integral. The integrability condition implies that T is a homo-
topy functional on PX. For all γ ∈ PX, T (γ) ∈ exp g = G.

The Albanese mapping θ : X → Alb(X, x) is given by

θ(y) = T (γ) ∈ Γ\G/F 0.

It is clearly well defined as T is a homotopy functional and we have taken the quotient
by Γ. On the space of paths that begin at x we have dT = Tω. This and the fact that
ω ∈ F0(E1(X)⊗̂g), θ imply that θ is holomorphic. One can show that θ is independent of
the choice of ω.

Truncating this construction by Lr gives the tower:

��

Alb3(X, x)

��

Alb2(X, x)

��

X
θ1 //

θ2

::uuuuuuuuuuu

θ3

CC������������������
Alb1(X, x).

6. Algebraic Approach

The constructions above use smooth forms. There is also a version of Chen’s π1-de Rham
Theorem that uses only iterated integrals of algebraic 1-forms. This is sketched in Iterated
Integrals and Algebraic Cycles: Examples and Prospects, Nankai Tracts in Mathematics, vol.
5, World Scientific, 2002. The Hodge filtration should correspond to a “pole filtration,” but
this has yet to be worked out.

A different version of the algebraic de Rham theorem given in the same paper allows one
to prove that if X is defined over F and F ⊆ C, and x ∈ X(F ), then the Hopf algebra
H0(Ch Px,xX) has a natural F -structure, and the Hodge filtration is defined over F .
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