Preface

This book is designed for a topics course in computational number theory. It
is based around a number of difficult old problems that live at the interface of
analysis and number theory. Some of these problems are the following;:

The Integer Chebyshev Problem. Find a nonzero polynomial of degree n
with integer coefficients that has smallest possible supremum norm on the unit
interval.

Littlewood’s Problem. Find a polynomial of degree n with coefficients in
the set {+1,—1} that has smallest possible supremum norm on the unit disk.

The Prouhet—Tarry—Escott Problem. Find a polynomial with integer co-
efficients that is divisible by (z — 1)™ and has smallest possible l; norm. (That
is, the sum of the absolute values of the coefficients is minimal.)

Lehmer’s Problem. Show that any monic polynomial p, p(0) # 0, with in-
teger coefficients that is irreducible and that is not a cyclotomic polynomial has
Mabhler measure at least 1.1762. .. .

All of the above problems are at least forty years old; all are presumably very
hard, certainly none are completely solved; and all lend themselves to extensive
computational explorations.

The techniques for tackling these problems are various and include proba-
bilistic methods, combinatorial methods, “the circle method,” and Diophantine
and analytic techniques. Computationally, the main tool is the LLL algorithm
for finding small vectors in a lattice.

The book is intended as an introduction to a diverse collection of techniques.
For all chapters we have suggested related research papers where additional
details may be pursued. There are many exercises and open research problems
included. Indeed, the primary aim of the book is to tempt the able reader into
the rich open possibilities for research in this area.
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Chapter 1

Introduction

This book focuses on a variety of old problems in number theory and analysis.
The problems concern polynomials with integer coefficients and typically ask
something about the size of the polynomial with an appropriate measure of size
and often with some restriction on the height and the degree.

So, for example, we might seek to minimize the supremum norm of a polyno-
mial with integer coefficients of degree n on the unit interval. Or we might try
to minimize the supremum norm on the unit disk of a polynomial all of whose
coefficients are either 1 or —1. Both of these are “old plums.” The first is due
to Hilbert, and the second is due to Littlewood. Both problems arise in various
contexts. The first gives easy Chebyshev estimates on the density of primes.
(See E3.) The second arises in signal processing.

As is typical of these and the other problems we consider, the objects of
study are very familiar. The problems are, by and large, easy to formulate, and
while none have been completely solved, all have had significant progress made
on them.

The tools of attack are diverse and include Diophantine, analytic, and prob-
abilistic methods. The problems lend themselves to extensive computational
exploration, and this is one of the unifying threads of this work.

No attempt is made to discuss the material in great generality; indeed, some
effort is made to choose accessible special cases. Another unifying theme is
that all the problems can be reformulated as problems about polynomials with
integer coefficients, even though they often arise in other contexts.

Notation

The principal classes of polynomials we consider are Z,,, F,,, and £,, which we
now define.
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Let
n
Z, = {Zaiz’ ta; € Z}
i=0

denote the set of algebraic polynomials of degree at most n with integer coeffi-
cients and let Z denote the union over n of all such polynomials. Throughout
this book polynomials will be assumed to be in Z unless otherwise specified.
The set Z is more usually denoted by Z[z]. However, Z,[2] (the polynomials with
integer coefficients modulo p) is not the same as Z, (where p is the degree), and
thus the notational distinction.

Let

Fp = {iaizi 1a; € {—1,0,1}}
=0

denote the set of polynomials of degree at most n with coefficients from the
set {—1,0,1}. These are the polynomials of height 1 and degree at most n.
Here and throughout the book, the height of a polynomial p is the magnitude of
the largest coefficient and is often denoted by H (p). Consistent with the above
notation, F is the set of all height 1 polynomials.

Let B
L, = {,z:; a;2" 1 a; € {—1,1}}

denote the set of polynomials of degree exactly n with coefficients from {—1,1}.
In general, we will call polynomials with coefficients in {—1,1} Littlewood poly-
nomials and denote the set of all such polynomials by L.

Occasionally we will also consider

A, = {zn:aizi 1aq; € {0,1}},
i=0

the set of polynomials of degree at most n with coefficients from {0, 1}, and will
denote by A the union of all the A,,.

Finally, let
P = a;z' 1 a; € C
= (S e )

denote the set of polynomials of degree at most n with complex coefficients and

let .
Pp = {;aizi ja; € ]R}

denote the set of polynomials of degree at most n with real coefficients.

So obviously,
Ln,An CFn C 2, CP, CP{.
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The open unit disk in the complex plane is denoted by D. A general open
disk with radius r and centre zo is denoted by D(zq, ).

We now define the norms that we consider. The definitions are given for
polynomials but hold generally for appropriately integrable or measurable func-
tions. The supremum norm, or L., norm, of a polynomial p on a set A is
denoted by || - ||4. It is defined as

llpll4 := sup [p(2)]-
ZEA

For positive a, the L, norm on the boundary of the unit disk is defined by

1 27 01 |
llplla = (ﬁ/o Ip (") d9>

For a polynomial p(z) := an2™ + - - - + a1z + ap, the Ly norm on D is also given
by

1/a

lIpll2 = v/lanl? + -+~ + la]? + |aof*
This is a consequence of the fact that the Fourier transform is an isometry on
the boundary of D, though for a polynomial it is also just a direct calculation.
In the two interesting limiting cases we get

Jim {lplla = [lpllp =:llplle

and 9
. L[ i0
lim |pll = exp (ﬁ/o log [p (¢”)| d9) =: [|pllo-

This latter quantity is called the Mahler measure and is denoted by M (p). For
a polynomial

pn(z) i=alz—a1)(z—a2) -+ - (2 — ay)
it is, by Jensen’s theorem, the product of all the roots of p that have modulus
at least 1 multiplied by the leading coefficient. That is,

M(p) = la| JT leil-

las|>1

Observe that the Mahler measure is multiplicative: M(pgq) = M(p)M(q). The
Mahler measure of an algebraic number «, denoted by M (), is, by convention,
the Mahler measure of the minimal polynomial for a.

Note that L, is a true norm only for @ > 1 (for a < 1 the triangle inequality
fails).

It is useful to define two other quantities associated with polynomials. As
above, the height of a polynomial p, denoted by H(p), is just the size of the
largest coefficient of p. The length is denoted by L(p) and is just the sum of the
absolute values of the coefficients of p. If p(z) := an2™ + -+ - + a1z + ag, then

L(p) :=|an| + -+ + |a1]| + |ao]
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and
H(p) = ma‘x{|an|7 LR |a1|7 |a0|}'
The length is also the I3 norm: L(p) = ||pl|i, -

Some Results from Real and Complex Analysis

The following standard results about norms are useful. (See also Appendix A.)
The || - || norms are monotonic in a. For 0 < a < 3,

Iflla < NIFlls-

In fact, the norm || f||, is a convex function of a. If 0 < r < s < t, then

s s—

15 < AR == LA =

We also have Hélder’s inequality: if 1 < a < 8 < oo and a~' + 371 =1, then

I£gllx < I llallglls-

For completeness we also state Cauchy’s integral formula, Rouché’s theorem,
and Jensen’s theorem. These are the principal tools from complex analysis that
we need.

Cauchy’s Integral Formula. Lety be a simple closed curve in the complex
plane. Suppose f is analytic in the interior of the region bounded by v and
continuous on 7. Then for z interior to v,

o=£ﬂﬂ%

&= [ D

T 2mi Nt—2

and

f(")(z)—n—‘/( f(t) dt

C2mi ), (t—2)ntl

Unless otherwise specified, the integration on a simple closed curve is taken
anticlockwise. In most of our applications + is a circle.

Rouché’s Theorem. Suppose f and g are analytic inside and on a simple
closed curve . If

17 (2) = 9(2)| < 1f(2)]

for every z € v, then f and g have the same number of zeros inside v (counting
multiplicities).
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Jensen’s Theorem. Suppose h is a nonnegative integer and

o0

f2) =) earlz—20)*, e #0,

k=h

is analytic on the closure of the disk D(zo,7). Suppose that the zeros of f
in D(zo,r) \ {20} are a1,as,...,an, where each zero is listed according to its
multiplicity. Then

m 27
log |cx| 4 hlogr + Z log % / log |f (20 +re™)| dé.
k=1 0

lar, — 20|

The results of this section may all be found in Rudin [1987].

The Main Open Problems

We now state the principal problems we consider in later chapters, where we
give a more motivated discussion of how each problem arises. Where possible,
the problems are stated as “norm problems” whether or not this is how they
naturally arise. Most of these problems have resisted solution for at least fifty
years.

P1l. The Integer Chebyshev Problem. Find a nonzero polynomial in 2,
that has smallest possible supremum norm on the unit interval. Analyze the
asymptotic behaviour as n tends to infinity.

P2. The Prouhet—Tarry—Escott Problem. Find a polynomial with in-
teger coefficients that is divisible by (z — 1)™ and has smallest possible length.
(That is, minimize the sum of the absolute values of the coefficients.)

P3. The Erdés—Szekeres Problem. For each n, minimize

(1 —=2%) (1 =2%) - (1= 2|

oo ?

where the a; are positive integers. In particular, show that these minima grow
faster than n® for any positive constant (3.

P4. Littlewood’s Problem in L,,. Find a polynomial in L,, that has small-
est possible supremum norm on the unit disk. Show that there exist positive
constants ¢1 and co such that for any n it is possible to find p, € L, with

civn+1< |pp(2)] < c2vn+1

for all complex z with |z| = 1.
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P5. Erdés’s Problem in L. Show that there exists a positive constant
cs such that for all sufficiently large n and all p, € L, we have ||pn||cc >

1+ C3)\/TL—1.

P6. Erdés’s Problem in L, for Reciprocal Polynomials. Show that
there exists a positive constant ci such that for all sufficiently large n and all
reciprocal polynomials p, € Ly, we have ||pn|leo > (V2 +¢;) vn + L.

P7. The Merit Factor Problem of Golay. Find a polynomial in L,, that
has smallest possible Ly norm on the unit disk. Show that there exists a positive
constant ¢y such that for all n and all p, € L, we have ||py|la > (1+ca)vn + 1.

P8. The Barker Polynomial Problem. For n sufficiently large (n > 12
may suffice) and p, € L, show that

4
Ipalle > ((n+1)2 +n+1)"".

Equivalently, show that no polynomial in L,, of degree greater than 12 can have
all acyclic autocorrelation coefficients of size at most 1.

P9. Lehmer’s Problem. Show that any monic polynomial p, p(0) # 0, with
integer coefficients that is irreducible and is not a cyclotomic polynomial has
Mahler measure at least 1.1762 . ... (This latter constant is the Mahler measure
of l+2—2% =24 —25 =28 — 27 4+ 294 210))

P10. Mahler’s Problem. For each n, find the polynomials in L, that have
largest possible Mahler measure. Analyze the asymptotic behaviour as n tends
to infinity.

P11. Conjecture of Schinzel and Zassenhaus. There is a constant ¢ > 0
such that any monic polynomial p, of degree n with integer coefficients either
has Mahler measure 1 or has at least one root of modulus at least 1 + ¢/n.

P12. Closure of Measures Conjecture of Boyd. The set of all possible
values of the Mahler measure of polynomials with integer coefficients in any
number of variables is a closed set.

P13. Multiplicity of Zeros of Height One Polynomials. What is the
mazimum multiplicity of the vanishing at 1 of a polynomial in F,?

P14. Multiplicity of Zeros in L,,. What is the maximum multiplicity of
the vanishing at 1 of a polynomial in L, ?
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P15. Another Erd6s Problem. FEstablish whether there is a positive con-
stant ¢ such that if

V., = (1 +zb1) (1 +zb2) (1 +zb")

is in A, then
max{b;} > c2™.

P16. A Montgomery Question. Show that the minimal s arising as in
Lemma 1 of Chapter 10 does not give the right value for Q[0,1]. Does Q[0,1]
have a closed form?

P17. The Schur—Siegel-Smyth Trace Problem. Fiz e > 0. Suppose

pn(2) == 2" + an—lznil +---4+a0 €2,

has all real, positive roots and is irreducible. Show that, independently of n,
except for finitely many explicitly computable exceptions,

lan—1| > (2 — €)n.

Introductory Exercises

E1. Show, for p, € £, that
llpnllz = vV + 1.

Show, for a > 2, that

Vi +1< |pnlla <n+1

while, for 0 < a < 2,

1<||pnlla < VR +1.

When is equality possible in the above inequalities?

E2. For each positive even integer m and each positive integer n show that

max{||pllm : p € Ln}

is attained by the polynomial 1+ z + 22+ - - - + 2™. Observe that this is not the
unique extremal polynomial.

Klemes [2001] proves this for 2 < m < 4 (m € R) and also that the above
polynomials are extremals for min{||p||m : p € L} for 0 < m < 2.
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E3. Find a nontrivial upper bound (< 1) in P1. Derive a nontrivial lower

bound in P1 as follows. If 0 # p,, € Z,,, then for some integer m # 0,

m
1,2,...,2n+1)

1
Il > [ Pha)do = o #0,

where lcm denotes the least common multiple. By the prime number theorem,
(lcm(l, 2,... ,n))l/n ~e.

E4. Symmetric Polynomials. Let
(z—on)(z—a2) - (z—ap) = 2" —c12" P 2™ 2 — o 4 (=1)"cp.

The coefficients ¢y, are, by definition, the elementary symmetric functions in the
variables aj, ..., a,. For positive integers k, let

Sk :=a’f+a’2“+---+oz’ﬁb.

Derive the Newton identities
k-1
Sk = (—1)k+1kck + (—l)k (—I)Jck_ij, k<n,
i=1

<

and

sp = (—1)F! Z (=ier_jsj, k>mn.

k—1
J:

—n
A symmetric polynomial of n variables is a polynomial of n variables that is
invariant under any permutation of the variables.

One can show (by induction) that any symmetric polynomial in n variables
(with integer coefficients) may be written uniquely as a polynomial (with integer
coefficients) in the elementary symmetric functions.

We need the following consequence of this. Suppose that p(z) is a monic
polynomial with integer coefficients and with roots ay, s, ..., a,. Show that if
q is any polynomial with integer coefficients, then

q(ar)gq(az) - - q(an)

is an integer.

E5. Show that P7 (the second part) implies P5. Show that P6 implies P5
for sufficiently large n. What other implications are there among the above
problems?

Computational Problems

Experimentation on the computational problems in this book is most easily
done in a symbolic algebra package such as Maple.
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C1. Write a computer program to compute the L, norms of polynomials on
the boundary of D. Why is this easy if p is an even integer? Why is this hard
otherwise?

C2. Write a computer program to search the class £,,. Solve P4, P7, P13, and
P14 for modest-sized n. (Gray codes are one way to implement this with some
efficiency. See Knuth [1981].)

C3. Plot all the zeros of all Littlewood polynomials of degree at most 20.
Similarly, plot all zeros of all polynomials in A,, for n at most 20.

Research Problems

R1. Solve P1 through P17 of this chapter (and skip the rest of the book).

Selected References

The basic analysis needed in this book may be found in the first and fifth refer-
ences below. Littlewood’s charming monograph discusses some of the problems
(he also speculates in the introduction that the Riemann hypothesis is false).

1. P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities,
Springer-Verlag, New York, 1995.

2. J.E. Littlewood, Some Problems in Real and Complexr Analysis, D.C.
Heath and Co., Lexington, MA, 1968.

3. M. Mignotte, Mathematics for Computer Algebra, Springer-Verlag, New
York, 1992.

4. M. Mignotte and D. Stefdnescu, Polynomials. An Algorithmic Approach,
Springer-Verlag Singapore, Singapore, 1999.

5. W. Rudin, Real and Complex Analysis, third edition, McGraw-Hill, New
York, 1987.
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Chapter 2

LLL and PSLQ

The single most useful algorithm of computational number theory is the LLL
lattice basis reduction algorithm of Lenstra, Lenstra, and Lovasz [1982]. It
finds a relatively short vector in an integer lattice. In this chapter we give some
examples of how LLL can be used to approach some of the central problems of
the book. Appendix B deals, in detail, with the LLL algorithm and the closely
related PSLQ algorithm for finding integer relations. In many of our applications
LLL can be treated as a “black box” —why it works doesn’t matter. One inputs
a lattice and receives as output a candidate short vector that can be verified to
have the requisite properties for the particular problem under consideration.

A lattice is defined as follows.

Definition.  The lattice L spanned by the n linearly independent vectors
bi,bs, ..., b, is the set of vectors L := {>_" ,n;b; : n; € Z}. We say that
the vectors b; form a basis for L.

Many problems in number theory are solved by finding short (or shortest)
vectors in a particular lattice. “Short” means with respect to a norm given by
an inner product. Often the norm we use is the Euclidean or I3 norm; namely,
for a vector

a:= [a17a27" '7an]

the norm is

lr(a) == |a] := V]eu > + |a22 + -+ - + |an |2

The problem of finding the smallest vector in a lattice is computationally
difficult and it is believed that no polynomial-time algorithm exists for solving
this problem in general. (In the language of complexity theory, it is provably
NP-hard under randomized reductions. See Ajtai [1997].)

What LLL actually does is to take a lattice basis (a maximally independent
set of vectors, as above) and return a new basis that is reduced in a precise sense.
This reduced basis consists of relatively short vectors. The smallest reduced

11
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basis vector a that LLL returns is small in the sense that |a| < 2(»~1)/2|x]|,
where x is any other nonzero vector in the lattice and n is the dimension of the
lattice. LLL finds this reduced basis in polynomial time and, in practice, often
finds vectors very much smaller than the guaranteed bound.

A typical example for us is the following. Consider the Prouhet-Tarry—
Escott problem of the last chapter for a fixed size n. We want to find a poly-
nomial q(2) := aqz® + -+ - + a1z + ap with minimal [; norm that is divisible by
(1 — z)™. (While minimizing the /; norm and the Il norm is not the same, it
is the same if the minimizing polynomial has coefficients of size 1 and will be
a good first approximation if the minimizing polynomial is of low height.) The
lattice of dimension m + 1 we now construct has basis

[(1—2)"2(1—=2)",...,2"(1 - 2)"].

(We identify the polynomial with the vector of coefficients, adding leading zeros
as needed.) Note that any integer linear combination of this basis is divisible
by (1 — 2)". LLL will return a small vector with respect to the /> norm, and
this is what we are looking for (see also the exercises).

Now suppose we want to find a Littlewood polynomial of degree m divisible
by (1—2)". How do we try to force LLL to return a polynomial with coefficients
that are just —1 and 17 One strategy is the following. Find a monic polynomial
p of degree m divisible by (1 — 2z)™ that has only odd coefficients. (This will be
possible for all n and some m. For example, (1 — 2z)2" ! has odd coefficients.)
Now consider the basis

[p(2),2(1 — 2)",22(1 — 2)™,...,22"" (1 — 2)"]

reduced by LLL. This reduced basis must have at least one member with just
odd coefficients in order to have the same span. With a little luck this will be
the desired element of relatively small norm. There is no guarantee that this
will work, but often it does.

Another problem that can be attacked using LLL is the integer Chebyshev
problem. Here we wish to find a polynomial of a given degree that has small
supremum norm on, say, [a, 8]. One approach is to take the lattice Z,, and use
the inner product associated with the norm

3 1/2
Pl Lafa,m) = (/ Ip(w)lzdw) .

This is discussed further in Chapter 10.

PSLQ is a relative of LLL that solves the problem of finding integer rela-
tions. Finding minimal polynomials is an example of such a problem. Given an
algebraic a, one is looking for integers a; with

-1
an0"™ + ap_1a" " 4+ -+ a9 =0.

Remarkably, LLL and PSLQ both solve this problem in polynomial time. This
is detailed in Appendix B.
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Computational Problems

C1. Implement LLL and PSLQ. (See Appendix B.)

C2. Use LLL to look for solutions of the Prouhet—Tarry—Escott problem (P2)
for n < 20. (For each n the minimum possible /; norm is 2n. See Chapter 11.)

C3. Which of P1 through P17 can be explored with LLL? How?

Research Problems

R1. Is it possible to approach the merit factor problem (P7) using LLL? For
which other norms is there an analogue of LLL that gives polynomial-time
algorithms for finding short vectors with respect to that norm?

R2. Are there polynomial-time algorithms for any of P1 through P17? (To
make sense of this, one has to decide how to measure the size of an instance of
the problem.) Note that it isn’t clear that P2 is even algorithmic, and indeed,
this is an open problem.

Selected References

Algorithms for LLL and PSLQ and variants are given in Appendix B. LLL is well
presented in the original paper of Lenstra, Lenstra, and Lovész [1982]. There
are now many variants and improvements on this algorithm. See, for example,
Cohen [1993].

1. H. Cohen, A Course in Computational Algebraic Number Theory,
Springer-Verlag, Berlin, 1993.

2. AK. Lenstra, HW. Lenstra, and L. Lovasz, Factoring polynomials with
rational coefficients, Math. Ann. 261 (1982), 515-534.
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Chapter 3

Pisot and Salem Numbers

There are two very special classes of algebraic integers that arise repeatedly and
naturally in this area of study. Recall that an algebraic integer is any root of
any monic polynomial with integer coefficients. A real algebraic integer « is a
Pisot number if all its conjugate roots have modulus strictly less than 1. A real
algebraic integer a is a Salem number if all its conjugate roots have modulus
at most 1, and at least one (and hence (see E2) all but one) of the conjugate
roots has modulus exactly 1. As is traditional, though somewhat confusing, we
denote the class of all Pisot numbers by S and the class of all Salem numbers
by T.

One of the remarkable properties of these sets is that S is closed (in the sense
that it contains all its limit points). Furthermore, every point of S is a two-
sided limit of points of T'. The reader is referred to Salem [1963] for additional
material on this. See also the exercises.

We will denote the nth cyclotomic polynomial by ®,,. This is the minimal
polynomial of a primitive nth root of unity (e.g., exp(2mwi/n)). The cyclotomic
polynomials are just the irreducible monic polynomials in Z of Mahler mea-
sure 1. The ®,, are given by

o,(2)= [ (z—exp(s2mi/n)),

1<j<n
ged(g,n)=1
so for p a prime,
B, (2) 2P -1
z) = .
P z—1

Cyclotomic polynomials are discussed in more detail in Chapter 6.

Kronecker’s theorem characterizes the monic polynomials of measure 1. A
proof is outlined in E4 of Chapter 6.

Kronecker’s Theorem. If p € Z is monic and irreducible and has all its
roots in the set {0 < |z| < 1}, then all the roots of p are roots of unity and p is
a cyclotomic polynomial.

15
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The extent to which Kronecker’s theorem extends to characterize monic
polynomials of measure ¢ > 1 is a principal topic of this section.

The smallest Pisot number is the largest root of 23 — z — 1 and is approxi-
mately 1.3247... . This is also the smallest possible Mahler measure of a non-
reciprocal polynomial that doesn’t vanish at 0 or 1. This result is due to Smyth
[1971]. A polynomial p of degree d is reciprocal if p(z) = p*(z). Recall that if

p(2) 3=ao+a1z—|—--.+adzd
then -
p*(z) = a_ozd+ﬁzd,1 + -4 ag = de(]./Z),

Sometimes reciprocal polynomials are called symmetric or self-inversive. A
polynomial p of degree d is negative reciprocal if p(z) = —p*(z). Note that if
p(z) is negative reciprocal and of odd degree, then p(—=z) is reciprocal.

The smallest Salem number is conjectured to be the largest root of 1+ z —
22— 2% — 25— 28— 27+ 2% + 210, This polynomial is called Lehmer’s polynomial.
Its largest root is approximately 1.17628 ... . This is also conjectured to be the
smallest possible Mahler measure of an irreducible noncyclotomic polynomial
(excluding 2).

The best results in the direction of the above conjecture are as follows.
Louboutin [1983], improving constants of Dobrowolski [1979], shows that for any
positive €, an irreducible noncyclotomic polynomial p of large enough degree d

satisfies
9—c¢ loglogd 3
M 1 )
w>1+ () (e’

(Voutier [1996] shows that for all d > 2, the above holds with e = 8.) In
a slightly different vein, Dobrowolski [1991] shows that a monic polynomial p
with &k nonzero coefficients that is not a product of cyclotomic polynomials and
does not vanish at 0 (i.e., not of measure 1) satisfies

1
M 1+ —
(p) > 1+ aexp(bk*)’

where a < 13911 and b < 2.27 are absolute constants. See Schinzel [2000] for a
discussion of these results.

The smallest limit point of measures (as in P12) is believed to be approxi-
mately 1.255433... . This limit point arises from the polynomial

a(z,y) =1+ z+y+azy+azy’ + 2%y + 2°y°.

The natural generalization to two variables of Mahler’s measure is via the inte-

gral A
exp [ —— " 27r1 i1 ¢i02)| dg, do
p 42 0g|Q(e € )| 1002 ) .
™ Jo 0
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(The Mahler measure of a polynomial in n variables is defined in the obvious way
as an n-fold integral as above.) The limit point (1.255433...) is the value of the
above integral. It is the limit of the measures of the single-variable polynomials
{q(z,2™)}. Multivariate Mahler measures arise as special values of L series in
quite remarkable ways. See Boyd [1998].

Interestingly, the above ¢ is a knot-invariant polynomial (see Ghate and
Hironaka [2001]). Tables of information on this problem due to Mossinghoff are
available at http://www.math.ucla.edu/"mjm/Ic/lc.html.

We now restate Lehmer’s problem, which arises in Lehmer [1933].

P9. Lehmer’s Problem. Show that any monic polynomial p, p(0) # 0, with
integer coefficients that is irreducible and is not a cyclotomic polynomial has
Mahler measure at least 1.1762. .. . (This latter constant is the Mahler measure
of l+z—2°— 24— 25— 28 — 27+ 294 210))

The best partial result, as observed above, is due to Smyth.

Theorem (Smyth). Ifp € Z is irreducible and not reciprocal, and p(0)p(1) #
0, then
M(p) >0 :=1.3247...

where  is the largest real root of 2> — 2z —1 = 0.

We will prove only a weaker form of Smyth’s result where the constant
6 := 1.3247 ... is replaced by \/5/2 = 1.1180.... We will need the following
standard result from complex analysis.

Parseval’s Formula. Suppose that ¢ is an analytic function in an open
region containing the closed unit disk with Taylor expansion

d(2) ==ep+erz+---.

Then

o0

[ lo@ ) o =3 lei
0

=0

Proof of Smyth’s Theorem. We assume that the measure of p is less than 2,
so we may also assume p monic. Thus, since p is irreducible, we may further
assume that [p(0)| = 1.
Write
p*(z):=do+diz+ -+ dp2",

where dy = 1 and d,, = £1. Further, write

=eytez+ -

1
p*(2)
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and notice that
o J
1= (do +d12+"'+dnzn) (60 +€12+"') = szj*ieiz]'
j=0 i=0
Thus ey = dy = 1 and
j—1
d()ej = — Z dj_,-e,-,
i=0
and since dy = 1, we have that each e; is an integer. So

1
p*(2)

:eo+elz+...

with each e; € Z.
Define G, h, and g by
Gl oo POPG) _ POTIE=00) _ pO) I =)
p*(2) [1(1 - za) [1(1 - za)
_ p(0) Hlai\>1(z - ) H\ai\<1(z - a)
Hla,-\>1(1 - 20;) H|a¢,-|<1(1 — za)
PO T 25 h(z)

H\ai|>1 (=) 9(2)’

(z—ai)

Observe that terms with roots of modulus 1 cancel out so both of the functions
h and g are analytic on an open set containing the unit disk.

Consider a typical factor (z — a;)/(1 — @;2) of h(z) with z on the unit circle,

|z|=1:
z—q z—a; \ _ [ Z—oy zZ—q;
1—a;z 1—a;z a 1—a;2 1—0o;z
[ 2y 1—a;z 1
T \1-az z—a; )

Thus |h(2)| =1 on |2| =1, and similarly, |[g(2)| =1 on |2| = 1.

Now write
h(z) ==b+biz+---,
9(2) =c+ecrz+---,
and
Gz):=1+apz*+---, ap#0.
Then, since G(z) = h(z)/g(z),
|4 aget 4o = LBz
ctaz+---

(ct+eaz+--)1+apzf+--)=b+bz+---,
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and
k

ctez+-Fep 12" (cap +ep)F F-=bFbiz4 -
From this, we compute that

c=b,

1 = bl:

Cr—1 = bp_1,
cr + apc = by.

If |e| > 2max(|bg|, |ck|), then we see that
|are] < [br — k| < [bg| + |ex| < 2max(|be, |ex]) < el,

which is a contradiction. Hence |¢| < 2max(|b], |ck|)-

Without loss of generality, assume that |bg| > |b/2| (otherwise, the same
argument applies to |cx|). Then we have

1 1
/|h(62m'0)|2do=/ 1d6=1= || 4 |B2] 4+ B3]+ .
0 0

Thus
b+ > < 1
and
), 0
— <
b° + 1 1,
SO
2
o] < —=
5
But
_ _ |0—Oéi| - 1

Schinzel [1973] gave the following sharp result for the measure of polynomials
whose roots are all real.

Theorem (Schinzel). Ifp € Z;\ Z4-1 has all real roots, is monic, and
/2
satisfies p(—1)p(1) # 0 and |p(0)| = 1, then M (p) > (1+2—*/5) .
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Proof. We use the following inequality for real 3; > 1:

B =1)(B2—1) -+ (Ba—1) < ((B12 -~ B - l)d,
which follows from the convexity of log(e* — 1) for z > 0. Now suppose p(z) :=
H?Zl(z — ;). Then
1< H|ai\<1(a;2 —-1) H|ai‘>1(a% -1) < (M(p)4/d _ 1)d
- M (p)? = M(p)?
= (M)~ M),

and the result follows. O

The above theorem holds more generally for all p € Z; that have all real
roots and satisfy the condition p(—1)p(1)p(0) # 0. The proof follows the above
outline and is left as an exercise. Note that the above theorem is sharp for
p(z) = (2 —2z-1)".

A conjecture of similar flavour to Lehmer’s problem is the following.

P11. Conjecture of Schinzel and Zassenhaus. There is a constant ¢ > 0
such that any monic polynomial p, of degree n with integer coefficients either
has Mahler measure 1 or has at least one root of modulus at least 1 + c/n.

This conjecture is made in Schinzel and Zassenhaus [1965]. It is easy to see
that P9 implies P11. The best partial result is due to Smyth [1971]. If p is a
nonreciprocal monic irreducible polynomial of degree n > 1, then at least one
root p satisfies

log ¢

p>14 22
mn

where ¢ = 1.3247... is the smallest Pisot number, namely, the real root of
2% — 2 — 1. (The right constant in P11 may well be 3 log®.) Boyd [1985] es-
tablishes P11 for polynomials of degree at most 11 and conjectures that the
extremals are never reciprocal. He also conjectures that for degree 3k an ex-
tremal is 23F + 22% — 1.

There is a stronger, and perhaps more natural, conjecture of Boyd [1981]
that implies P9 and P11 (up to the exact constants).

P12. Closure of Measures Conjecture of Boyd. The set of all possible
values of the Mahler measure of polynomials with integer coefficients in any
number of variables is a closed set.

Another problem, due to Mahler [1963], is to determine the maximum pos-

sible Mahler measure over the Littlewood polynomials. This also appears to be
a difficult question. It relates to the questions of Chapter 15.
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P10. Mabhler’s problem. For each n, find the polynomials in L,, that have
largest possible Mahler measure. Analyze the asymptotic behaviour as n tends
to infinity.

The most interesting question is whether or not this is asymptotic to v/n.

Introductory Exercises

E1. Show that if « is a Pisot number and p € Z is a polynomial of height h
that does not have a as a root, then

Ip(a)| > c(a, h),
where the positive constant ¢(a, h) depends only on « and h.

Hint: If {01, a0, ...,a,} is the complete set of roots of the minimal polynomial
for a then
lp(en)p(az) - - plan)| > 1.
O

E2. Suppose that «a is a Salem number. Show that the minimal polynomial
is reciprocal. Show that the other roots of the minimal polynomial of o have
modulus 1 except for a single root of modulus |1/a|.

E3. Suppose that « is a Pisot number and denote by d(«) the least distance
from « to an integer. Show that d(a™) — 0 as n — 0.

This characterizes Pisot numbers if we add the assumption that « is an
algebraic number. It is believed to characterize Pisot numbers generally, but
the best that has been proved is that

Z d(an)Z

converges iff a is a Pisot number. This is due to Salem [1963].

For any positive a define d*(a) to be the fractional part of a. (So d(a) =
min{d*(a),d*(1 — «)}.) When « is a Salem number, it can be shown that
{d*(a™)}$2, is dense, but not uniformly distributed, in the unit interval. In
general, questions concerning the behaviour of {d*(a™)}5° ; are hard. It is still
open as to whether {d* ((3)")}°_ is infinitely often in the interval [3,1].

n=1
Show that if 7 is a fourth-degree Salem number (with conjugates 1/7,8,8)
and 3 is any number in (0, 1), then there exists a subsequence {n;} of the positive

integers such that
d(™™) — S.

Hint: Note that if v is an irrational number, then cos(2myn) comes arbitrarily
close to any value in [—1,1] for an infinite number of n. O



22 Chapter 3. Pisot and Salem Numbers

E4. Suppose that p is a real reciprocal polynomial and suppose p(—1)p(1) # 0.
Show that p has even degree 2n and there exists a polynomial g of degree n such
that 27 "p(z) = ¢(z + 1/z). Furthermore, if p has integer coefficients, so does gq.
(Note that z 4+ 1/z maps the boundary of the unit disc to the interval [-2,2].)
Conclude that z="p(z) is real-valued for complex z of modulus 1.

n

Suppose p has even degree 2n and z "p(z) is real-valued for complex z of

modulus 1. Show that p(z) is reciprocal.

What is the analogous result for negative reciprocal p, that is, polynomials
with real coefficients that satisfy p(z) = —z9p(1/2)?

The smallest known Salem polynomials mapped, as in E4, to [-2,2].

—10-

-12-

E5. Show that for each d there is a positive constant ¢g such that M (p) > 1+c¢q4
for polynomials in Z4 of degree at most d that do not vanish at 0 and do not
have measure 1.

E6. Suppose that ¢ is a Pisot number with minimal polynomial p of degree at
least 3. Show that ¢ is a two-sided limit point of Salem numbers that are roots
of the polynomials 2™p(z) + p*(z) as m varies.

Show that for any polynomial p, as m — oo,

M (z™p(z) +p*(2)) = M (p(2)).

Hint: This result is due to Salem [1963]. Use Rouché’s theorem to show that
(1+€)2™p(z) +p*(z) and 2™p(z) have the same number of roots inside the unit
disk. Note that |p(z)| = [p*(2)| for |z| = 1. So with € = 0, 2™p(2) + p*(2) has



Chapter 3. Pisot and Salem Numbers 23

all but one zero in the closed unit disk. Now show that the extra zero is of
modulus strictly greater than 1 for m large enough. For this last part consider
the graph of 2™p(z) + p*(z) around ¢.

Consider also (2™p(z) — p*(2)) /(2 — 1) to see the two-sided property of the
limit. O

E7. Show that the golden mean (the larger root of 22 — z — 1) is a limit point
of Mahler measures of Littlewood polynomials.

E8. Prove that if p € Z has Mahler measure less than h + 1, where h is an
integer, then p divides some polynomial ¢ € Z of height at most h.

Hint: We will consider the case h = 1. Suppose {a1,aq,...,aq} is the complete
set of roots of p and M(p) < 2. Suppose r is a monic polynomial of degree n
and height 1 and that p is not a factor of r (if it is, we are done). Then

1< |r(aq)r(az) -+ - r(aq)l,

and since
Ir(ew)| < (n+ 1) max {1, [ag|},
we have
Ir(az)r(as) -~ - r(aq)| < (n+ 1) M(p)™.
So

|r(eu)| >

This is the key.

The rest of the argument is a Dirichlet box argument. Note that p has at
least one root, say ai, of modulus at most 1 and that any s € A,, will satisfy
|s(a1)] < n + 1. There are 2" — 1 nonzero polynomials in A,. So for n
large enough, two of them must agree at a1, and their difference is the required
polynomial.

For a Salem number, or any number where ; may be chosen real, any n
large enough such that
(n +1)*M(p)"

on+l _ 1 <1

suffices. 0

E9. Suppose a and 8 are algebraic numbers of degrees m and n respectively.
Show that
M(a+p) <2™"M ()" M(B)™

and
M(ap) < M(a)"M(B)™.
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E10. Some Inequalities. Suppose that p(z) := ap2™ +---+ a1z +ap is a
polynomial of degree n with complex coefficients. Show that

laj] < (;?)M@),
L(py) < 2"M(p),

and
L(p) < nH(p).

If p(2) :== an2™+- - -+ a1 2 +ag, then the following inequality of Gongalves holds:
M (p)* + laoan|*M(p) =2 < Ipll3-

Also, for any a > 0,

M(p) = inf||pg|l2 = inf [|pq||a,

where the infimum is over all monic polynomials ¢ with complex coefficients.
The latter two inequalities may be found in Mignotte [1992]. See Appendix A.

E11. Show that P12 implies P9 (up to the exact constant) and that P9 implies
P11.

E12. An algebraic integer is a Perron number if its modulus is strictly greater
than the modulus of each of its conjugates. Suppose a > 1 is the Mahler measure
of a monic polynomial with integer coefficients. Show that « is a Perron number.

E13. Show that if p is a reciprocal polynomial, then the only zeros of p’ of
modulus 1 are the multiple zeros of p of modulus 1.

Hint: See Inequality 13 of Appendix A. Alternatively, it suffices to prove this
at 1. Consider

P _ z": 1

p1)  H1-G
Transform {|z| = 1} to {Re(z) = 1} by the transformation w = (1 + 2) ! and
observe, by symmetry, that > ., w; # 0. =

E14. Suppose that p is a real reciprocal polynomial and that p has exactly
k roots of modulus greater than 1. Show that p’ also has exactly k roots of
modulus greater than 1.

Hint: See Bonsall and Marden [1952]. Let n be the degree of p and let € > 0.
Since p(z) = 2™p(1/z), we have that

2p/(2) + 2" (1/2) = np(2),
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or

2p'(2) + ()" (2) = np(2).
As in E6, and with E13, we have that (1 + €)zp'(z) + (p')*(2) and 2p'(z) have
the same number of zeros in the region {|z| > 1}. O

Computational Problems

C1. Find the 10 smallest possible Mahler measures (other than 1) of Little-
wood polynomials of degree at most 50. Make a plausible conjecture about the
smallest limit point of these measures.

C2. A natural approach to looking for polynomials with small Mahler measure
(> 1) is to take products of cyclotomic polynomials and then perturb some of
the coefficients symmetrically to construct noncyclotomic reciprocal polynomials
that are, in some sense, close to products of cyclotomics. (See Mossinghoff,
Pinner, and Vaaler [1998].) Explore this method computationally.

Research Problems

R1. Verify Lehmer’s problem up to, say, degree 100. (Currently it has been
checked exhaustively by Rhin and Qiang up to degree 40.)

R2. Solve Lehmer’s problem for some interesting classes of reciprocal polyno-
mials; for example, the class of reciprocal Littlewood polynomials.

R3. In E8 above, is it possible to make p divide a height h polynomial with
the same measure as p? (That is, can the factor ¢/p be chosen to be a product
of cyclotomic polynomials?)

R4. Show that the minimum Mahler measure (> 1) of a monic polynomial in
Z is attained by a Salem polynomial.
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Chapter 4

Rudin—Shapiro Polynomials

Littlewood’s problem asks how small a polynomial with coefficients from the set
{+1,—1} can be on the unit disk.

P4. Littlewood’s Problem in L.,. Find a polynomial in L,, that has small-
est possible supremum norm on the unit disk. Show that there exist positive
constants ¢; and co such that for any n it is possible to find p, € L, with

avn+1< p(2)| <ecevn+1

for all complex z with |z| = 1.

As we will discuss in Chapter 15, the lower bound part of this conjecture,
by itself, seems hard, and no sequence is known that satisfies just the lower
bound. A sequence of Littlewood polynomials that satisfies just the upper bound
is given by the Rudin-Shapiro polynomials. The Rudin—Shapiro polynomials
appear in Harold Shapiro’s 1951 thesis at MIT and are sometimes called just
Shapiro polynomials. They also arise independently in Golay [1951]. They are
remarkably simple to construct and are a rich source of counterexamples to
possible conjectures.

The Rudin—Shapiro polynomials are defined by
Po(2) =1, Qo(2):=1,
and
Pot1(2) := Pa(2) + 2% Qu(2),
Qut1(2) = Pa(2) = 2% Qu(2).

These have all coefficients +1, and P, and ), both have degree 2" — 1. If
|z] =1, then
[ Prt1l” +1Qnt1l* = 2 (|Pul* + 1Qnl*) ,

27
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and it is easy to deduce that

|P,(2)| < V271 = v/2\/degree(P,) + 1

and
|Qn(2)] < V2r+l = v/2,/degree(Q,) + 1

for all z of modulus 1.

Iteration 1. Let po(z) be a polynomial of degree dy with coefficients in a set
A of real numbers, and suppose that po(0) # 0. Let

Pnt1(2) = pa(2) + 24 ph(—2),

where d,, is the degree of p,. Then p, is a polynomial of degree d,, = 2™dy — 1
with all coefficients in AU —A. Furthermore, if
R, :=pp(2) and S, :=p)(-2),
then
Rn+1 =R, + zdn+lsn

and
Spy1 = (=1)* (Rp — 2% 718,).

Proof. Most of this is simple calculation. Observe that

Prs1(2) = pa(2) + (=)™ 22 Fpu (=1/2),

S0
Prr1(=1/2) = pu(=1/2) = (=1)" 272" "Ip, (2),

2dn+1 vields the second form of the iteration.

O

and multiplying this equation by —z

Lemma 1. In the notation of Iteration 1,

|Ra(2)]” +[Sn(2)* = 2" (Ipo(2)|* + |p§ (=2)I*),
provided that |z| = 1. Furthermore,

Fa)P | ISP _ I | (=2
B8 S8~ ol lipol

Proof. The first statement follows from the parallelogram law for complex
numbers:

|Rn+1(z)|2 4 |Sn+1(z)|2 — |Rn(z) + zd"+18n(z)|2 + |Rn(2) - zdn+15n(z)|2
= 2(|Ru(2) + IS0 () ).
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The second statement follows on observing that
[ R0l = 2| Rall3

and
1Sn41l13 = 2153
O

We wish to compute the Ly norm of p,. For this, we follow Littlewood
[1968].

Theorem 1. In the notation of Iteration 1, let y, := ||pn||1/||pnll3 for n >0,

and let . X )
_ lIpolls + lIpo(2)P5(=2) I

2lpoll3

4y 4y 1\"
= e3) ()

For the Rudin-Shapiro polynomials, this gives the following corollary.

Then

Corollary 1. The Ly norm of the Rudin—Shapiro polynomials satisfies
IPlE _ lQalls _ 4 (1) (_1\"_ 4
4n 4n 3 3 2 3
Proof of Theorem 1. With R, and S, as in Iteration 1, let

@n = | Rall3 = 1Sall3

and
Wp = ”RnSn”é

Then, with z := ¥ and d,, := degree(R,),

22n41 = || R i + Snsalli
1 27

=5 (|Rn(2) + 29180 (2)|* + |Ra(2) — 24180 (2)[*) d6.

If we use the identity for complex numbers
lu+v* + Ju—v[* = 2(Jul* + [v]*) + 4(Re(uﬁ))2 - 4(Im(1w))2 + 8luv|?

with u := R,(2) and v := 2%*15, (2), we deduce that
4 2w N2
2T 1 = 4z + 8wy + — / (Re(Rn(z)zd"“Sn(z))) de
27 0

_ _/2” Im(Ra(2)7715,(2)) ) db.
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Now, if P is a polynomial with real coefficients and zero constant term, then

Re(P()) do= - [ (m(P()) a0 = LPIE.
27 J, 2

™

1 2
2r Jo
and it follows that the two integrals above cancel. Thus
Tpi1 = 2T, + dw,. (1)

We now observe that with Lemma 1,

27
3 | (R + 150" as

22n 2w

2%, + 2wy,

o (Ipo(2)|? + P (—2)[?)” db
0

[ i
27 0 2

_ 92n+2 (Ilpolli + ||po(Z)p3(—Z)||§>

2
From this and (1) we deduce that

oy — 2 o (nponz + ||po<z)pa<—z>||%>
n - n .

2

Since ||pn+1//s = 4||pnl|3, this yields
Yn+1 = _y?n + 27,
which solves to give the result. O

An immediate consequence of this is the following.

Corollary 2. The sequence pp(z) generated by Iteration 1 satisfies
4\ /4
i el _ (10",
n—co ||pn |2 3

_ lwolld + ()i (=215 o |
2/lpoll -

where

Proof. The only part needing proof is that v > 1. Note that with z := e,

lIpllf + lp(2)p* (=2)I3 = % /0 " (IP(z)I +2|p*(—z)| ) 0
1 2m |p(2)|2 + |p*(_z)|2 2
22 (5/0 5 d0)
= 2||pll2.

Here we have used the fact that La(q) > L1(q)- O
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The question of when v =1 is discussed further in Chapter 14. This relates
to the existence of Golay complementary pairs.

It is easy to check that the same results hold for the iteration

Prt1(2) = pu(2) — 2% T1pk (—=2).
Define el + lIp()p* (—2) 3
plls + |lp(2)p* (—2
v(p) = =2 ST 2
lIpl15
and let

Ty (p) = p(2) £ 2% T1p*(=2).
A direct computation, as in the proof of Theorem 1, shows that ~ (Ti (p)) = v(p)-
Thus, by an obvious analogue of Corollary 1, if {g,, } is a sequence of polynomials
generated by ¢n11 = T'+(¢n) for any choice of signs, then

i Ngnlle _ (47(qo))1/4.

noo flgnllz 3

We remark that the usual Rudin—Shapiro polynomials satisfy the recurrence
Poii(2) = Pu(z) — (=1)"2 Pyi(~2)

and .
Qnt1(2) = Pa(2) + (=1)"2* Pi(=2).
So for n > 1, we have

{Prot1, Qi1 } = {T4(Pn), T-(Pp)}-

Introductory Exercises

E1. The Rudin—Shapiro polynomials satisfy the upper bound in P4 on a sub-
sequence with a constant ¢y := V2. Show how to find a sequence that satisfies
the upper bound with a constant ¢ for all n. (In fact, ¢ = 2 is possible. See
Saffari [1990].)

E2. Show that the Rudin—Shapiro polynomials satisfy
(a) Ppi1(z) = Py (2%) 4+ 2P, (—7%).

() Qnt1(2) = Qn (22) + 2Qn (—22).

(€) Pu(2)Pu(1/2) + Qu(2)Qn(1/2) = 2"+

(d) Poymr1(2) = P (2)Po (227%F1) + 22MQn (2) Py (—2271).
(e) Pn(1) = 2l»+1)/2],

(f) Po(=1) = 3(1+ (=1)")2/2.

Here [-] denotes the integer part. These and more may be found in Brillhart,
Lomont, and Morton [1976].
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E3. Consider the following four-term variant of the Rudin—Shapiro polynomi-
als: Let Py := Qo := Rg := Sp:=1 and

Poi=Po iy +2" 7 Qnoy + 2%V T Ry + 22T Sy,
Qn = Po_1 +i2*" " Qno1 — 2% T Ryt + -2 Sy,
R, :=P,_1— z4n_1Qn_1 + z2'4n_1Rn_1 — z3'4"_1Sn_1,
Spni=8Sp-1+ —iz4"_1Qn_1 — 22 R, 1+ iz3'4n_1Sn_1.
Show that if |z| = 1, then
[Pa(2)]* +1Qn(2)” + [Ra(2)]” + [Sn(2)|? = 4™+

4n—1

In general, let By ; = w1t for j :=1,...,N, where w is a primitive Nth
root of unity, and for each integer h > 0 let

N
. h—1 .
Pyj(2) = 3wt D0DEONTIR, (), =1, N
k=1
Then, for |z| =1,

N
3 |Pa(2)? = N
k=1

E4. The Average Norm of Littlewood Polynomials. Show that if
p € Ly, then

ll2p(2) + 111 + llzp(2) = 1[I3 = 2llp(2) I3 + 8n + 10.
Deduce from this that the average value of ||p(z)||} for p € L, is
2n% 4+ 3n + 1.

See Newman and Byrnes [1990]. (For any fixed p, this is also the average over
the set of all polynomials of degree n whose coefficients are all pth roots of
unity.) This result is extended in Borwein and Choi [to appear] where it is
shown that the average value of ||p(2)||§ for p € £y, is

6n° 4+ 9n? +4n + 1,
and the average value of ||p(2)||§ for p € £y, is

24n* + 3003 + 4n® 4 5n 4+ 4 — 3(—1)™.

E5. Show that if p is of degree n, then
Ip(2) + 2" p* (2) |5 + [Ip(2) — 2" *p* (2) |3 = 12[|p(2) 3.

Deduce that the average value of ||p(z)||} over the reciprocal and negative re-
ciprocal p € L,,, for odd n, is
3n® + 3n.

Show that the above is also the average over just the set of reciprocal p € L,
when n is odd. When n is even the average is 3n2 + 3n + 1.
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E6. A polynomial is skewsymmetric if p(z) = +z%(—1/z), where d is the
degree of p. Observe that for real polynomials this is equivalent to p(iz) =
+p*(iz).

Show that if n is odd and p is of degree n, then

p(z) £ 2" + 2272p*(=1/2)
are both skewsymmetric. Show that if n is even and p is of degree n, then
p(z) + Zn+1 _ Z2n+2p*(_1/z)

are both skewsymmetric.
Show that all skewsymmetric Littlewood polynomials are as above.

E7. Show that the average value of ||p(2)||; over the skewsymmetric p € £,
for even n, is
2n +n+1.

E8. The Average Norm of Height One Polynomials. Show that the
average value of ||p(z)||2 over all height 1 polynomials of degree n is

2n+2
3 3

Show that the average value of ||p(z)||3 over all height 1 polynomials of

degree n is
§n2 + En + 2
9 9 3
and the average value of |[p(z)||; over all height 1 polynomials of degree n with

leading coefficient 1 is
Sz 2,41
9 9 '
Show that the average value of ||p(2)||§ over all height 1 polynomials of

degree n is

16 26 2
§n3 +4n? + 3"t 3

This is proved in Borwein and Choi [to appear], as is the following. Let n > 0
and H > 1 be integers and let

Fn(H) = {Zaizi a)| € Hya; € Z}
=0

be the set of all the polynomials of height at most H and degree < n. Let

1 § m
PcFn(H)
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Theorem 2. Forn >0 and H > 1, we have
1
ﬂn(QJH) = EH(H+ 1)(7’L+ 1)7

2 1
B (4, H) = §H2(H +1)%n2 + BH(H +1) (19H? + 19H - 3)n

+ 1i517r(H4r 1) (3H? +3H — 1),

and
2 1
B,(6,H) = §H3(H +1)3n® + 3H2(H +1)*(3H* + 3H — 1)n?

1
+ 3 HH +1) (164H* + 328H® + 56 H> — 108H + 15) n

1
+ o H(H +1) (3H" + 6H* —3H +1).

Computational Problems

C1. Compute the maximum and minimum of the Rudin—Shapiro polynomials
on the circle {|z| = 1} for as many n as possible. Show that the Rudin-Shapiro
polynomials of odd index vanish at —1.

Observe that the Rudin—Shapiro polynomial P,
O LIPS E R Qe | Qg g [ JFIp NIPS IS QR S B Sy B )

has min{|p(z)| : |2| = 1} > 1.185. Use this to construct an infinite sequence of
polynomials p, € £,, with

min{|pn(2)| : 2] =1} > (n +1)°

for some p > 0.
Use the Barker polynomial

7

22 0 R T S St 241

to get a bound of p > 0.43.

Research Problems

R1. There are many ways to extend the Rudin—Shapiro construction. One
can consider iterations of three or more terms, for example (see E3 above). Is
it possible to extend the construction to get good lower bounds in P47
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R2. Extend the formulae of the exercises for the average of ||p(2)||?. So, for
example, extend the formulae of Theorem 2 for 3, (m, H) for all even n.

Selected References
The results in this section, for the most part, follow the second reference below.
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4. H. Shapiro, Extremal problems for polynomials and power series, M.Sc.
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Chapter 5

Fekete Polynomials

The Fekete polynomials are defined, for prime p, by

he) =5 (g) *,

k=1

where (=) is the Legendre symbol. Recall that the Legendre symbol (%) is
defined as follows:

1 if 22 =k (mod p) has a nonzero solution,

k
<5> =<0 if p divides k,
—1 otherwise.

The Legendre symbol is a character mod p, i.e., a function y that maps the
nonzero integers modulo p into the complex numbers of modulus 1 and satisfies
x(ab) = x(a)x(b). It is also called the quadratic character mod p.

The Fekete polynomials are (except for the constant coefficient) Littlewood
polynomials, though their primary existence is as Gauss sums. They, like the
Rudin—Shapiro polynomials of the last chapter, provide a rich source of examples
and counterexamples. See Appendix C.

Recall that the Lo norm of f,(2) is v/p — 1 and that the supremum norm is
bounded below by the L, norm. The modulus of f, at any primitive pth root
of unity is /p. This is proved in the following lemma.

Lemma 1 (Gauss). Ifp is an odd prime, gcd(k,p) = 1, and {p is a primitive
pth root of unity, then

r(G) == (_71)10

and

f(1)=0.

37
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Proof. Let x be the quadratic character mod p (the Legendre symbol) and
let b be the least positive residue of ak (mod p). Then

p—1

ZX Zx (2 Zx )¢

It follows that &
5 = (];) £(G):

Also, since exactly (p — 1)/2 of the reduced residues a modulo p satisfy

5)-

we see that

We now see that

p—1 p—1
ab .
(=1, (1)’ pr @ =3 ¥ (2) e
7=0 a,b=0 p
p—l p—1 p—1
ab ; ab -1
=Y (D)X ai=r X (%) =2 (T w-0.
a,b=1 p j=0 bi;la p p
and we are done. O

The choice of root in the above lemma is more subtle. This is also a result
of Gauss (see Hua [1982]).

Theorem 1 (Gauss). For p an odd prime, let

_J1 difp=1 (mod 4),
PV ifp=3 (mod 4).

Then if ged(k,p) =1,

56 =i (L)

Since fp(z) is of constant modulus ,/p at the primitive pth roots of unity,
it is a natural candidate for an extremal polynomial in the supremum norm.
However, Montgomery [1980] shows that the supremum norm of f,(z) on D
grows at least like \/ploglogp. (See R1.) The extent to which f,(z) is an
extremal at the roots of unity is the content of the following theorem.

Theorem 2. Letp(z):=a1z+ asz®> + - +an_12¥"" with N odd and each
a, = 1. Then we have

z
N

lp(¢")|* > N*(N - 1)
0

x~
Il
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and
max{|p((k)| :OSkSN—l} Zx/ﬁ.

The above inequalities are sharp. Equality holds in the second inequality if and
only if N is an odd prime and p(z) is £fn(z). Here ¢ := e2™/N

The proof of this may be found in Borwein, Choi, and Yazdani [2001]. We
prove only the following lemma, which includes the first part of the above the-
orem.

Lemma 2. Let p(z) := a1z +a22?> +--- +ay_12¥ ! with N odd and each
a, = 1. We have

and

Proof. Since a,, = +1, we have

Z |p Ck Z anQm Z Ck(n ™ = -1),

n,m=1

which is the first equality. For the second inequality,
N—1 N—
Yl = Z|p (¢¥) | _Z|p () p (™))
k=0 k=
N—1|N—1 ?
= { > anam} ¢

n—m=l (mod N)

N-1 2
= N { Z A,

n—m=l (mod)N

= N (N—1)2+Z{ Z anam}

n—m=l (mod N)

\Y

N((N =1)?+ (N —=1)) = N*(N - 1),
because

Z anam =N —2=1 (mod 2)
n—m=l (mod N)

for 1<I< N —1. O
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There is an interesting connection that Dirichlet observed between the Fekete
polynomials and the L series

()£

Because the gamma function satisfies

1
T(s) = ns/ (—logt)* 1t" Ldt,
0
it follows that

['(s)L (s, (5» =T(s) g (n%s) = /01(—logt)s_1 g (%) t"dt

_ /1 (Zlog )™ fo(®) 4
0 t 1—tp

since fp(z)/(1 —a?) = 3507, (2)z".

This leads to the analytic continuation of the L series and also allows one
approach to the so-called Siegel zeros of L. A Siegel zero is a real zero of the
L series in the interval (0,1). (They are conjectured not to exist.) Observe, as
Fekete did, that if f,(z) has no real zeros in (0,1), then L(s, (5)) has no real
zeros on the positive real axis. However, the Fekete polynomials tend to have
real zeros, and the approach fails. See Conrey et al. [2000].

Introductory Exercises

E1. For p an odd prime, the shifted Fekete polynomials are defined as

f4(2) = k (E)

=0
They also satisfy

|fp (Czlf)| =Vp
for 1 < k < p— 1. Prove this.

In Chapter 15 and Appendix C we will see that the Ly norms of some
of these shifted Fekete polynomials are explicitly computable in terms of the
class number of the imaginary quadratic field Q(1/=p). This leads to infinite
sequences of Littlewood polynomials with the smallest known asymptotic L,
norm.



Chapter 5. Fekete Polynomials 41

Computational Problems

C1. Gauss’s quadratic reciprocity theorem states that for p and ¢ odd primes

(E) (E) _ (C1)PDED/,
q p
(—_1) _J1 if ¢g=1 (mod4),
qg)  |-1 if ¢=3 (mod4),
(g) _J1 if ¢=1,7 (mod 8),
q)  |-1 if ¢=3,5 (mod 8).
Use this to write a program to compute quadratic residues. If the aim is to com-

pute all the residues mod p or, equivalently, to compute the Fekete polynomial
fp, how else might one proceed?

Also,

and

C2. Explore the zeros of the Fekete polynomials and the shifted Fekete poly-
nomials. Formulate some reasonable conjectures.

Consider z7?/2f,(z) and observe that this function changes sign between
consecutive roots of unity ¢¥ and ¢f+1 if

B e~

So the number of zeros of fp(z) on the unit circle is bounded below by the
number of sign changes in the sequence {(%)} Conrey et al. [2000] show that
the number of zeros of f,(z) on the unit circle is asymptotic to kKp where & is
between 0.500668 and 0.500813.

Zeros of fig99(z).

r0.5

08039%° %
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Research Problems

R1. It is natural to ask about the growth of the Fekete polynomials on the
disk D. Montgomery [1980] shows that

Il £2(2)llp > /ploglog p

and that
I fp(2)llp < v/Plogp.

Which is the correct rate of growth? Extend the above result to the shifted
Fekete polynomials of El.
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Chapter 6

Products of Cyclotomic
Polynomials

As in Chapter 3, the nth cyclotomic polynomial ®,, is the minimal polynomial
of a primitive nth root of unity. Recall that ®,, is given by

,(2) = H (z — exp(j2mi/n)).
1<j<n
ged(j.n)=1
The first six cyclotomic polynomials are
2—1,24+1,22424+1,22 41,2 + 22+ 22 +2+1,22 -2+ 1.

Products of cyclotomic polynomials (and powers of z) are precisely the class
of monic polynomials in Z with Mahler measure 1. Equivalently, they are ex-
actly the monic polynomials in Z that have all their roots of modulus at most 1.
This follows from Kronecker’s theorem (see E4). So products of cyclotomic poly-
nomials are exactly the subset of Z of polynomials that do not vanish at 0 and
have minimal Mahler measure. One aim of this section is to characterize those
polynomials with odd coefficients that have Mahler measure 1 and to explore a
conjecture that characterizes when Littlewood polynomials have measure 1. All
such polynomials are built from a very natural construction.

There are very few cases where we can determine the class of extremal poly-
nomials within the Littlewood polynomials with respect to either the maximum
or minimum L, norms, though in every case this is an interesting question. The
following conjecture is proved in Borwein and Choi [1999] for N odd. Some
further evidence for it is presented at the end of the chapter.

Congjecture. A Littlewood polynomial P(z) of degree N — 1 has Mahler mea-
sure 1 if and only if P can be written in the form

P(z) = £, (£2)®p, (£2P1)--- B, (£2PrP2Pr-1)

where N = p1ps - - - pr and the p; are primes, not necessarily distinct.

43
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We now characterize the monic polynomials with measure 1 and all coeffi-
cients odd. This is the first part of establishing the above conjecture for odd N.
So, for example, we show that if N is odd, then any polynomial P(z) with odd
coefficients of even degree N — 1 has Mahler measure 1 if and only if

Pi)= J] @a(z2).

d|N,d>1

The approach is via Graeffe’s root powering method. Define the operator T),
for prime p as the operator on the monic polynomials that takes a polynomial
P to a polynomial whose roots are the pth powers of the roots of P:

N

To[P(2)] == [[ (= = of)

i=1

for every P(z) := H?;l(z — o) in Z. Note that if P is in Z, then so is T, (P).

To discuss the factorization of polynomials with measure 1 with odd co-
efficients as a product of irreducible cyclotomic polynomials, we first consider
the factorization over Zp[z] where p is a prime number. The most useful case
is p = 2 because every Littlewood polynomial reduces to the Dirichlet kernel
1+ z+---+2zN"1in Zy[z]. In Z,[2], ®,(2) is no longer irreducible in general,
but ®,,(2) and ®,,(2) are still relatively prime to each other.

Lemma 1. Suppose n and m are distinct positive integers relatively prime to
a prime p. Then ®,,(z) and ®,,(2) are relatively prime in Z,[z].

Proof. Suppose e and f are the smallest positive integers such that
p°=1 (modn) and pf =1 (modm).

Let F,. be the field of order p¥. Then Fje contains exactly ¢(n) elements of
order n, and over Z,, ®,(z) is a product of ¢(n)/e irreducible factors of degree
e, and each irreducible factor is a minimal polynomial for an element in Fj.
of order n over Z,. (See Lidl and Niederreiter [1983] and E1.) So ®,(z) and
®,,(2) cannot have a common factor in Z[z], since their irreducible factors are
minimal polynomials of different orders. This proves our lemma. O

The following lemma tells which ®,,,(z) can possibly be factors of polynomi-
als with odd coefficients.

Lemma 2. Suppose P(z) is a polynomial with odd coefficients of degree N —1.
If &,,,(2) divides P(z), then m divides 2N .
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Proof. If ®,,(2) divides P(z), then ®,,(2) also divides P(z) in Z2[z]. However,
in Zs[z], P(2) equals 1 + z + --- + 2”¥~! and can be factored as

P(z) = 7' (2) [] 23 (2), (1)

M

where N = 2!M, ¢ > 0, and M is odd. In view of Lemma 1, ®4,(z) and ®4,(2)
are relatively prime in Zs[z] if d; and d» are distinct odd integers. So if m is
odd, then ®,,(z) is a factor in the right-hand side of (1), and hence m = d for
some d | M. On the other hand, if m is even and m = 2'm' where [ > 1 and m’
is odd, then

-1

B (2) = oy (22 ) = B (22 ) = B2, (2)

m

in Zs[z]. Thus in view of (1), we must have m’ = dford | M and [ < ¢+ 1.
Hence in both cases, we have m divides 2N. O

In view of Lemma 2, every product of cyclotomic polynomials P(z) with odd
coefficients of degree N — 1 and with lead coefficient 1 can be written as

P(z) = ] 257, 2)

2N

where the e(d) are nonnegative integers.

As above, for each prime p the operator T}, is defined by

for every P(z) := Hi\il (2 — ;) in Z. Now T,[P(2)] is also a monic polynomial
in Z. We extend T}, to be defined over the quotient of two monic polynomials
in Z by Tp[(P/Q)(2)] := Tp[P(2)]/Tp[Q(2)]. This operator obviously takes a
polynomial to the polynomial whose roots are the pth powers of the roots of P.
Also, we let M), be the natural projection from Z onto Zjz]. So,

My[P(2)] = P(z) (mod p).

Lemma 3. Let n be a positive integer relatively prime to p, and let i be an
integer greater than 2. Then

(a) Ty [®n(2)] = Pnl(2),
(b) Ty [®pn(2)] = 21 (2),

(c) T, [(I)pin(z)] = @zi_ln(z).
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Proof. The proof of (a) is trivial because if ged(n,p) = 1, then T}, just per-
mutes the roots of ®,(z). To prove (b) and (c), we consider

c
T,[P(zP)] = T, [.N (2P — ai)] =T, [:ll:[l (z _ ezm'l/pal}/p)]

Jj=1

1110 = Py

Jj=1

~
[

Thus (b) and (c) follow from (a), ®pn(2) = Pn(2P)/Pn(2), and B,:,(2) =
®i-1,(2P) (see E1). O

When P(z) is a product of cyclotomic polynomials, the iterates T,'[P(2)]
converge in a finite number of steps to a fixed point of T}, and we define this to
be the fixed point of P(z) with respect to T).

Lemma 4. If P(2) is a product of monic cyclotomic polynomials in Z, then
Mp[Ty[P(2)]] = Mp[P(2)], 3)

in Zy[z], where Mp[P(2)] = P(z) (mod p) is the above natural projection.

Proof. Since both T}, and M, are multiplicative, it suffices to consider the
primitive cyclotomic polynomials ®,,(z). Let n be an integer relatively prime
to p. Then (3) is true for P(z) = ®,(2) by (i) of Lemma 3. For P(z) = ®pn(2),
we have

M, [Tp [(I’zm(z)]] =M, [(I)Ir)fl(z)] = M, [‘I’n(z)]pi1

by (ii) of Lemma 3. However,

3 Mp [@"(zp)] . Mp [(bn] (zp)
Mp [‘I’pn(z)] - Mp [q)n(z)] n Mp [‘tn(z)]

= M, [, (2)]"",

in Zp[z]. This proves that (3) is also true for P(z) = ®,,(2). Finally, if P(z) =
®,i,(2), then

Mp[T, [@pin(2)]] = My [Bpi-1n(2)7] = My [Bpi-1n(2P)] = My [@pin(2)]
by (iii) of Lemma 3. This completes the proof of our lemma. O
Lemma 4 shows that if T,[P(2)] = Tp[Q(#)], then M,[P(z)] = My[Q(2)].
The next result shows that the converse is also true.

Theorem 1. Suppose P(0) # 0. Then P(z) and Q(z) are monic polynomials
in Z of Mahler measure 1, and My[P(2)] = M,[Q(2)] in Zy[2] if and only if
both P(z) and Q(z) have the same fized point with respect to iteration of Tp.
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Proof. Suppose
o | KOO A
deD

and

= [T o @20 () 057" (2),
deD

where t,e(j),e(j) > 0 and D is a set of positive integers relatively prime to p.
Then using (i)—(iii) of Lemma 3, we have for [ > ¢,

TP() = [[ 25¥(:) and THQ(2)] = [ @5 (2), (4)

where
f(d) =e(d)+ (p—1) zt;p
and i
f@d) =e@ + (-1 ple(pd).

From Lemma 4, we have

My [TIP(2)]] = My[P(2)] = Mp[Q(2)] = My [T5[Q(2)]]
for any ! > ¢. From this and (4),

I M, 1242017 = T] M, [@a(2)) "

deD deD

By Lemma 1, M, [®4(2)] and M, [®4(2)] are relatively prime if d # d'. So we
must have f(d) = f(d)' for all d € D, and hence from (4), P(z) and Q(z) have
the same fixed point with respect to T},. O

From Theorem 1, we can characterize the polynomials of Mahler measure 1
by their images in Zp[z] under the projection M. They all have the same fixed
point under T},. In particular, when p = 2 we have the following.

Corollary 1. All products of monic cyclotomic polynomials with odd coeffi-
cients of degree N — 1 have the same fixed point under iteration of T>. Specif-
ically, if N = 2!M where t > 0 and gcd(2, M) = 1, then the fized point occurs
at the (t + 1)th step of the iteration and equals

(M — 1)2: (z—1)71
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Proof. The first part follows directly from Theorem 1 and the fact that
My[P(2)] =1+ z+---+2""

in Zo[z] if P(z) is a monic polynomial of degree N — 1 with odd coefficients. If
N =2!M, then from (2),

H(}e(d) 6(2d)( ) . ¢6(2t+1d)(z)-

2t+lqg
d|M
Over Z»[z7],
Ltz+-+28 =8 ()7 [[ 8% (2)
dM
SO
t+1 "
) ) 2 ford| M,d >1
d 2" le(2'd) = ’ ’ 5
)+ 2 2 () {zt—1 for d = 1. 5)

From (5) and Lemma 3,

PR = [[ 85 = () [[ 83 (2) = (zM = 1)” (z - 1)~

d|M d|M

Corollary 1, when N is odd (¢ = 0), shows that T5[P(z)] equals 14+ 2z4--- +
2zN—=1 for all polynomials of Mahler measure 1 with odd coefficients and, from
(2) and (5), we have the following characterization of products of cyclotomic
polynomials with odd coefficients.

Corollary 2. Let N = 2tM with t > 0 and gcd(2, M) = 1. A polynomial
P(2) with odd coefficients of degree N — 1 has Mahler measure 1 if and only if

H (I)e(d) e(2d)( ) ) @;Eitl-:d) (z)
aM
and the e(d) satisfy condition (5).

Furthermore, if N is odd, then any polynomial P(z) of even degree N — 1
with odd coefficients has Mahler measure 1 if and only if

I 2a=2).

d|N, d>1

We now compute the number of measure 1 polynomials with odd coefficients.
Let B(n) be the number of partitions of n into a sum of terms of the sequence
{1,1,2,4,8,16,...}. Then B(n) has generating function

F(z)=(1-2)" ﬁ (1 - z2’“)
k=0

-1
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The next corollary follows from (5) and Corollary 2.

Corollary 8. Let N = 2'M with t > 0 and ged(2, M) = 1. The number of
polynomials of degree N —1 with odd coefficients that are a product of cyclotomic
polynomials is

C(N) = B2H)¥™M-1.p (2t —1), (6)
where d(M) denotes the number of divisors of M. Furthermore,

2

log C(N) ~ (%log2> (d(M) —1) + M‘

log 4 Q)

Proof. Formula (6) follows from (5) and Corollary 2. To prove (7), we use
the asymptotic estimation for B(n) in de Bruijn [1948]:

B(n) ~ exp (%) .

Now (7) follows from this and (6). O

The following conjecture, as observed at the beginning of this chapter, is
true when N is odd. It also holds when IV is a power of 2.

Conjecture. A Littlewood polynomial P(z) of degree N — 1 has Mahler mea-
sure 1 if and only if P can be written in the form

P(z) = 48, (£2)B, (£27) - B, (£27PP1),
where N = p1py - - - pr and the p; are primes, not necessarily distinct.

This holds up to degree 190. The computation is based on computing
all products of cyclotomic polynomials with odd coefficients of a given de-
gree, checking which ones are actually Littlewood polynomials, and then seeing
that this set matches the set generated by the conjecture. For example, for
N —1 = 143 there are 6773464 polynomials with odd coefficients that are prod-
ucts of cyclotomic polynomials, and of these 416 are Littlewood. For N—1 = 191
there are 697392380 polynomials with odd coefficients that are products of cy-
clotomic polynomials (which was too big for our program).

We can generate all the measure 1 polynomials with odd coefficients of a
fixed degree from Corollary 2 quite easily, so the bulk of the work is involved in
checking which ones have height 1. The set in the conjecture can be computed
very easily recursively.
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Introductory Exercises

E1l. Basic Properties of Cyclotomic Polynomials. A primitive nth root
of unity is a complex number w that satisfies w™ = 1 and w* # 1 for any positive
k < n. Let (, := exp(2mi/n); then (, is a primitive nth root of unity. The ¢(n)
primitive nth roots of unity are {¢* : ged(m,n) = 1}.

The nth cyclotomic polynomial ®,, is the minimal polynomial of any prim-
itive nth root of unity. This is an irreducible polynomial of degree ¢(n) given
by

,(2) = H (z — exp(j2mi/n)).

1<j<n
ged(j,n)=1
Show that
2" —1=]] ®u(2).
d|n
Show that

Bpe(2) =B, (#"7),
and more generally, if every prime that divides m also divides n, then
D (2) = D,(2™).
Show that for odd n,
D, (—2) = Pa,(2).

Show that if p is a prime not dividing an integer n, then
Bpn(2) = B (2")/®n(2)-

Show, with p defined as in E2, that

@,(2) = [J(a* — 1)/,
d|n
Show that
q)pk(l) =p
if p is a prime and that ®,(1) = 1 if n is not a power of a prime. Also show
that
(I)Zpk(_]-) =p
if p is a prime, ®;(-1) = =2, ®3(—1) = 0, and that &,,(—1) = 1 otherwise.

If p is a prime not dividing n, then ®,, factors in Z,[z] into ¢(n)/d irreducible
factors, each of degree d, where d is the smallest positive integer solution of
p? =1 (mod n). See Lidl and Niederreiter [1983].
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E2. The Mobius p Function and the Euler ¢ Function. The Md&bius p
function is defined by

u(1) =1,
u(n) =0 if p? divides n for some prime p,
u(n) = (=1)* if n is a product of k distinct primes.

Show that p is multiplicative; that is, p(ab) = p(a)p(b) if ged(a,b) = 1.

The Euler ¢ function counts the number of integers less than or equal to n
that are relatively prime to n. So ¢(n) := [{1 < m < n:ged(m,n) = 1}|. Show
that ¢ is multiplicative and that

(- (- 2) - -2).

where p1,p2, ..., pr are the distinct prime factors of n.
Show that

o(n) = Y uld)7.
d|n

E3. Norm and Trace. Recall that the norm of an algebraic number « is just
the product of all the roots of the minimal polynomial, while the trace is the sum
of all the roots. Denote the norm of a by N(«a) and the trace by T'(«). For an
algebraic integer, the norm is just the constant term of the minimal polynomial
multiplied by (—1)¢, where d is the degree of the minimal polynomial. The trace
is —1 times the coeflicient of the term of degree d — 1.

As in El, let {, := exp(2wi/n). Show that if p is an odd prime, then
N({») =1and N((, — 1) =p.

E4. Prove Kronecker’s theorem: If p € Z is monic, p(0) # 0, and p has all its
roots in the set {|z| < 1}, then all the roots of p are roots of unity.

Hint: First prove that there are at most n(2H + 1)™ algebraic numbers of
height H and degree n. (The height of an algebraic number is the height of
its minimal polynomial.) Let a be any root of p and suppose p is of degree n
and height H. Note that o™ is of degree at most n and height at most 2" H by
E10 of Chapter 3. Conclude that a™ = aF for some m and k and hence that «
is a root of unity. O

E5. Prove that every p € Li¢g is irreducible. Prove that if n + 1 is not prime,
then some p € £, is reducible. (Can you find a condition on n + 1 such that
every p € L, is irreducible?)

Computational Problems

C1. Design an efficient algorithm to compute ®,,(2) using the formulae of E1.
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C2. Find the first n for which ®,(z) has height 2 and the first n for which
®,,(z) has height 3.

The growth of the coefficients of ®,(2) is interesting. The situation for small
n is misleading. Erdés proved that for every k, H(®,) > n* for infinitely many
n, and Maier [1996] showed that this holds for a set of positive density.

C3. Write an efficient algorithm based on Graeffe’s method to determine
whether a polynomial is a product of cyclotomic factors.

C4. Implement an algorithm that inverts Graeffe’s root squaring method (in
the sense that it determines the set of polynomials in Z that map to a given p
in Z under root squaring).

Use this in conjunction with Corollary 2 to compute all polynomials of a
given degree of measure 1 with all odd coefficients. Similarly, use it to compute
all Littlewood polynomials of measure 1 of a given degree.

C5. Assume the conjecture of this section. Based on it, implement an algo-
rithm to compute all Littlewood polynomials of degree less than 200 that are
products of cyclotomic polynomials.

Research Problems

R1. Prove the conjecture of this section for NV even.

R2. Is there a characterization of all measure 1 polynomials with coefficients
just 0 and 17

Selected References
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Chapter 7

Location of Zeros

We are interested in the zeros of polynomials with restricted coefficients. A
typical restriction is that the first coefficient dominates the other coefficients—
as is the case in F,, L,, and A,,. However, none of the results of this section
are about polynomials with integer coefficients specifically.

Zeros of a typical element of L5¢.

15

As is apparent from the graphic above, the zeros of a typical Littlewood
polynomial are far from randomly distributed (“typical” in this case means
that the choice of sign of the coefficients is random). This chapter and the next
two chapters discuss various aspects of this phenomenon.

The following result of Schur (rediscovered with a shorter proof by Erdds
and Turén [1950]) is a prototype for the results we have in mind. In general, it
is a sharp result. However, in the cases we are most interested in, there is an
extra logarithm that is dealt with in Theorem 5.

Theorem (Schur). Ifp(z):= 37, ajz’ has m positive real zeros, then

lao| + |a1| + -+ + |an|>

vV laoan|

m? < 2nlog (

53
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In this same paper, Erdds and Turédn discuss the angular distribution of the
zeros of polynomials in terms of the size of the coefficients. Informally, the
results they prove say that “if the middle coefficients of a polynomial are not
too large compared with the extreme ones,” then the angular distribution of the
zeros is uniform. See also Theorem 2 below.

In the first two references for this section we prove a variety of sharpenings
of Schur’s result and the results of Erdds and Turdn. We now state some of
these results. The first result shows that the bulk of the zeros of low-height
polynomials are close to the unit circle and gives precise quantitative estimates.

Theorem 1. FEvery polynomial p of the form
n
p(z) = Zajzj, lag =1, |aj| <1, a; €C,
Jj=0
has at most c\/n zeros inside any polygon with vertices on the unit circle, where

the constant ¢ depends only on the polygon.

A version of this theorem is proved as Theorem 5 of this section. The next
two theorems tell us something about the distribution of the zeros.

Theorem 2. There is an absolute constant ¢ such that
n
p(z) =Y a2, laol =lan| =1, l|a;|<1, a; €C,
j=0

has at most c(na + /n) zeros in the strip
{z € C:|Im(z)| < a},
and at most c(na + \/n) zeros in the sector
{z€C: |arg(2)| < a}.

Theorem 3. Leta € (0,1). Every polynomial p of the form

n

p(z) = Zajzj, lao| =1, la;| <1, a; €C,
=0

has at most c/a zeros inside any polygon with vertices on the circle
{zeC:|z|=1-a},
where the constant ¢ depends only on the number of the vertices of the polygon.
The sharpness of Theorem 1 is given in the following result.

Theorem 4. For everyn € N, there ezists a polynomial p, of the form given
in Theorem 1 with real coefficients such that p, has a zero at 1 with multiplicity

at least |\/n] — 1.
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Theorem 5. FEvery polynomial p of the form
p(z) = Zajzj, lao] =1, Jaj] <1, a; €C,
=0

has at most | *&\/n| +5 zeros at 1.
The key to the proof of Theorem 5 is the following lemma.

Lemma 1. For every positive integer n, there ezists a q € P, with

m< |2 ya] +4

such that
q(0) > |g(1)| + [¢(2)[ + - - - + [g(n)]-
Proof. Let
b= i) +1
and
0(2) = STo(2) + Tu(z) + To(2) + -+ Tu2),

where as usual, T; denotes the Chebyshev polynomial of degree i. (See the
exercises.) We have g(1) = k+ %, and for 0 < ¢ <,

1 sin(k+3)t sin(k+3)t
g(cost) = = + cost + cos2t + - -- + coskt = ( t2) = (k+3)
2 2sin 5 2(1 — cost)

and

Let

and the proof is finished. O

Proof of Theorem 5. If p has a zero at 1 of multiplicity m, then for every
polynomial ¢ € Pf,_;, we have

a0q(0) + arq(1) +--- + ang(n) = 0. (1)
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(This is proved by considering the cases g(z) := 2% for i = 0,1,... ,m —1.)
Lemma 1 constructs a polynomial ¢ of degree at most

m < |¥y/n| +4
for which
q(0) > |g(M)[ + [g(2)| +--- + |g(n)].

Equality (1) cannot hold with this ¢, so the multiplicity of the zero of p at 1 is
at most one more than the degree of q. O

Introductory Exercises

E1. The Chebyshev polynomials are defined, for z € [-1,1], by
T, (z) := cos(n arccos x).
(a) Show, for complex z, that
1 n n
N 2 /2
Tn(z)._2((z+ z 1) +(z z 1) )
[n/2]
(-1)*

k=0

(n—k—1)!

W 2y 2

NS

(b) The nth Chebyshev polynomial has the following equioscillation property.
At the n + 1 points \; := cos(jn/n) in [-1,1],

T.(N) = (1) || Tylli=1, = (-1, j=0,1,...,n.
Observe that the zeros of T;, are precisely the points
Tk = CoS —(2’“2_;)”, k=1,2,...,n.

(c) Show that
Tom(2) =T (Tm(z))

and that T, satisfies the three-term recursion
Tn(z) = 22T, 1(2) = Tn2(2), n=2,3,....
(d) Verify that Ty(z) = 1, Ti(2) = 2z, Ta(z) = 222 — 1, T3(z) = 42 — 3z,
Ty(2) = 82% — 822 + 1, and Ts(z) = 1625 — 202> + 52.
The Chebyshev polynomials of the second kind are defined by

1 sin nf
Up—1(2) := ETT'L(z) =<ng = cos 6.

(e) Show that
Uo(z) =1, Ui(z) =2z, Up(z) =22Unp—1(2) —Up-2(2), n=2,3,....
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E2. Show that the Chebyshev polynomial T;, satisfies the following extremal
property:
: n _ B — 21—nTn _ =21—n
,n llz" — p(@)||[=1,17 = | lli= 1] ;

where the minimum is uniquely attained by p(z) = 2™ — 2'~"T, (z).

The first four Chebyshev polynomials of the first kind.

-1|+0.8\-0.6 -0.4 -0.2 02 04 06/08 |1
X

The first four Chebyshev polynomials of the second kind.

-1 - -0.6 Q.4 -0. 02 Q4 06/ 08 1
X

24

—4-

E3. What is the closure of the set of all zeros of all polynomials of the form

n
p(z) = Zajzj, lag| =1, la;| <1, a; €C?
j=0
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Research Problems

The following conjecture is in Erdélyi [2001a].

R1. Establish whether every polynomial p € £,, has at least one zero in the
annulus ¢ c
{1-S<pl<1+5},
n n

where ¢ > 0 is an absolute constant.
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Chapter 8

Maximal Vanishing

The location of the zeros of Littlewood polynomials and related classes of low-
height polynomials is subtle and interesting. The zeros cluster heavily around
the unit circle and appear to form a set with fractal boundary.

The zeros of all degree 12 polynomials with {+1, —1} coefficients.

This graphic suggests various questions. What is the nature of the boundary?
This is discussed further in the exercises. What is the structure of the “holes”?

59
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Zeros of all polynomials with {0,+1,—1} coefficients of degree 8.

In this chapter we are interested in possible repeated zeros of polynomials in
the classes A,,, £,,, and F,,, and we address the problem for each of these classes.
Specifically, we address P13 and P14 and ask what is the minimal degree of a
polynomial in each of the above classes with high-order vanishing at +1. In the
next chapter we examine the size of the holes.

We first address the problem of maximal vanishing in £,,.

P14. Multiplicity of Zeros in L,,. What is the maximum multiplicity of
the vanishing at 1 of a polynomial in L, ?

Boyd [1997] shows that there is an absolute constant ¢ such that every p € £,
can have at most clog® n/loglogn zeros at 1. See E6 and E7. Since

(=2 (1=2) (=) - (1-27)

isin Lya_1, there are examples in £,, where the vanishing is O(logn). It would
be of interest to know what the right order of maximal vanishing is. One key
technique is to look at the polynomials in £,, taken modulo 2. Then every
element of £,,_1 (mod 2) is just d,,(z) :== 1+ 2z + --- + 2"~ L. The factorization
of d,, (mod 2) is known. If n = 2¢M where t > 0 and ged(2, M) = 1, then

dn(2) = (M = 1)2i (z=1)7! (mod 2).

It is now reasonable to search for the maximal vanishing of a p € £,,_; where n
is divisible by a large power of 2. It had been incorrectly conjectured that for

each n,
(1-2)(1-2%) (1—2%--- (1 - z2n_1)
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is the Littlewood polynomial of smallest degree with a zero of order n at 1. Boyd
[1997] shows that this is true for n up to 6 but fails for n = 6 and therefore fails
for all higher n. He gives an example of degree 47 (n +1 = 3 - 21) with a zero
of order 6 at 1.

The next lemma is central to understanding why polynomials in F with high
vanishing at 1 must have many cyclotomic factors.

Lemma 1. If (z—1)™| f(2) and p is a prime number satisfying

logp S log L(f)
p—1 m

?

then ®,(2) | f(2).

Proof. Let (, = exp(2mi/p), and let N(a) denote the norm of the algebraic
number a. (Recall that the norm of an algebraic number is just the product
of all the roots of the minimal polynomial; for an algebraic integer the norm
is, up to sign, just the constant term of the minimal polynomial. See E3 of
Chapter 6.) Since N({, — 1) = p, we have that p™ | N(f((p)), so if f({p) #0,
then [N (f(¢p))| = p™. By the triangle inequality, | N (f(¢))| < L(f)P1, so
f(¢p) # 0 implies that log(p)/(p — 1) < log(L(f))/m. This proves the theorem.

O

This can be refined to the following result.

Theorem 1. Suppose f(z) is a polynomial having degree d, height 1, and a
zero of order m at z = 1. Let p < m + 1 be an odd prime number, and let
g=|m/(p-1)].

Ifg=1 and d < (p* — 5)/2, then ®,(2) | f(2).

If¢>1 and d < p(p? +1)/2 -2, then ®p(z) | f(2).

This is in Borwein and Mossinghoff [2000a], which is a computational ex-
ploration of P13 (the problem of determining the maximal vanishing at 1 of a
polynomial in F,,).

P13. Multiplicity of Zeros of Height One Polynomials. What is the
mazimum multiplicity of the vanishing at 1 of a polynomial in F,?

This is solved exactly up to and including vanishing of order 12, and good
examples are found up to order 21. The following is a plot of d/m? versus d,
where d is the degree of the smallest example we could find with a zero of order
m at 1.
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Plot of d/m? versus d for smallest known d where (1—2)™ divides some
peE Fa.

1

0.8 |

0.6

0.4 |

0.2 |

0

0 5 10 15 20
It is known that the optimal examples satisfy
1 < d/m* < logm.

The lower bound is Theorem 5 of the last chapter. The upper bound is a box
principle argument and is left as E5. This leaves a small but very interest-
ing amount of ambiguity in what is best possible in P13. The flatness of the
plot is intriguing. This problem is related both to the Erdés—Szekeres problem
of Chapter 13 and the Prouhet—Tarry—Escott problem of Chapter 11. From
the point of view of Chapter 13, it is interesting to note that all the minimal
examples of Borwein and Mossinghoff [2000a] factor as products of the form

(1—21)(1—2%)---(1—2%).

It would be very surprising if this were always true, but this too is not known.

Also of interest is the possible vanishing of height 1 polynomials within the
unit disk. Is it possible for such a polynomial to have a zero of arbitrarily
high multiplicity in the unit disk? See R2 below. A negative answer to the
above question, for the most part, resolves Lehmer’s conjecture (P9) on Mahler’s
measure. See E2. It seems quite likely that such high-order zeros can exist, but
this is open.

In £,, and F,, the possible vanishing at 1 and —1 is the same, but in A,,
where there can be no vanishing at 1, the right question to address is the van-
ishing at —1. It is easy to prove that a polynomial p € A, can have at most
log, n zeros at —1. This is left as an exercise. Since the polynomial

(I4+2)(1+2%) (1+27)--- (1—{—22”_1)

has a zero of order n at —1, the cognate question for polynomials in A4, is, at
least up to order of growth, answered. A better example than the one above is
discussed in E1.
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Introductory Exercises

E1. Show that if p € A, has a zero of multiplicity m at —1, then 2™ divides
L(p). So a polynomial p € A,, can have at most log, n zeros at —1.
Recursively define a sequence {a;} of odd integers by a; := 1 and let ap41

be the smallest odd integer greater than a; +as + - - - + ag. This is the sequence
{1,3,5,11,21,...}. Show that

Up:=(1+2) (14 2%2)--- (1 + 2°)

is in A and has a zero of order n at —1 and that the degree of U, is less than
27+ Show that if d,, is the degree of U,, then d,,/2" — % from below.

The best asymptotic known for the degrees of polynomials in A4 with zeros
of multiplicity n at —1 is currently (103/96)2™.

For n < 5 the polynomials U,, are polynomials of minimal degree in .4 with
a zero of multiplicity n at —1, though for n = 5 the example is not unique. For
n = 6 the polynomial

(T4+2") (1+2%) (1+2°) (1+27) (L+2"%) (1 +2'7) h(z),
where
h(z) := 230,27 4 126 25 4 24 23 L 22 21 4 9,20
_ 194 I8 9,17 L 16 _ 15 4 149 13 | 12
— 2 2210 % B Tt -8

is in Az and has a zero of order 6 at —1. Note that Us is of degree 84. Thus
for all n > 6 the polynomials U,, are not minimal-degree elements of 4 with a
zero of multiplicity n at —1. See Borwein and Mossinghoff [to appear] where a
sequence with degree asymptotic to (103/96)2™ (as above) is given.

E2. Prove that if a polynomial p of height 1 has Mahler measure less than
21/ and a zero at a, then there exists a height 1 polynomial with a zero of
order n at a. (Use E8 of Chapter 3.)

E3. Show that the zeros of all Littlewood polynomials are dense in a neigh-
bourhood of 1. (So some of the holes in the first and second figures of this
chapter get filled in eventually.) This kind of result is explored in Odlyzko and
Poonen [1993]. By their methods one can show that the set of all zeros is dense
in some neighbourhood of each point where |z| = 1.

E4. Suppose that p € A, for some n and p(2) is prime. Show that p is
irreducible.

Hint: To do this, first prove the following result of Pélya and Szegd. Suppose p
is a polynomial in Z and suppose, for some positive integer m, that p(m) = ¢,
where ¢ is prime, and p(m — 1) # 0. If all the roots of p have real part less than
m — %, then p is irreducible. See Brillhart, Filaseta, and Odlyzko [1981]. O
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E5. Show that there is a constant ¢ such that for each m there is a polynomial
in F,4 that has a zero of order m at 1 and satisfies

d < em?®logm.
Hint: Suppose p and q are both in Ay and satisfy p(d (1) = ¢@(1) for i =
0,1,...,h. Then p—q € F4 has a zero of order h+1 at 1. Now do a box principle

argument. Count the number of different, vectors {p(1),p®(1),...,p™ (1)} and
choose d such that 2%+! — 1 (the size of A4) is larger than this estimate. O

The next two exercises follow Boyd [1997].

E6. Show that if p € £, and q € £,,, and ¢(z) divides p(z), then m divides n.
Hint: Suppose n = am + b, with 0 < b < m. Let
do(2) =142+ +2""L.

So
dn(z) = dm(2)do(2™) + dp(2).

Since p(z) = d,(2) and ¢(z) = d,,(2) modulo 2,
p(2) = q(2)da(2™) + dp(2) (mod 2).

So if ¢(z) divides p(z), then ¢(z) must divide p(z) over Zo[z]. But dy(z) vanishes
over Zs[z] only when b = 0. |
E7. Show that there is an absolute constant ¢ such that every p € £, can have
at most clog? n/loglogn zeros at 1.

Hint: Use E6 and Lemma 1. O
E8. There is a question of Erdés dating from 1931 with a $500 prize attached

to it. See Guy [1981] and Elkies [1986]. It is related to E1. It may be formulated
as a question about polynomials as follows.

P15. Another Erdés Problem. Establish whether there is a positive con-
stant ¢ such that if

Vo= (1422) (14 2%) - (1 +25)

is in A, then
max{b;} > c2".

Note that V;, € A is equivalent to all the sums of distinct elements from
{b1,ba,...,by} being distinct.



Chapter 8. Maximal Vanishing 65

Show that in the notation of P15,

9n
max{bi} > CT

It is known that it is possible to replace ¢ 2" /n by ¢ 2™ /y/n in the above inequal-
ity.

Computational Problems

C1. Find polynomials of height 1 with zeros of multiplicity 2 and 3 and, if
possible, 4 at some points in (1,2). (See E2.) It is open as to whether this is
possible for multiplicity greater than 4.

C2. For each m, find the smallest d such that each of Fy, L4, and Ay has
an element that is divisible by (1 4+ 2)™. In each case, do this for as many m
as possible. Do the same calculations looking for reciprocal p in each of Fy,
L4, and Ay divisible by (1 + z)™. (It seems likely that extremals should be
reciprocal, but this is not known.)

Research Problems

Odlyzko raised the next question after observing computationally that there is
no p € A, with n < 25 that has a repeated root of modulus greater than 1.

R1. Prove or disprove that a polynomial p € A, has all its repeated zeros at
0 or on the unit circle.

R2. Can the multiplicity of a zero of a height 1 polynomial in {z € C: 0 <
|z] < 1} be arbitrarily large?

R3. Isit true that there is an absolute constant ¢ > 0 such that every p € A,
with p(0) = 1 has at most clogn real zeros? If not, what is the best possible
upper bound for the number of real zeros of polynomials p € 4,7 What is the
best possible upper bound for the number of distinct real zeros of polynomials
pe A,?

The above three problems are all raised in Borwein and Erdélyi [1996b].
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Chapter 9

Diophantine Approximation
of Zeros

Detail around 1 of zeros of all degree 15 polynomials with {+1,—1}
coefficients.

We are concerned with how closely we can approximate an algebraic number by
zeros of height 1 polynomials. This, at least in part, will tell us the size of the
holes in graphics like the one above. For Pisot numbers and roots of unity, we
can give quite precise answers. The main theorem of this section, taken from
Borwein and Pinner [1997], gives good Diophantine estimates from below. With
it, we get results like the following.
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Let By denote the set of roots of all {0,+1,—1} polynomials of degree at
most N and let By(a, k) denote the set of roots of those polynomials that have
a zero of order at most k at a. For a Pisot number « in (1,2],

in Ja—flx —
min |a— 8| x —,
geBn\{a} alVv

and for « a dth root of unity,

1

la — 3| < INCEIETTIESS

min
BeBN (a,k)\{a}

Here ¢ is the usual Euler ¢ function, and a,, < b,, means that a,, /b, is bounded
above and below by positive constants.

When a = 1 and the multiplicity k£ of the root at 1 is restricted to 0 or 1,
we can be very precise:

4

32
18~ w3 1=~ -

min min
BeEBN(1,0)\{1} BeBN(1,1)\{1}

(See E3.)

The main theorem concerns approximation by zeros of elements of F, the
height 1 polynomials.

Theorem 1. Let a be a fixed algebraic number. Let F' be a height 1 polynomial
of degree N with a root of order k > 0 at o and any m (not necessarily distinct)
roots B1,. .., Bm not equal to a. (Note that k = 0 is possible, in which case o is
not a root of F'.)

Then, for fized a, k, and m, there is a positive constant ¢c; = c1(m,k, )
such that
C1

|Oz—ﬁl|"'|a_ﬁm| > M(a)gN(N+1)cQ+me'

Here § :=1 if o is real, and § := % otherwise.

Also, e := 0 if |a| #1 and € := 1 if |a| = 1. Furthermore,
Co = Cg(k,a) = (5(k + l)dl,

where di denotes the number of conjugates of a (including a) that lie on the
unit circle.

When « is an nth root of unity,
c1(m, k@) = (k)36 ]g=m,

where ¢ is the Euler ¢ function.
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The case m = 1 in the above theorem is often the most interesting. Note
that by Theorem 3 of Chapter 7, if F' is a height 1 polynomial of degree N with
a root of order k > 0 at « where |a| # 1, then the multiplicity of « is bounded
independently of N, while if || = 1, then by Theorem 5 of Chapter 7, the
multiplicity of a is bounded by ¢y/n. The following corollary is now immediate.

Corollary 1. For a fized algebraic number o, any root B # « of a height 1
polynomial of degree N satisfies

oo — B] > exp(—c(a)N + O(log N)), c(a) := dlog M(a),

if a is not a root of unity (6 := 1 if o is real and & := % if a is not real).
Otherwise,

la — B > exp (—C(a)\/ﬁlogN + O(\/N)) , cla) = %

if a is an nth root of unity.
In the other direction we have the following result.

Theorem 2. If « is o fized real number in (1,2], then there exists a positive
constant c(a) such that for each N, there is a height 1 polynomial of degree N
with o real root 8 # a such that

o< 4.

The proof of Theorem 2 is sketched in E4.

Proof of Theorem 1 Suppose that F(z) := Eilio a;z' is a height 1 polyno-

mial with a kth order root at a and other roots (i, ..., 3,- We set
F(z)
G(z) := ,
&)= e =B
so that () /B!
F*(a)/k!
lo = Bi] -+ |l = Bm| = ‘W .

Here F7(z) denotes the jth derivative of F(z). Suppose that ag H;.izl(z —qy) is
the minimal polynomial of a. Then, by integrality,

d
- F* (o)
laal™ * T Tl 21,
=1
where if « is complex with a = a; = a3,
FE )| (| F*(a1)| | F*(a) [\
| k! k! '
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Hence, if 6 := 1 if « is real and § := % if a is not real, and p := 2 if « is real
and g := 3 if a is not real, we have

—n |GH@)| 7T [P [}
|a_61||a_6m| > (|ad|6(N ") k! H k! :
i=p
For |a;| <1 we use the following trivial bounds. If |a;| =1,
Faq)| _ (N + D
K|~ k! ’
and if |oy] < 1,
F¥(a;) _
8 < = fap-e
For |a;| > 1 we make use of the vanishing of F' at «;. Let
F
H(z) = — 2@
(1= (2/0))
so that .
F*(a;
ot |00 = 1o

Now the coefficients of H(z) = E;V:_Ok h;2z satisfy

!
i+E—-1\ _; _1\—k
=3 (T Daran] < - ad ) ™,
3=0
and
Fro| ool t N~ e
N e =S (U

It remains to estimate G¥(a)/k!. Set

. G(2) _ F(2)
) = e F = G B = )’

so that G*(a)/k! = K(a). Notice that if

1 _lz/u Zr,-zi = Z S,’Zi,

then for any u,

i
Jsi] = |j_zom_ju—f\ < a6+ Dma {1, ful '}
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while if |u| > 1,

|s,|—\2n ju | < max fr| (1 —Ju )"

0<5<4

Now if |a| > 1, we can assume that |5;] > 1 for all ¢ (otherwise, |a — §;
is greater than a constant, and we can omit those ﬂ, and adjust the constant

accordingly). Hence the coefficients of K (z) = Zjv o k 27 satisfy

ki < lo|™* (1~ ]a|™") Hlﬂzl -1

and
G*(a B m N m—k ]
RIS | (S S
. =1 7=0
< JafYmEH (la] ~ “““’H |8i] = 1)~

Hence, when |a| > 1 and |3;| > 1 for each i, we obtain

Cl (a)m)k718)
low = Bul -+ | = Bm| > M ()N (N + 1)6(Ic+1)d1 ’
where m
Ci(a,m, k, B) := Bi(a, k)|a|™ [ | 18:] — 1],
i=1
with

_ i(k
Bi(a,k) = laal M(a)** D (k%% T lasl — 1™
|a|#1

The result follows, since we can assume |3;| — 1 > £(|a| — 1) (or else we can
omit that term from the product). The result for |a| < 1 follows by working
with a~! and ﬁ;l.

If |a| = 1, we similarly see that the coefficients of G(z) = SN ™ g,27 satisfy
7=0 J

lg;1 < (G + 1) [] max {1,187},

i=1
and hence

kam

< T max {1,151y Y m) RN
i=1

Jj=

G*(a)
k!
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So
Gk(a) m yN-m NE+m+1
G| < T () R
and in this case
Cl(aamakaﬂ)

lo = Bi] -~ |a = Bm| >

M ()N (N + 1)0(k+Dditm’

where
Ci(a,m, k, B) := Bi(a, k) [ [ min{1, |8}~
i=1
with Bj(a, k) as above.

The result follows, since we can assume that |3;| > 1— (N +1)"! (otherwise,
| —Bi| > 1/(N + 1), and the result follows by simply omitting the term |a — ;]
from the product). O

Introductory Exercises

El. Prove that the set of all zeros of F is dense in [-2, —3] U [4,2].

E2. Prove that the set of all zeros of A is dense in [— (1 + v/5) /2, (1 — V/5) /2].

E3. Let F(z;N) denote a polynomial of degree N in F that does not vanish
at 1 and has a real root in (0,1) that is as close to 1 as possible.

Show that for N > 2 the extremal polynomials F(z; N) take the form

(z2m+l — 2™ 4 1)

+ =2 , if N =2m,
2m+2 _ ,m+1 _ ,m 1
:I:(z (ZI 5 2 ), if N =2m+1.

E4. Beta Expansions and the Proof of Theorem 2. Prove Theorem 2
as follows. The beta expansion {c,} of 1 for a is given by

Yo:=1, cp:= V1], Yni=aVn_1—cCn.

Note that for a in (1,2), all the ¢; are 0 or 1 and

o0
1= E ca b
i=1
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Write
e .
Fz)==1- Zciz’,
i=1

so that F'(a~!) = 0, and note that by Descartes’s rule of signs, a~! is a simple
root of F (the only real root in (0,1)).

If the sequence {c;} terminates in zeros, which is possible (that is, a is a
simple beta number), then ! is a simple root of the {0,+1, —1} polynomial
F. (In this case, modify the expansion to a nonterminating expansion by adding
in F shifted by high powers of z.)

Now write

N
FN(Z) =1- Zcizi
i=1

for the Nth truncation of F' and observe that
FJ{,(OFI)
j!

< (1 _ |a|71)—(j+1)

and
Fi(a')=F(a')+0 (Nja*N (1- |a|71)—(i+1)) _

The result now follows with the 3 (as in Theorem 2) denoting the reciprocals of
appropriate roots of Fy and estimating how rapidly these roots approach 1/c.
O

Computational Problems

C1. Recompute the first figure of the last section. Do this for the zeros of
all Littlewood polynomials of degree n for various n. Identify as many of the
“holes” as possible as roots of unity or Pisot or Salem numbers.

Research Problems

R1. Consider the set of all zeros of all Littlewood polynomials (as in E3 of
the previous chapter) and denote this set by Q. Show that the boundary of
Q is a fractal set and compute its Hausdorff dimension. Show that 2 is path
connected. (Odlyzko and Poonen [1993] prove that the set of all zeros of all
polynomials with coefficients in the set {0,1} is path connected.) Determine
whether (2 contains holes. Equivalently, does the complement of 2 have more
than two components?

These questions should also be addressed for the polynomials of height 1.
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Chapter 10

The Integer Chebyshev
Problem

The main problem of this chapter is to find a polynomial in Z, of minimal
supremum norm on an interval. This is P1, and it is of a slightly different flavour
than most of the other problems in this book, in that there is no restriction on
the size of the coefficients. We now state P1 with greater precision.

P1. (Elaborated). For any interval [a,b] find

Qa,b] := lim Q,[a,b],

n—oo
where ,
o . 1/n
Dalest) = pin Iy
As before, || - [|[4,5) denotes the supremum norm on [a, b]. From
(Qnrmla, 0))"™ < (Qnla, )" (Uum[a, B]) ™, (1)

it is fairly easy to deduce that Q[a, b] exists. This quantity is called the integer
Chebyshev constant or the integer transfinite diameter for the interval [a, b].

When the coeflicients are not restricted to being integers, the minimization
problem in P1 is straightforward. Chebyshev polynomials, suitably normalized,
are the polynomials of minimal supremum norm on an interval (see E2 of Chap-
ter 7). Note that on [—2,2], the usual Chebyshev polynomials, normalized to
have leading coefficient 1, have integer coefficients and supremum norm 2.

One can vary the problem to demand that the minimizing polynomial be
monic of exact degree n. This is a quite different problem and is discussed in
E3.

75
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On intervals of length greater than or equal to 4, it follows from E2 of
Chapter 7 that the minimum is given by the polynomial that is identically 1.
There are no intervals of length less than 4 where the explicit value is known.
However, on intervals of length less than 4, the integer Chebyshev constant is
always less than 1.

For b — a < 4, Fekete [1923] showed that

oy <27 (29)"

SO

Q[a,b] < (b;“)l/z.

See also Hilbert [1894] and Kashin [1991].

From (1) above one deduces that
Qla, b] < Qy[a, b]

for any particular n. So, upper bounds can be derived computationally from
the computation of any specific Q,[a, b]. For example, if we let

po(2) ==z,

pi(z):=1-— 2,

p2(z) =22 -1,

p3(z) == 52% — 5z +1,

pa(2) :=132° —192% + 82 — 1,

ps(z) == 132° — 2022 + 92 — 1 = —p,s (1 — 2),

pe(2) := 292" — 582% + 4027 — 112+ 1,

pr(z) =312 —612° + 4122 — 112 + 1,

pe(z) = 312" —632° + 4427 — 122+ 1 = p;(1 — 2),
po(2) := 9412% — 376427 + 63492° — 587325 + 32432*

—10892% + 21622 — 232 + 1,
then we can show the following.
Theorem 1. Let
Porg :=p" - Py’ P3P} - pa - s - Dg - Pr - Ps - Do;
then

1/210 1

Q[0,1] < (|| P21olljo,17) =333
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Proof. This is a computation. The difficulty is in finding the approximation.
While in principle, this is the almost pure LLL problem of minimizing the Lo
norm on [0, 1] over the lattice of integer polynomials of a fixed degree, in practice
this alone does not generate particularly good estimates. See C2. O

Refinements on the method in Borwein and Erdélyi [1996a], based on opti-
mizing the exponents of the factors of Ps1g, give

1
Q00,1 < ———.
0,11 < 2.3605. ..

This has been further improved in Habsieger and Salvy [1997] to

1
00,1 < ———.
(0,11 < 2.3612. ..

Of course, when the coefficients of the polynomials above are not required to
be integers, this reduces to the usual problem of constructing Chebyshev poly-
nomials, and the limit (provided the polynomials are normalized to be monic)
gives the usual transfinite diameter. From this unrestricted case, we have the
obvious inequality

21/n

Q,[0,1] >
0,1]> =

However, inspection of the above example shows that an integer Chebyshev
polynomial (a polynomial that achieves the value Q,[a, b], as in P1) doesn’t look
anything like a usual Chebyshev polynomial. In particular, it has many multiple
roots, and indeed this must be the case since we have the following lemma.

Lemma 1. Suppose p, € Z, (the polynomials of degree at most n with integer
coefficients) and suppose qi(2) := arz* +---+ag € Zi, has all its roots in [a,b].
If pp, and qi do not have common factors, then

1/n _
(Ipnllias) ™™ > lar] /.

Proof. Let $1,02,...,08; be the roots of q;. Then

lak|"pn(B1)pn(B2) - - - Pn(Br)
is a nonzero integer, and the result follows. O
From this lemma and the above-mentioned bound, we see that all of p;
through pg must occur as high-order factors of integer Chebyshev polynomials

on [0,1] for all sufficiently large n. The divisibility to high order follows from
Markov’s inequality (Appendix A) which gives, for p € P,,

12'l[0,17 < 2712”10”[0,1]-
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There is a sequence of polynomials, called the Gorshkov—Wirsing polynomi-
als, as in Montgomery [1994], that arise from iterating the rational function

i z2(1—2)

These are defined inductively by
g@0(2) =221, q(2):=52%2-5z2+1,

and
dn+1 = ’1721 + (Inqu—1 - (1;11—1-
It transpires, on iterating u, that
(n) _ qi—1 —qn
' = .
2¢p 1 —n

Each gy, is a polynomial of degree 2* with simple zeros, all in (0, 1), and if by, is
the leading coefficient of ¢y, then

lim b/2" = 2.3768417062.. ..

Wirsing has proved that these polynomials are all irreducible. It follows now
from Lemma, 1 that

1
Q0,1] > ————.
0,1 = 2.3768417062. ..

The first three iterates of u(z).

049

X

It is conjectured by Montgomery [1994, p. 201] that if s is the least limit point
of |ag|~'/* (as in in Lemma 1) over polynomials with all their roots in [0, 1],
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then Q[0,1] = s. This was also conjectured by Chudnovsky [1983], who further
conjectured that the minimal s arises from the Gorshkov—Wirsing polynomials,
in which case s would equal (2.3768417062...)"'. In Borwein and Erdélyi
[1996a] it is shown that

1
> -0
Q0.1 2 areemoee. . T €

for some positive €. This shows that either Montgomery’s conjecture is false
or that the Gorshkov—Wirsing polynomials do not give rise to the minimal s.
(The above lower bound is improved somewhat in Pritsker [preprint], where
it is shown that the integer Chebyshev polynomials must have infinitely many
distinct factors.) This leads us to ask the following question.

P16. A Montgomery Question. Show that the minimal s arising as in
Lemma 1 does not give the right value for Q0,1]. Does Q[0,1] have a closed
form?

Do all the integer Chebyshev polynomials on [0, 1] have all their roots in
[0,1]7 Habsieger and Salvy [1997] show that this can fail, with the first not
totally real factor occurring for n = 70. A polynomial whose roots are all real
is called totally real, and a polynomial whose roots are all real and nonnegative
is called totally positive.

This same paper computes extrema up to degree 75. This is a nontrivial
computation and is quite likely NP hard. Nonetheless, one suspects that there
is a close relationship between [0, 1] and polynomials with integer coefficients
whose roots are all in [0, 1]. Sorting out this relationship would be of interest.

There is a somewhat related problem that we have called the Schur—Siegel-
Smyth trace problem.

P17. Schur—Siegel-Smyth Trace Problem. Fix e > 0. Suppose
pu(2) = 2" +an 12" 1+t ag € 2,

has all real, positive roots and is irreducible. Show that, except for finitely many
exceptions,
lan—1| > (2 — €)n.

There are some partial results. In the notation of P17, except for finitely
many (explicit) exceptions, a,—3 > (1.771...)n. This is due to Smyth [1984b].
Previously, in 1918, Schur had shown that a,_; > e'/?n, and in 1943 Siegel had
shown that a,,_1 > (1.733...)n except for finitely many (explicit) exceptions.

A relationship between this and the integer Chebyshev problem is given by
the following lemma.

Lemma 2. Suppose m is a positive integer and

0 [0, %] < (m+8)L.
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Then, with at most finitely many exceptions,

Oé1+0£2-;"'+04d >

for every totally positive algebraic integer an of degree d > 1 with conjugates
ag,... ,0(4.

Proof. Suppose p is the minimal polynomial for a; and

p(2) =2 —aa12't + - + ao;

then a3 +m,as +m,... ,aq +m are conjugate roots of ¢ € Z; defined by
q(2) == 2% — (ag—1 + md)z4~1 + - + by.

Now,
by = ((en +m)(as +m) - (e +m))"/?,

so by the arithmetic-geometric mean inequality,

d .
b(l)/dsa1+a2+ d+ad+ m=a21+m'

We apply Lemma 1 to
q*(2) == 2%q(1/2),

which has all its roots in (0,1/m) and is irreducible, to conclude that either

ad—1

4 +m>m+6

(which is the conclusion we want) or ¢*(z) is a factor of all nth degree integer
Chebyshev polynomials on [0,1/m], provided n is large enough. O

This reduces the search for better bounds in the Schur—Siegel-Smyth trace
problem to computations on short intervals. From an example on [0,1/100], we
derive the following result.

Corollary 1. Suppose
pn(z) =2"+a,_ 12" 4+ ---4ag € Z,

has all real, positive roots and is irreducible. Then, except for finitely many
exceptions,
|an—1| > (1.744)n.

Smyth [1999] has shown that this method can never give the full result of
P17, but it would be interesting to see how far it can be taken.
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Introductory Exercises

El. Gorshkov—Wirsing Polynomials on [0,1]. Let
o z2(1=2)
u(2) = 1-32(1-2)
and let (™ denote the nth iterate of u with itself (u(®) := u).
(a) Show, by induction, that

(n) _ C]%—1 —dqn

u =
2¢2_ —qn’

where
@(2):=22-1, q(2):=522-52+1,

and
Gnt1 =@+ Ands 1 — Q-

(b) Show that N
gnt1(2) = (1432 — 3z2)2 gn (u(2)).

(c) Show that g is a polynomial of degree 2¥ with all simple zeros in (0, 1).
The main observation for this is that u maps the interval [0, 1] twice onto
the interval [0, 1].

(d) Show that ||/l = 1.

E2. Gorshkov—Wirsing Polynomials on [0,00). Let

v(z) ::z—%

and let v{™ denote the nth iterate of v with itself.
(a) Show, by induction, that

o™ = _g"*l(ZQ) ,
zhp—1(22)

where go(2) = 2—1, g1(2) = 22 = 32+1, go(2) = 2* = T23 + 1322 - T2+ 1,
and
In+1 1= G + 9nGn-1 — Gn—1-

Further, h,(z) = Hn;ll 9;(2).

(b) Show that with g, as in the previous exercise,

) = (1=, (2.

1—=2
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(c) Show that

e 1
gn(2) = 22" g s (z +- - 2) .

(d) Show that each g, is a monic polynomial with all its roots in [0, c0) and
that

gk = z2" _ (2n+1 _ 1)z2"—1 4.
So the trace is 1 less than twice the degree.

(e) Show that the trace of U, (z/2 — 2), the Chebyshev polynomial of the first
kind shifted to the interval [0,4], is 2n — 1. (See E1 of Chapter 7.)

E3. Monic Integer Chebyshev Polynomials. Show that for any n, 2" is
the monic polynomial in Z,, of smallest supremum norm on any interval [0,1/m],
where m is any integer greater than 1.

Show that 2™(1 — 2)™ is the monic polynomial in 2, of smallest supremum
norm on [0, 1].

In general, let M,, denote the monic polynomials of degree n with integer
coefficients. Let E be an arbitrary compact set. A monic integer Chebyshev
polynomial v, € M,, satisfies

loalle = inf palle,

and the monic integer Chebyshev constant is then defined by

* T 1/n
V(E) := lim Jjon]lg "

This is the obvious analogue of the more usual integer Chebyshev constant.

Show that .
([T
({5 =1

if gcd(m,n) =1 and n > 1, and if a is irrational or an integer, then
Q" ({a}) =0.

The following conjecture is made in Borwein, Pinner, and Pritsker [to appear]
where it is verified for denominators up to 23.

Congecture. Suppose [az/bz,a1/b1] is an interval whose endpoints are con-
secutive nonintegral Farey fractions. This is characterized by (aiby — azby) = 1.

Then
* as ai - 1 1
‘ ([bfbl])_max(bl’%)'
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Computational Problems

C1. Solve the integer Chebyshev problem (P1) up to degree 20 (or as far as
you can go).

C2. Use LLL to try to compute polynomials in Z that have small supremum
norm on [0,1]. A reasonable strategy is to use LLL to find required divisors as
in Lemma 1 and then to use a basis where each element is divisible by these
required divisors to find additional required divisors.

C3. Verify the conjecture of E3 as far as possible (at least for all denominators
less than 20). This can be done by using LLL to find examples that give the
exact bounds. It is useful to have a version of LLL implemented with respect

to the norm
b 1/2
([ wra) .

C4. Compute the exceptions in Corollary 1.

Research Problems

R1. Compute Q[a, 3] exactly on any interval of length less than 4.

R2. It is very natural to explore the integer Chebyshev question in many
variables, say polynomials in two variables on triangles or on squares. See
Chudnovsky [1983].

The following two theorems are proved in Borwein, Erdélyi, and Kés [1999].
They relate to how small one can make polynomials in F,, and A,,.

Theorem 2. There are absolute constants ¢1 > 0 and co > 0 such that
— < inf < - .
exp (—c1v/n) < oA, lIplljo,1) < exp (—c2v/n)

The left side of the above inequality in fact holds over the polynomials p of
the form

n
p(z) = Zajzj, lao| =1, |a;| <1, a; €C
=0

Theorem 3. There are absolute constants ¢1 > 0 and co > 0 such that

exp(—cilog(n +1)) < 0¢ianfA Ip(=2)llj0.1] < exp(—c2log®(n + 1)).

In the light of the above two theorems, it is natural to ask the following
questions, which are the height 1 analogues of the integer Chebyshev problem.
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R3. Does

i log (infoxper, [IPllo,1))
im
n—oo vn

exist? If it does, what is it?

R4. Does

_ log (infospe, lIP(=2)l[o.)
n—00 log?(n + 1)

exist? If it does, what is it?
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Chapter 11

The Prouhet—Tarry—Escott
Problem

A classical problem in Diophantine equations that occurs in many guises is the
Prouhet—Tarry—Escott problem. This is the problem of finding two distinct lists
(repeats are allowed) of integers [a1,...,ap] and [B1, ..., B,] such that

ap+--tap=0%+--+p0n
A+ t+ai =445

o 4otk = Bt g,

We will call this the Prouhet—Tarry—Escott Problem. We call n the size of
the solution and k the degree. We abbreviate the above system by writing
] = [Bi]-

This problem has a long history and is, in some form, over 200 years old. In
1750-1751 Euler and Goldbach noted that

[a,b,c,a+b+c] =2 [a+b,a+c,b+c]

A general solution of the problem for all degrees, but large sizes, came a century
later, in 1851, when Prouhet found that there are n**! numbers separable into
n sets such that each pair of sets forms a solution of degree k and size n*. (See
Theorem 1 of Chapter 12.) Prouhet’s result, while the first general solution
of the problem, was not properly noticed until Wright [1959] took exception
to the problem being called the Tarry-Escott problem and drew attention to
Prouhet’s contribution in a paper called “Prouhet’s 1851 solution of the Tarry—
Escott problem of 1910.” More of the early history of the problem can be found
in Dickson [1952], where he refers to it as the problem of “equal sums of like
powers.”

85



86 Chapter 11. The Prouhet—Tarry—Escott Problem

The Diophantine equation above can be reformulated as a question about
polynomials in two ways.

Theorem 1. The following are equivalent:

(a) iafziﬂfforj:l,...,k—l.
i=1 i=
(b) deg(ﬂz—az ﬁz—ﬂ,)gn—k.
i=1 i=1
L )
i=1 i=1

It is the third form above that rephrases the Prouhet—Tarry—Escott problem
as a question on the vanishing of low-height polynomials.

An ideal solution is one where the degree is 1 less than the size, which is the
maximum possible. An even ideal symmetric solution of size n is of the form

[Fa1, o] =n1 [£B1,. . Ehnp]

and satisfies any of the following equivalent statements:

(c) (z —1)*

n/2 n/2 _9
25 _ 2j —
(a) Z Q; ,Zl B;? for j =1,. 2
n/2 n/2
(b) H (2* —af) — H (2* — 8?) = C for some constant, C.
i=1 i=1
n/2 n/2
(c) (1-2)" Z (2% +27%) — Z (2P 4+ 2751
=1 =1

Note that the third form of an even symmetric solution gives rise to a real
(cosine) polynomial on the boundary of the unit disk.
An odd ideal symmetric solution of size n and even degree n — 1 is of the
form
[a1,.. . 0n] =n—1 [—Q1,...,—ay]
and satisfies any of the following equivalent statements:
i .
(a) Zaszforj=1,3,5,...,n—2.
i=1
n n
(b) H(z —a;) — H(z + «;) = C for some constant C.
i=1 i=1

n
a; E :z—ai
=1

(c) (1-2)"
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In the third form above, an odd symmetric solution gives rise, on multiplication
by i, to a real (sine) polynomial on the boundary of the unit disk.

There is a trivial transformation on solutions. Any linear transformation
of a solution is a solution (a; — Aa; + B with A and B integers). Two such
solutions are called equivalent.

The following is a list of ideal solutions for sizes 2 through 12, excluding
11 where no solution is known. For each size it includes the smallest known
solution. Except for the case of size 4, the solutions are all symmetric. Exactly
two inequivalent solutions of size 9 are known, and exactly one inequivalent
solution of size 12 is known. For the rest of the known cases there are infinite
parametric families of inequivalent solutions.

(2] = [+1],
[_27 -1, 3] =2 [2’ L, _S]a
[-5,-1,2,6] =5 [-4,-2,4,5],
[—8,-7,1,5,9] =4 [8,7, =1, =5, =9,
[£1,+11,+12] =5 [£4, £9, +13],
[—50, —38, —13, —7, 24, 33, 51] =¢ [50, 38, 13, 7, —24, —33, —51],
[£5, £14, £23, +£24] =7 [£2, £16, £21, £25],
[-98, —82, —58, —34,13, 16,69, 75, 99]
=5 [98,82, 58,34, 13, — 16, —69, —75, —99),
[174,148,132, 50,8, —63, —119, —161, —169]
—s [~174, —148, ~132, —50, —8, 63, 119, 161, 169],
[£99, +100, £188, £301, +£313] = [£71, £131, +180, £307, £308],
[£103, £189, £366, £452, £515] =¢ [£18, £245, +£331, £471, £508],
[£151,+140,+£127,+86, +61, £22] =;; [£148, £146,+121, £94, £47, +35].

The main problem of this section is the question of the size of minimal
solutions of the Prouhet—Tarry—Escott problem and specifically whether or not
ideal solutions exist:

P2. The Prouhet—Tarry—Escott Problem. Find a polynomial with in-
teger coefficients that is divisible by (z — 1)™ and has smallest possible length.
(That is, minimize the sum of the absolute values of the coefficients.)

Wright [1934] specifically conjectures that it is always possible to find ideal
solutions. This has interesting consequences for the so-called easier Waring
problem that is discussed in the next section. Heuristic arguments suggest that
Wright’s conjecture should be false. Counting arguments, as in the next section,
give solutions of degree n and size O(n?), and it is tempting to speculate that
this is essentially best possible. It is, however, intriguing that ideal solutions
exist for as many n as they do.
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Parametric Solutions

We now present parametric solutions of size 5, 6, 7, 8, and 10. The families of
solutions of size 6, 8, and 10 are all symmetric, and immediately (on replacing
t2 by t) give infinite families of solutions of size 3, 4, and 5 where all the «; are
squares.

Size 5. The following is a one-parameter example of size 5:
Fy:= (t+2m?) t—1)(t+2m® = 1) (t —2m?> + 1 —m) (t —2m*> + m + 1)

—(t=2m*)(t+1)(t-2m*+1) (t+2m* —1+m) (t+2m* —m—1).
This expands to

Fy:= —4m*(m — 1)(2m + 1)(2m — 1)(m + 1) (2m> — 1) .

The fact that the expansion is independent of ¢ proves, by the second criterion
of Theorem 1 (with z = t), that the example is correct.
Size 6. The following is a simple two-parameter example of size 6:
Fo:=(-(2n+2m)*>)(#* — (nm +n+m—3)%)(#* — (nm —n —m — 3)?)

— (= (2n-2m)*)(#* = (n—nm —m —3)?) (t* — (m — nm —n — 3)?).
On expansion, one sees that

Fg := —16nm(m — 1)(m + 3)(m — 3)(m + 1)(n — 1)(n + 3)(n — 3)(n + 1).

It is possible to solve for symmetric solutions of size 6. (See C3.) This gives
the following three-parameter solution of size 6 (in nonsymmetric form):

2 a3—b3—b3—bab1 asbitazba—babi—b3—b3 a 2 a3 —b3—b3—babs —a

3 —bitaz—ba —bit+az—b2 193937 “b1+tas—be 3
2a3—b3—b3—bobi _ asbitagbo—bobi—b3—b3 0
3 —bit+az—ba —bi+az—b2 ’

2 2 2 2 2
a +b2b17a3b27a3b1 2a —b7—b 7b2b1 a +b2b17a3b27a3b1
—5 [b17b27 2 2 2

—bi+az—bo ’3 —bi+az—bo —bi1+az—b2 ’

2 2 2 2 2 2
2 a —b7—b —b2b1 2 a —b7—b —bzbl
3 3 1 2 b2, 3 1 2 bl] .

—bi+az—b2 37 —bitasz—b2

Size 7. The following gives a parametric solution of size 7. This is homo-
geneous in j and k, so it is really a one-parameter solution. This is a much
simplified version of a result of Gloden [1944]. He gives a four-parameter solu-
tion, but two of the parameters are extraneous. Chernick [1937] also gives such
a family. Let

F;:=(t— R1)(t — R2)(t — R3)(t — R4)(t — R5)(t — Rg)(t — Ry)
= (t+ Ru1)(t + Re)(t + Rs)(t + Ra)(t + Rs)(t + Re)(t + Rr),
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where

Ry = — (=37%k + k* + 3°) (j° — kj + k)
Ry :=(j+k)(j — k) (j* — 3kj + k?) 4,
Rs:=(j —2k) (j° + kj — k*) kj
Ry:=—(j — k) (5° — ki — k) (=k + 2j)F,
Rs = —(j — k) (—2kj® + j* — j°K* + k),
Rg == (j* — 4kj® + j°k* + 2k%j — k*) k,
Ry = (j* — 4kj® + 552k — k') 5.
On expansion,
Fr = 25°K° (=k + 2§)(j — 2k) (5 + &)

x (j% + kj — k%) (52 — kj — k?) (j — 3kj + k?)

x (=35%k + k> + j°) (5* — 4kj® + 55%K* — k)

x (—2k5® + j* — 7Pk + k*) (5* — 4k5° + 72K + 2k%5 — k*)

x (% —kj+ k) (j = k)?,
which is independent of ¢. If we take j := 2 and k := 3, for example, then

Fr = (t —7)(t — 50)(t + 24)(t + 33)(t — 13)(¢ + 51) (¢t — 38)
— (t+7)(t + 50)(t — 24)(t — 33)(t + 13)(¢t — 51)(¢ + 38),

which expands to
F7 = 13967553600.

Size 8. The following is a (homogeneous) size 8 solution due to Chernick
[1937]:
R (0 R () (7 - ) (- R
(- (- B) (- B) (¢~ BY),
where

Ry := 5m® + 9mn + 10n?,
Ry :=m? — 13mn — 6n2,
R3 :=™m? — 5mn — 8n?,
Ry :=9m? + Tmn — 4n?,
Rs := 9m? + 5mn + 4n?,
Re := m® + 15mn + 8n?,
R7 := 5m? — Tmn — 10n2,

Rg := Tm? + 5mn — 6n°.
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On expansion,

Fy = —10752mn(2n 4+ m)(n + m)(2n + 3m)
x (n +2m)(4n — m)(5n + 4m)(n — 2m)(3n + m)
x (n —m)(n + 5m) (3n” + 2mn — 2m?) (n® + mn +m?) .

Size 9. We know no parametric solution of size 9. Indeed, only two inequiva-

lent solutions are known. Both are symmetric, and they are the following:

[—98, —82, —58, —34, 13, 16, 69, 75, 99]
=g [98,82,58,34, —13, —16, —69, —75, —99)]

and

[174, 148,132, 50,8, —63, —119, —161, —169]
=g [—174, 148, —132, —50, —8, 63,119, 161, 169].

There are no other symmetric size 9 solutions of height less than 2000. (The
height is the entry of largest modulus.)
Size 10. There are two small size 10 solutions known. They are
[£99, £100, £188, +301, £313] = [£71, £131, £180, £307, £308]
and
[£103, £189, £366, +452, £515] =¢ [£18, £245,+331, £471, £508].

Otherwise, no symmetric examples of height less than 1500 exist.

The following size 10 example is originally due to Letac and is much simpli-
fied in Smyth [1991]. It constructs an infinite family of inequivalent ideal size 10
solutions based on rational solutions of an elliptic curve.

Let
Fio:= (* —R}) (t* - R3) (* — R3) (* — R}) (* — R2)
— (- R3) (" — R?) (t* — Rg) (t* — Rg) (+* — Ri,),
where
R; := (4n + 4m), Ry := (mn+n+m—11),
Rs := (mn —n —m — 11), R4 := (mn + 3n — 3m + 11),

( (
( (

R5 := (mn — 3n + 3m + 11), Rg := (4n — 4m),

Ry :=(—mn+n—m —11), Rg :=(—mn —n+m —11),
( (

Ry := (—mn + 3n + 3m + 11), Rig := (—mn — 3n — 3m + 11).
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On expansion of Fig, the constant coefficient is a polynomial in n and m alone.
The rest of the expansion is divisible by the factor

m2n? — 13n? 4+ 121 — 13m2.

Thus, any solution of the above biquadratic gives a size 10 solution. One such
solution is given by n = 153/61 and m = 191/79. A second solution is given by
n = —296313/249661 and m = —1264969/424999. The first of these gives the
following solution:

[£12, £11881,£20231, £20885, £23738]
=y [+436, £11857, £20449, +:20667, £23750].

The above biquadratic is equivalent to the elliptic curve
y? = (z — 435)(z — 426)(x + 861)

and gives rise to infinitely many inequivalent solutions. See Smyth [1991].

Size 11. No solutions are known, and no ideal symmetric solutions with all
entries of modulus less than 2000 exist. See Borwein, Lisonék, and Percival [to
appear] and the last section of this chapter.

Size 12. The only known size 12 solution, found by Nuutti Kuosa and Chen
Shuwen, is

[£151, £140, £127, £86, £61, £22] =y [£148, 146, £121, +94, +47, +£35).

There are no other symmetric solutions with all entries of modulus less than
1000.

Searching for Solutions

At present there are no known methods for finding ideal symmetric solutions
of size 11 or higher to the Prouhet-Tarry—Escott problem other than massive
searches. Nevertheless, the required searches can be made significantly less mas-
sive than the naive approach. (See Borwein, Lisonék, and Percival [to appear].)

To begin with, ideal symmetric solutions of size 2n and 2n + 1 are de-
fined uniquely by n + 1 elements. In the case of a solution of even size, given

a1y, Qnt1—k and By, ..., Bk, we note that as
n n
[ -ad) -G-8 = c,
i=1 i=1

n

[16; —a})—0=Cforj=1,...,n,

i=1
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and so
1 n ) n—k+1 1
C H (6 —ai) = H (B —a3) " forj=1,...k,
i=n—k+2 i=1

which gives us k evaluations of the unique degree k — 1 polynomial with leading
coefficient 1/C and roots ayp— g2, - - - , @y These points can thus be interpolated,
and the resulting polynomial solved to yield the unspecified ;. The remaining
B; can be computed similarly. This reduces the dimension of the problem in the
even case from 2n to n + 1.

In an analogous manner, given a1, ..., a,41 of an ideal symmetric size 2n+1
solution to the Prouhet—Tarry—Escott problem, we note that as

2n+1 2n+1
[[E+e)-[[z-a) =0
i=1 i=1

2n+1

H(aj-l-az-):Cforj:l,...,n-{—l,

=1

and so
1 2n+1 n+1
c H (aj +a;) = H(aj+ai)*1 forj=1,...,n+1,
i=n+2 =1

which again uniquely specifies a polynomial that can be interpolated and solved
to give the unknown «;. This reduces the dimension of the problem in the odd
case from 2n+ 1 ton + 1.

In addition to reducing the search space from 2n or 2n + 1 dimensions to
n + 1 dimensions, we can reduce the search space further by considering the
modular properties of solutions. Each size of solution has associated with it a
set of primes that must divide the constant C (see C1). For odd sizes, if a prime
p divides C, then (subject to reordering of the ;) we must have a; =0 (mod p)
and agg + azp+1 = 0 (mod p), while for even sizes the equivalent requirement
is that a2 = 82 (mod p).

The best known approach to finding ideal symmetric solutions to the PTE
problem is thus to find all (n + 1)-tuples satisfying the divisibility criteria (for
the appropriate size), and test whether they extend to solutions of size 2n or
2n + 1.

The following searches were done using the method described above and
approximately 10'7 floating-point operations on 100 relatively fast PCs (by 2001
standards a large computation). The method lends itself to trivial parallelization
with essentially no communication needed between processors.

Size Search limit Result

9 2000 one (inequivalent) solution found
10 1500 two (inequivalent) solutions found
11 2000 no solutions found

12 1000 one (inequivalent) solutions found
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Introductory Exercises

E1. Prove Theorem 1.

E2. Showthatif[as,...,a,]and [B1,..., 3,] is an ideal solution and is ordered
such that oy < ay <--- < ap and B < B < --- < By, then o; # B; for any i
and j and

< <fe<ar<Laz<fPz<fi<ag-
(where without loss of generality we assume that a; < (1).

Conclude that an ideal solution of the Prouhet—Tarry—Escott problem (in
the third equivalent form) is a polynomial of height at most 2. Conclude also
that £ = n — 1 is best possible in the first theorem of this chapter.

E3. Show that for each prime p, the Prouhet—Tarry—Escott problem of size p
has nontrivial solutions mod p.

E4. Show that the parametric solutions of this section give rise to infinitely
many inequivalent solutions.

E5. There are various results concerning the divisibility of

n n

Cr =[]z — ) = [ (= - B,

i=1 i=1
where [a;] =,_1 [B;] is an ideal solution. Prove the following lemma.

Lemma. If [a;] =n—1 [Bi] is an ideal solution with C,, defined as above, then

= [[Tes-0| = [[Tas-TT ] = | Zm o2
=1 i=1 i=1

Cal = |85 - a2)
i=1

for all j.

E6. Suppose

f(z):= Zza" — Z 2P
=1 =1
is divisible by
k
(1-2m).
i=1

Show that

k n n

k k

k! an E a; — E Bi -
i=1 i=1 i=1
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Computational Problems

C1. For fixed p, find ideal solutions of the Prouhet—Tarry—Escott problem mod
p. Show that the constant C in the second equivalent form of the problem is
divisible by a set of primes that depends only on p. For example, for p = 11, the
constant C' is divisible by 2, 3, 5, 7, 11, 13, and 17. For p = 13, the constant C'
would have to be divisible by all primes up to 31. (See Borwein, Lisonék, and
Percival [to appear] and Rees and Smyth [1990].)

C2. Find all symmetric solutions of sizes 1 through 5 in parametric form.

C3. Verify that it is possible to solve the even symmetric problem of size 6
in Maple (or equivalent). The following simple Maple code finds a parametric
solution to the even symmetric problem of size 6. (Actually, it is a translated
solution with ag = 0.)

PTE:=proc(n)
local i,j,k,S;
S:={seq(aljl=al1]l-aln+1-j]1,j=n/2+1..n),
seq(b[jl=al1]-b[n+1-j1,j=n/2+1..n)};
subs(S,{seq(sum(ali]"k,i=1..n)-sum(b[i]"k,i=1..n) ,k=1..n-1)});
end;

The command solve(PTE(8)) gives the following as rational solutions of
size 6:

2
a;—a2bz+bi1bz—asby
{a2:a2>b1:b17b3:b37b2: 2 )

—b1—bz+az
a = 2 a3—b3—b]—bibs e = —b2 —b1bstasbi+asbz—bz
L= 37 —bi—bstaz >3 —b1—bz+ta2 :

Show that the three-parameter solution of size 6 of this chapter (in nonsym-
metric form) is just a reworking of the above output.

Research Problems

R1. Find infinite families of ideal solutions of the Prouhet—Tarry—Escott prob-
lem of size 9 and size 12 or show they can’t exist.

R2. Find an ideal solution of size 11 or any size greater than 12.

R3. Show for some n that no ideal solutions of the Prouhet—Tarry—Escott
problem exist.
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Chapter 12

The Easier Waring Problem

Wright [1934] stated, and probably misnamed, the following variation of the
well-known Waring problem concerning writing integers as sums of kth powers.
The problem is to find the least n such that for all m there are natural numbers
[041, ey an] with

taf£---taf=m

for some choice of signs. We denote the least such n by v(k). Recall that
the usual Waring problem requires all positive signs. For arbitrary k& the best
known bounds for v(k) derive from the bounds for the usual Waring problem.
This gives the bound v(k) < klog(k) (though it is believed that the “right”
bound in both the usual Waring problem and the easier Waring problem is
O(k)). So to date, the “easier” Waring problem is not easier than the Waring
problem. However, the best bounds for small k are derived in an elementary
manner from solutions to the Prouhet—Tarry—Escott problem. This is discussed
later in this chapter.

We define N (k) to be the least n such that the Prouhet—Tarry—Escott prob-
lem of degree k has a solution of size n, as in the first theorem of the last chapter.
So an ideal solution corresponds to N (k) = k + 1. We further define N*(k) to
be the least n such that the Prouhet—Tarry—Escott problem of degree k£ has a
solution of size n that is not also a solution of degree k + 1. It transpires that
bounding N (k) is significantly easier than bounding N* (k).

Theorem 1.

N(k) < k(k+1) + 1.

DN | =

Proof. Let n > s*s! and
A=A[a1,...,05] r; €L, 1 <a;<mfori=1,...,s}.

There are n® members of A. Consider the relation ~ defined on A by a ~ b
if a := [oq,...,04] is a permutation of b := [81,...,8;]. There are at least

97
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n® /s! distinct equivalence classes in A/~, since each [aq,. .., a;] has at most s!
different permutations. Let

sj(a):=al +---+alforj=1,...,k

Note that
s < sj(a) <sn’,

so there are at most
k
H an — s+ 1 < shpk(k+1)/2
Jj=1

distinct [s1(a), ..., sk(a)]. We may now choose s = 1k(k + 1) + 1, and we have

8
skpkh+1)/2 _ ghps—1 _',
S:

since n > s¥s!. So the number of possible [s;(a), ..., s;(a)] is less than the num-
ber of distinct a, and we may conclude that two distinct sequences [ay, .. ., a;)
and [B1, ..., 3s] form a solution of degree k. O

Slightly stronger upper bounds are discussed in Wright [1935] and Melzak
[1961], but they are more difficult to establish and only improve the estimates
to

N(k) <= (k*-3), kodd

DN | =

and

N(k) < = (k* —4), k even.

N | =

The estimate for solutions of exact degree k are considerably harder. Hua
[1982] shows that

log (k +2)

N*(k) < (k + 1) ( oot 1 1)
k

+ 1> ~ k?logk.

The connection to the easier Waring problem can now be made.

Theorem 2. Suppose [ai,...,ap] =k—2 [B1,---,0n]. Then

n

Z(z + i)k — Z(z +B8)" =Cz+D,
i=1

i=1

where
n n

Czk(Zaf D 1)

i=1 =1
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and . .
D=) af-)
i=1 i=1

This follows easily from Theorem 1 of the last chapter. Note that k =n+1
corresponds to an ideal solution of the Prouhet—Tarry—Escott problem.

We define A(k,C) to be the smallest s such that every residue mod C is
represented as a sum of s positive and negative kth powers. Define

A(k) := max A(k, C).

Lemma 1. If

n n

Z(z + a;)* — Z(z +B)*=Cz+D,

i=1 i=1
where C # 0, then
A(k) <wv(k) <2n+ Ak, C) < 2n + A(k).

Proof. This follows directly from the above definitions. O
Wright [1934] and Fuchs and Wright [1939] show how to calculate A(k,C)

and A(k). They prove the following.

Theorem 3. For all k,
A(k) < 2k.

(a) If k =2", then
A(k) = 2"t = 2k,

(b) If k = p™(p — 1)/2 for some prime p, and k is not a power of 2, then
A(k) = ("™ =1)/2>k+1.
(¢c) Ifk=(p—-1)/2 and k # p"(p—1)/2 for some prime p, then
A(K) = (p-1)/2= k.

(d) In all other cases
A(k) <k.

The next theorem shows that
v(k) < k*logk.
Theorem 4. For all k,

v(k) <2N*(k-2)+ A(k) <2(k—1) (% + 1) + 2k.
k—2
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Proof. This follows from Lemma 1, the fact that
A(k) <2k

(as in Theorem 3), and Hua’s bound for N*(k). Note that we must use N*(k)
and not N (k), since we require exact solutions, which implies that C #0. O

Introductory Exercises

E1. Show that v(2) = 3. Exact values of v(k) are not known for any other k.

E2. Use the identity
(z4+1)2+(2—1)°* - 22° =62

to show that v(3) < 5. Show, on considering the problem mod 9, that v(3) > 4.

E3. Use the identity

(Z+8) 4+ (z=8)"+(z+5)"+(2=5)"+(2-3)
+(z+3)"—22" =2z =7 = 2(z +7)7 = 604800z

to show that v(7) < 14.

One knows the following: v(2) =2,4 <v(3) < 5,8 <wv(4) 12,5 <v(5) <
10, 5 < v(5) <10, 6 < v(6) < 14, and 7 < v(7) < 14. More values may be
found in Fuchs and Wright [1939].

The best bounds that follow from the usual Waring problem are not as good.
Define G(k) to be the smallest integer n such that every sufficiently large integer
is a sum of positive kth powers. Then G(2) =4 and G(4) = 16. No other exact
values are known. Linnik showed that 4 < G(3) < 7, and Vaughan and Wooley
[1995] showed that 6 < G(5) < 17.

See http://www.mathsoft.com/asolve/pwrs32 /waring.html for more numbers.

~—

Computational Problems

C1. Use LLL to find reasonable values for N (k) for k£ up to 20.

C2. Use Lemma 1 to find reasonable values for v(k) for k£ up to 20.

Good bounds for small &k are derived from Lemma 1 using specific solutions
of the Prouhet—Tarry—Escott problem and careful computation of A(k,C) as
above.
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Research Problems

R1. Show that N*(k) < k2.

R2. Is it true that N*(k) = o(klogk)? This would be a significant result,
since it would give better bounds for the easier Waring problem than those that
follow from the current bounds for the usual Waring problem.
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Chapter 13

The Erdos—Szekeres
Problem

One approach to the Prouhet—Tarry—Escott problem is to construct products of
the form

This product has a zero of order N at 1, and the idea is to try to minimize the
length (the {1 norm) of p. We denote by Ej the minimum possible {; norm
of any N-term product of the above form. The l; norm is just the sum of the
absolute values of the coefficients of the polynomial p when it is expanded, and
an ideal solution of the Prouhet—Tarry—Escott problem arises when E} = 2N
(as in Theorem 1(c) of Chapter 11).

The following conjecture of Erdds and Szekeres implies that the above ap-
proach will be quite far from giving ideal solutions for large N. Note that the
conjecture is stated in terms of the supremum norm, but this is equivalent to
an [; formulation of the problem. (See E1.)

P3. The Erdds—Szekeres Problem. For each N, minimize

(1= 2%) (1= 2%2) - (1= 2|

(o]

where the a; are positive integers. In particular, show that these minima grow
faster than N? for any positive constant (3.

103
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The following table shows what is known for N up to 13.

N ||p||l1 [ 17"'7aN]

1 2 [1]

2 4 [1,2]

3 6 [1,2,3]

4 8 [1,2,3,4]

5 10 [1,2,3,5,7]

6 12 [1,1,2,3,4,5]

7 16 [1,2,3,4,5,7,11]

8 16  [1,2,3,5,7,8,11,13]

9 20 [1,2,3,4,5,7,9,11,13]

10 24 [1,2,3,4,5,7,9,11,13,17]
11 28 [1,2,3,5,7,8,9,11,13,17,19]
12 36 [1,...,9,11,13,17]

13 44 [1,...,5,7,9,11,13,16,17, 19, 23]

(For N =14 and N = 15 the best known examples have ||p||;;, = 52.) Note that
for N € {1,2,3,4,5,6,8} this provides an ideal solution of the Prouhet—Tarry—
Escott problem, and indeed, the first known solutions were mostly of this form.
Maltby [1996] shows, for N € {7,9,10,11}, that these kinds of products cannot
solve the Prouhet-Tarry-Escott problem, and in fact, for N € {7,9,10} the
above examples are provably optimal. This leads to the following conjecture.

Conjecture. Except for N € {1,2,3,4,5,6,8},

El > 2N +2.

Currently, the only lower bounds known (except for Maltby’s results for
N € {7,9,10,11}) are the trivial lower bounds E% > 2N of the Prouhet—
Tarry—Escott problem.

Currently the best subexponential upper bounds in this problem of the form
log(E}) < log" (V)

are due to Belov and Konyagin [1996].

The following result, due to Atkinson [1961], gives an easy subexponential
bound.

Theorem 1. Let 3; be the sequence formed by taking the elements of the set
{2" -2 :n>m >0}

in increasing order. Then for infinitely many N,

N
I -=%) ‘ < @N)WVNB,
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The above theorem is an immediate consequence of the next lemma.

Lemma 1. Let1 < B < B2 <--- and let
Va(2) = H (1 — z’GJ'_’B") .
1<i<j<n

Then
1Va(2)lloo < n™/2.

Proof. We can explicitly evaluate the Vandermonde determinant
1 28 L. DA
Dn:= [ (% -2%)=

1<i<j<n 1 280 . LD

By Hadamard’s inequality, since each entry of the matrix has modulus at most
1 in the unit disk,
I1Dnlloo < n"/2.

Thus

S n’n/2‘

H (1- zﬂj—ﬂi)

1<i<j<n

H (zﬁj - zﬂi)

1<i<j<n

oo ‘ oo

O

The question of the norms of specific families of products is interesting. The
following result occurs in Borwein [1993]. A proof of the first part is indicated
in E3.

Theorem 2. If ged(p,a;) =1 and p is prime, then

N

H (1 —2%)

i=1

> pN/(-1).

‘ o0

This is best possible for p € {2,3,5,7,11,13}, with extremal examples given by
the partial products of

In Bell, Borwein, and Richmond [1998] it is shown that if « is an integer
greater than 1, then we have

Hﬁ(l - zi“)Hoo > oN
=1

for some C > 1. This is, essentially, a circle method argument.



106 Chapter 13. The Erd&s—Szekeres Problem

Introductory Exercises

E1. Show that

I(1=22) (1 —=2%)--(1—=2"V)[|, <L —2%) (1 —2%)---(1L—2),
and
(11 —2%) (L —=2%2)-- (L=2"")|,, SK[|(1—2%)(1—2%)- (1= 2")||,

where K is the number of nonzero terms in the expansion of the product. So
if the conjecture in the Erdds—Szekeres problem is correct, it is independent of
which of the above norms is chosen.

E2. Euler’s pentagonal number theorem states that

oo [
H (1 _ Zk:) — Z (_l)mz(3m2+m)/2_
k=1 m=—00

This makes it natural to look at
N
H 1 — 2k

Show that
W (2)loo > ¢

for some constant ¢ > 1. (In fact, ¢ := 1.219... is the right order of growth.
See Sudler [1964].)

E3. Show that if gcd(p, ;) = 1 and p is prime, then

N
H (1—2%

PN/ =),

‘ o0

Hint: Evaluate the product at each of a complete set of primitive pth roots of
unity. Multiply all of these evaluations together. O

Computational Problems

C1. Design an algorithm to compute E and use it to compute E}, for as many
n as possible.

This is, in fact, possible. The key is to observe that it is possible to write
this as a collection of integer relations on the exponents. This is elaborated in
Maltby [1996]. Maltby (with an improvement by Cipu [preprint]) shows that a
minimal solution for E; can be chosen such that all exponents are no greater
than (n — 1)(»=1/2,
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Research Problems

R1. Thereis an amusing problem, related to Theorem 2, whose solution would
let one compute the exact I; norm in the case p = 3.

Problem. For each n, write

(1—2)(1-2%) (1- z4) (1—2%) - (1= 2" (1—2%+2) = Zaizi.
Show that a; > 0 if and only if 3 divides 1.

A similar result should hold for p = 5. See Andrews [1995].

R2. Prove the conjecture that except for N € {1,2,3,4,5,6,8},

EY > 2N +2.
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Chapter 14

Barker Polynomials and
Golay Pairs

Both Barker polynomials (which probably exist only for a few small degrees)
and Golay complementary pairs are combinatorial objects that, as discussed
later, have certain optimal properties in signal processing and signal recovery.
They also provide, when they exist, extremal examples for various problems we
are considering in this book.

For any polynomial
n
p(z) =y arzh,
k=0

the kth acyclic autocorrelation coefficient is defined, for —n < k < n, by

n—k

cp = E ajaj+r, and c_p = cp.
=0

n
E ckzk

2
2 k=—n

o)1 = ool (5)

k=—n

2 n
-y &

2

A Barker polynomial

n
p(z) := Zakzk,
k=0

with each a € {+1,—1}, is a polynomial where each acyclic autocorrelation
coefficient satisfies
lej| <1, j=1,2,...,n.

Thus,
co=n+1,

109
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and by parity
¢, =0, n—kodd

and
lek| =1, n—k even.
Since
n
IpGli= Y
k=—n
we have that if p(z) is a Barker polynomial of even degree n then

Iplla = ((n+1)> +n) """,

while if p(z) is a Barker polynomial of odd degree n then

Iplle = (0 +1)% +n+1)"%.

Thus, when a Barker polynomial of degree n exists, it mimimizes the Ly norm
(and maximizes the merit factor—see the next chapter) of polynomials from the
class L,,.

It is widely believed that no Barker polynomials exist of degree greater
than 12. This is discussed further in the exercises, where all known Barker
polynomials are listed.

The following conjecture implies that the largest nontrivial acyclic autocor-
relation coefficients must tend to infinity with the degree.

P7. The Merit Factor Problem of Golay. Find the polynomial in L, that
has smallest possible Ly norm on the unit disk. Show that there exists a positive
constant ¢ such that for all n and all p, € L,, we have ||pplla > (1 +c)vV/n + 1.

Even the following much weaker problem is open.

P8. The Barker Polynomial Problem. For n sufficiently large (n > 12
may suffice) and p, € L, show that

1/4
Ipalla > (0 +1)? +n+1)"*.

This would imply the nonexistence of Barker polynomials for n sufficiently
large. Note that P8 would follow from the estimate ||pn|ls+ > vn +1+1.
Golay Pairs

A Golay complementary pair is a pair of polynomials

n
q(z) == Z apz”
k=0
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and .
r(z) == Zbkzk,
k=0

with each ay, by € {+1,—1}, where if ¢, (g) and ¢ (r) are the acyclic autocorre-
lation coefficients of ¢ and r respectively, then

ck(q) +cr(r) =0, k#0,

and
co(q) + co(r) = 2n + 2.

So it is obvious that both polynomials of a Golay pair have the same L4 norm.
Being a Golay pair is equivalent to

lg(2)|? + |r(2)]* =2n+2 for |z| =1,
and is also equivalent to
(=) + p(=2)]* =2(2n +2) for |2| =1,

where p(z) := g(22) + 2r(22). Note that p € L2,41 will satisfy the above if and
only if all the even acyclic autocorrelation coefficients of p are zeros, and in this
case p(z) and p(—z) also form a Golay pair.

Theorem 1. Letp € L and

_ lIplls + llp(2)p* (=2)1I3
2lpllz

Then v =1 if and only if
p(2) == q(2%) + 2r (%)
and q and r are a Golay complementary pair.
Proof. Note that |p(z)p*(—2)| = |p(2)p(—=2)] if p has real coefficients, so with

z=e

lIpll + lp(2)p* (—2)I13 :% /0 i (IP(Z)I +2|p*(—z)| ) 0

2 / <|p<z)|2 +2|p<—z)|2)2 i

e / )+ ) )

2w 2
= 2||p|l2-

2
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The “if” part now follows from the observation above that if
p(2) = q (2%) + 21 (2%)
and ¢ and r are a Golay complementary pair, then
lp(2)? + |p(=2)* = 2(2n +2) for |2 = 1.

The “only if” part follows because the inequality above is an equality only for
constant functions. O

Theorem 2. If n = 2%10°26° — 1 (for nonnegative integers a,b,c) then there
exists a Golay complementary pair of degree n.

A guided proof is given in the exercises. The usual Rudin—Shapiro polyno-
mials of Chapter 4 provide Golay pairs of degrees n = 2% — 1 for each a. It may
be that Theorem 2 gives all possible degrees for Golay complementary pairs.
This is confirmed up to degree 100 in Borwein and Ferguson [to appear]. The
next section outlines the computational methods that make this check possible.

Searching for Golay Pairs

An often effective step in analyzing autocorrelation equations for polynomials in
L involves reductions modulo a power of 2. For example, when a,b € {+1, -1},
we have

ab=a+b—-1 (mod 4), (1)

which converts multiplication to a linear operation. This leads to the following
result derived from Golay [1961].

Theorem 3. For a Golay pair q(z) ==Y p_, apz® and r(z) := 3}, bp2¥,
arby + an_tbp—p =0

for 0 < k < n. Furthermore, n is odd.

Proof. We apply reduction modulo 4 to the n equations

k() + cx(r) =0

for 1 < k < n, and transform these using reduction (1) above to obtain the set
of equations
ap+by+an_+b,p+2=0 (mod 4).

These, in turn, are equivalent to
arbry + an_kbn_r =0

for 0 <k <n.

On considering the central term if n is even, we may conclude that n + 1
must be even. So m := (n + 1)/2 is an integer. O
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Following Andres and Stanton [1977], we now focus on quads, or quadruples
of coefficients from a pair, defined by

_— ag  Gp—k
X = [ by bnk ]’

forming a sequence Xo, X1,... ,Xm—1. Here m—1 = (n—1)/2 is essentially half
the length of the pair. By Theorem 3, one of the entries in a quad is of opposite
sign to the other three. We completely describe this sequence in terms of three
binary vectors relating to the position of this “odd” entry and the dominant
sign for each term. Namely:

(1) The horizontal orientation vector H := [hg,h1,... ,Am_1], where h; is 0
if the odd term in X; is on the right and is 1 otherwise.

(2) The vertical orientation vector V := [vg, v1,. .. ,Um—1], where v; is 0 if the
odd term in Xj; is on the top and is 1 otherwise.

(3) The sign vector S := [sg,S1,... ,Sm—1], where s; = 1 or —1 to match
the dominant sign of X;. An equivalent formulation is as a binary vector
B; = [bg,bl, e ;bm—1]7 where b; = %(Sl + 1).

Multiplication of quads is defined by
1 T2| Y1 Y2 1

XY = = — (x1y1 + T2ys + T3ys + ,

[m3 $4] [y3 y4] 1 ( 191 2Y2 3Y3 4214)

with divisibility by 4 following from Theorem 3. Note that this is not usual
matrix multiplication.

The condition
apay, + bgb, =0

is satisfied by the quad Xy. The next condition,
apan_1 + a1an + boby_1 + b1b, =0,

can be written as XoX; = 0, where the superscript * signifies the interchange
of columns in a quad. With this interpretation, the autocorrelation conditions
become

XoX7 =0,

XoX5 =0,

XoX3; +X:1X5 =0,

XoX; +X:1X; =0,

Xo X5 + X1 X7 + XoX3 =0,

XoX§ + X1 X2+ XoX) =0,

XOX;’:72+X1X* +X2X:Lf4 ++Xm_2X* = 07

n—3 m—1

XoX) 1 +Xi X! o+ XoXk s+ -+ Xm 2X =0.
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It is also useful to think of quads as being of two types, P and @), according
to their vertical orientation, where

P::[i _i] and Q::[i _i]

The eight possible quads are then P,—P, P*, —P* and Q,—Q, Q*, —Q*. They
have the following multiplication table:

P P Q
P|1 0 0 0
Pl0o 1 0 0
Qo o 1 o
Q*lo o0 o0 1

which is extended by (—X)Y = X(-Y) = —=XY and (—X)(-Y) = XY.

Searching for Golay pairs may now be conducted by solving the following two
linear systems modulo 2:

(1) Reduction modulo 2: For quads, on reducing modulo 2, we derive the fol-
lowing:

XiXj=(1+vi+v;)(1+hi +hj) (mod 2),
XiX; = (1+wvi +v;)(hi +h;) (mod 2).

After specifying the value of either the H or V vector, the autocorrelation
equations become linear in the coordinates of the other orientation vector by
reducing modulo 2. (This is an order 2™/ search.)

(2) Reduction modulo 4 (again): We note now that
Xin = SiSj(Xz'Xj (mod 2))

A solution is completely determined by the values of the H, V', and S vectors.
We are now left with checking that the given H and V from step (1) generate
an S that gives a solution. Substituting the values of H and V leaves us with a
quadratic system in the components of S. Reducing modulo 4 converts this to
a linear system. If we switch to components of B, we are able to divide each
equation by 2, obtaining a linear system modulo 2.

The final check is to verify any solutions from step (2). This is no more than
exponential in the number of free variables of this system.

Some Additional Context

We consider binary sequences A := (ag,a1,...,a,) and B := (bg,b1,... ,by)
of length n + 1, where each a;,b; € {+1,—1}. We have been viewing these as
coefficients of polynomials, but it is common to view them just as sequences.



Chapter 14. Barker Polynomials and Golay Pairs 115

Define the aperiodic correlation function A B of A and B by

n—k
(A * B)k = Z ajbj+k

J=0

for 0 <k <n,and (A% B)_j := (B * A). Write (A * A), as ¢x(A), which, as
before, is the aperiodic autocorrelation function of the sequence A (at shift k).

The information represented by the binary sequence A can be communicated
over space; for example, by using the successive values a; to modulate a carrier
signal such as sin(wt) at predefined time intervals. The signal energy of the
modulated sequence is given by c2, whereas the wasted sidelobe energy is given
by {c} : k # 0}.

The most efficient transmission is given by sequences having the largest ratio
of signal energy to wasted energy. Such sequences are desirable in many signal
processing applications such as spread-spectrum communication or position de-
termination. Therefore we would like ideally to find a binary sequence having
¢, = 0 for all k # 0. However, this is impossible because ¢y, =n—k+1 (mod 2).
The next best thing would be to have |cx| = 0 or 1 for all k # 0, which defines
a Barker sequence, but unfortunately the longest known Barker sequence has
n = 12. This motivates the definition of the merit factor F := c§/ 3>, o ci as a
measure of how well suited a binary sequence is to signal transmission. This is
usually written in the equivalent form F = (n 4+ 1)*/ (23,5, ¢2). (Note that
in the sequence literature it is more usual to take the sequence length to be
N :=n+1 and so the merit factor would be written N2/ (2,.,¢1).)

The behaviour of the optimal value of F' as n varies is a study in its own
right which we shall consider in more detail in the next chapter. For now, we
note that there are applications for which even binary sequences with optimal
merit factor, including the Barker sequences, waste too much signal energy.
An alternative strategy is to define, as before, a Golay complementary pair of
sequences A, B as satisfying the equation ¢ (A)+ ¢ (B) = 0 for all k # 0. These
sequence pairs were introduced by Golay [1949], [1951] to solve a problem in
infrared multislit spectrometry, and have since found application in fields such
as optical time domain reflectometry (Nazarathy et al. [1989]) and acoustic
surface-wave encoding (Tseng [1971]).

As an example, we describe the system devised by Nazarathy et al. [1989], for
which the wasted energy is proportional to the vanishing terms ¢ (A4) + ¢ (B).
Define the convolution function A x B of A and B by (A x B)y := Z?:_(f a;by_;
for0 < k <n,and (AXB)_j := (BxA)g. An optical time domain reflectometer
is a measuring instrument for characterizing optical fibres. The instrument sends
a probe signal X into the fibre and measures the return signal X x h, where h is
a discrete sampled version of the impulse response function. By determining h
accurately, the instrument can infer the amount and location of the signal losses
occurring in the fibre due to splices, connectors, and defects. The signal energy
is spread over time using a binary sequence A to code a (+1, —1) pulse train for
X. Now suppose A and B are a Golay complementary pair. By probing first
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with A and then with B, we might seek to obtain the response functions A x h
and B x h. We could then proceed by calculating A x (A x h) + B % (B x h),
which, by an associative law, can be rewritten as (A x A + B * B) x h. By the
Golay complementary pair property, this equals 2nd x h, where

S = 1 for k =0,
F=7 0for k #£0.

We therefore recover 2nh; in other words, a linear multiple of h. This method
would work well for an acoustic application using an amplitude detector, but is
unsuitable for a low-cost portable optical time domain reflectometer using an
intensity detector (which measures the square of the amplitude and so cannot
distinguish values in the response functions A x h and B X h having the same
magnitude but different sign).

The simple ingenious solution of Nazarathy et al., which gave the best per-
formance of any practical instrument when introduced, is to probe the fibre not
with (4+1,—1) signals A and B but with (0,1) signals (1 + A)/2, (1 — A)/2,
(1+ B)/2, and (1 — B)/2. The optical responses to the first two signals are
((14+ A)/2) x h and ((1 — A)/2) x h, which can be measured by an intensity
detector and subtracted to yield A x h. Similarly, the responses to the second
two signals can be used to produce B x h. The instrument can then recover h
as already described.

Introductory Exercises

E1. Suppose p is a Barker polynomial of odd degree 2n + 1. Show
p(z) := q (%) + 2r (&%)
where ¢ and r are polynomials of degree n that form a Golay pair.

For even degree 2n, show that agan—g + ag+1an——1 =0for 0 <k <n+1,
which then simplifies to aga,_p = (—=1)k+".

It is conjectured that no Barker polynomials exist for n > 12. See Saffari
[1990] for more on Barker polynomials and a proof of the nonexistence of self-
inversive Barker polynomials. In Turyn and Storer [1961] it is shown, as above,
that no even-degree Barker polynomials exist for n > 12 (and indeed, as in
Schmidt [1999] and subsequent work, none exist for any degree between 12 and
10%%). It can also be shown (see Turyn [1965]) that any odd-degree Barker

polynomial of degree greater than 12 must have degree of the form 4s% — 1,
where s is an odd composite number.

E2. Suppose q and r are a Golay pair of degree n. Show that n + 1 = a® + b2
for some integers a and b.
More generally, it is proved in Eliahou, Kervaire, and Saffari [1990] that if a

Golay pair exists of degree n (and length N :=n + 1), then N is even and has
no prime factor congruent to 3 mod 4.
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E3. Sketch of proof of Theorem 2 This is due to Turyn [1974]. Suppose
A and B are a Golay complementary pair of degree m, and X and Y are a Golay
complementary pair of degree n. Then U and V are a Golay complementary
pair of degree (m + 1)(n + 1) — 1, where

Az (X(2) +Y(2)) = B* (z"*) (X(2) =V (2))
2

U(z) :=

and
B (Zn+1) (X(Z) +Y(Z)) + A* (Zn-i-l) (X(Z) - Y(Z))

V(z):= 5

Check that 1 — z and 1+ z are a Golay complementary pair, and check that
1—z—224+ 28 =2t 4+ 25— 20— 2T 28420

and

1—z—22 28— 2 =25 0 4 T4 .82

are a Golay complementary pair. Check also that
g5 4,24 .23 4 092 4 214 20,19 18 4 AT 4 16 4 15 L 14 13
B i T e N N R R e N e R L N R |
and

_ 225 + Z24 _ Z23 + 2’22 =+ 221 + 220 _ Z19 _ ZIS + 2’17 =+ 216 + 215 + 214 + 213

A e e e e s A L A e e |

are a Golay complementary pair.

Observe that if n = 2210°26¢ — 1, then there exists a Golay complementary
pair of degree n.

E4. The six operations (¢(z),7(2)) = (i) (r(2),q(2)), (i) (g(2),—r(z)), (iii)
(=4(2),7(2)), (iv) (¢"(2),7(2)), (v) (¢(2),7"(2)), (vi) (¢(=2),7(=2)) map Golay
pairs to Golay pairs. Show that the vertical orientation vector either remains
the same or is complemented (mod 2) under each of these operations.

A more difficult exercise is to show that together, these generate a group
of order 64 (see Djokovié¢ [1998]). Golay pairs in the same group orbit are
conjugates. Show that for degree greater than 1, each pair has either 32 or 64
conjugates. Describe a method for normalizing pairs, i.e., finding a canonical
representative from each conjugacy class.
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E5. Express each of the four entries in a quad Xy in terms of components hy,
v, and sg. Show that

Xin = 8189 (1 —V; —v; + 2’11,"11]') (1 —h; — hj + Zhihj)

and
X,’X; = 8182 (1 —v; —v; + 2’1},'1)]') (hi + hj — thh]’) .

Show that
$i8; = 2b; + ij +1 (mod 4),

for the sign vectors S and B;.

Computational Problems

C1. Check that the following is a complete set of Barker polynomials of degree
20 or less. These are normalized to have the two leading coefficients positive
and are all the known Barker polynomials:

z+1,
z2+z—1,
22422 — 241,
D22 +z-1,

A2+ -2 +1,
LB+ -4,

7 6

z10+z9+z8—z -z —z5+z4—z3

—z2+z—1,

Z12+211+Z10+29+28—27—ZG+Z5+Z4—Z3+Z2—Z+1.

C2. Check that there are 128 Golay pairs of degree 9, 64 of degree 25, but
none of degree 33, 49, or 57.

Research Problems

R1. Show that no Barker polynomials exist for n > 12.

R2. Are there any primitive Golay pairs for n > 100? (See Borwein and
Ferguson [to appear].)
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R3. If .
p(z) := Zakzk,
k=0

where the aj are complex numbers, then the kth acyclic autocorrelation coeffi-
cient is defined by
n—k
Cp = Z ajaj+r and c_p 1= Cg.
=0
Then

2 n
@it = |pep@], = 3 lel.
k=—n
A natural generalization of a Barker polynomial would be a polynomial whose
coefficients are all complex numbers of modulus 1 that satisfies |¢;| < 1 for
k # 0.
Do generalized Barker polynomials exist for all n?
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Chapter 15

The Littlewood Problem

The Littlewood problem concerns the size of the L, norm on the boundary of
D of Littlewood polynomials. When p > 2 it asks how small the L, norm
can be, and when p < 2 it asks how large the L, norm can be. In both cases
we are interested in how close these norms can be to the L, norm. Recall
that the Lo norm of a Littlewood polynomial of degree n is v/n + 1. That the
behaviour changes at p = 2 is expected from Hélder’s inequality, which gives,
forl<a<pB<ooand a~ !+ 87! =1, that

IP113 < [1PllallPlls-

The Littlewood Problem in L,

The primary question of this section is how small the L4 norm of a Littlewood
polynomial can be. The L4 norm is, after the Ly norm, the most computa-
tionally tractable L, norm to work with, since it can be computed algebraically
from the coefficients. As in Chapter 14, if

n
p(z) = Z apz®
k=0

is a polynomial with real coefficients, then
(2) (1) = i cp2®
b\z)p > . k2
where, if 0 < k < n, the autocorrelation coefficients are defined by

n—k

= E ajajrr, and c_j = cp,
Jj=0
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and
2 n

_ 2
-y 4

2 k=—n

()|l = Hp<z)p ()

z

The merit factor is defined, as in the previous chapter, by

po G bl
2 kt0 & lelli = 1lpll2

The merit factor is a useful normalization. It tends to give interesting sequences
integer limits, and “typically” the merit factor is around 1 for a polynomial
with £1 coefficients (corresponding to an expected value of 2n? + 3n + 1 for
the fourth power of the Ly norm). As we saw in Corollary 1 of Chapter 4, the
Rudin—Shapiro polynomials have merit factors that tend to 3.

For polynomials with real coefficients of modulus 1 (that is, coefficients +1)
it is conjectured that the merit factor is bounded above. This is equivalent to
the next problem.

P7. The Merit Factor Problem of Golay. Find the polynomial in L,, that
has smallest possible Ly norm on the unit disk. Show that there exists a positive
constant ¢ such that for all n and all p, € L,, we have ||pylla > 1+ ¢)v/n + 1.

The best asymptotic bound known is 6, which is approached, for ¢ prime,

by the merit factors of
qg—1
(k + [¢/4] )
k=0

where [-] denotes the nearest integer. Here () denotes the Legendre symbol.
This is an old observation of Turyn’s that was proved first in Hgholdt and Jensen
[1988]. Proofs are given in Appendix C. It follows from Theorem 2 below in a
very precise fashion.

The asymptotic bound of 6 (and various other values) has been conjectured
to be best possible, though not, in the author’s opinion, for any compelling
reason. The largest known merit factor belongs to the Barker polynomial of
degree 12:

A2y A0 10 9 8 T 6 5 4 3L 2 1

which has merit factor 14.0833... . The second largest merit factor belongs to
the Barker polynomial of degree 10 and is 12.1. No other merit factor greater
than 10 is known. For all even degrees between 30 and 160, Littlewood poly-
nomials are known with merit factor greater than 7. Mertens [1996], in the
context of computing minima of the energy in the so-called Bernasconi Model,
finds the largest merit factors for degree up to 47. (This has been extended now
to 57.) The algorithm is a “branch and bound” algorithm with an apparent
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running time of approximately 1.85". His data suggest that perhaps the limit
of the largest merit factors might be around 9. Golay [1982] gives a heuristic
argument based on something he calls “the ergodicity postulate” which suggests
that the asymptotic limit is approximately 12.32.

A polynomial is skewsymmetric if p(z) = £2%p(—1/z), where d is the degree
of p. Often, though by no means always, the extremals in the merit factor prob-
lem of even degree (and in Littlewood’s problem) are skewsymmetric. This sug-
gests searching over the skewsymmetric polynomials, where a search of roughly
twice the degree possible for general Littlewood polynomials is reasonable. Note
that if p is a skewsymmetric Littlewood polynomial, then it is of even degree,
every other autocorrelation coefficient is zero, and p(iz) is reciprocal or negative
reciprocal.

Reciprocal Littlewood polynomials are shown to have bounded merit factors
in Littlewood [1966]. See also Borwein and Erdélyi [to appear].

The merit factor of various shifted Fekete polynomials is explicitly given in
terms of the class number of the imaginary quadratic field Q(v/—a). For any
odd prime d a formula for the class number is

(d—1)/2

o =x Y (5) 0k

k=1
where
1 ifd=1,7 (mod 38),
Ai:=¢1 ifd=3 (mod38),
-1 ifd=5 (mod 8).
The following theorems are proved in Appendix C.

Theorem 1. For q an odd prime, the Fekete polynomial
q—1 k
fe =y ()
satisfies
5q> 4
”fq”i = 3 3q + 3 ~ Yq5

where
o ifg=1 (mod 4),
Y=V 12(h(=q))? ifq=3 (mod 4).

This shows that the merit factors of the Fekete polynomials approach % as
q tends to infinity.

Theorem 2. For q an odd prime, the Turyn-type polynomials

0
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where [-] denotes the nearest integer, satisfy

7q* 1
IRl = 5 —a= 5 =%
where
Y :=  12(h(—q)) ifg=3 (mod 8),
0 ifg="7 (mod 8).

Thus these polynomials have merit factors asymptotic to 6. Golay, Hgholdt
and Jensen, and Turyn (and others) show that the merit factors of cyclically
permuted character polynomials associated with nonprincipal real characters
(the Legendre symbol) vary asymptotically between % and 6. This is also made
precise in Appendix C as follows. The L4 norm of the shifted Fekete polynomial

g—1
k+t
IHOES Z (—) P

k=0 q
is given by
q—1 (n—}—t) 2
don{—

q

n=1

1 y 8 1 /-1
t14 _ — 2 4 2_4 _ 1==
||fq||4—3(5q +3g +4) +8t* — 4qt — 8t 2 27

if t < (g+1)/2 is a positive integer.

Other L, Norms

As in E5 of Chapter 1, for each positive even integer m (including infinity) and
each positive integer n,

max{||pllm : p € Ln}
is attained by the polynomial 1+ z + 22 + - -- + 2™. Klemes [2001] proves that
this extends for 2 < m < 4 (m € R) and also that the above polynomials are

extremals for min{||p||m : p € L} for 0 < m < 2. It seems likely that this
should be true for m > 4 also.

For m = 0, the Littlewood polynomials that are products of cyclotomic
polynomials are the unique minimizing polynomials in the Ly norm (the Mahler
measure).

In all other cases, characterizing either the minimum or maximum is open.

Littlewood’s well-known conjecture of around 1948 asks for the minimum L,
norm of polynomials of the form

n
p(z) = Z a;z%,
i=0
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where the coeflicients a; are complex numbers of modulus at least 1 and the
exponents k; are distinct nonnegative integers. It states that such polynomials
have L; norms on the unit circle that grow at least like clogn with an absolute
constant ¢ > 0. This was proved by Konyagin [1981] and independently by
McGehee, Pigno, and Smith [1981]. It is believed that the minimum, for poly-
nomials of degree n with complex coefficients of modulus at least 1, is attained
by 1+ z+ 2% +--- 4+ 2™, but this too is open.

For polynomials with complex coefficients of modulus 1, it is possible to have
asymptotically unbounded merit factors, as the following example (mostly due
to Littlewood [1961]) shows. Let

n—1
Wn(z) — Zek(k+1)ﬂ'z’/nzk.
k=0

Then ; /
2n32 n12

4__ 2 N7 n —1/2

IWalld = n? + T + 0, 72= + 0 (n~1/2),

where
P -2 ifn=0,1 (mod4),
"T 11 ifn=2,3 (mod4).

Littlewood shows, for odd n, that

W)l

/n

uniformly for all z of modulus 1 except in a neighbourhood of 1. He also shows

that
Wa@) 4
N

for all z of modulus 1. From this, one sees that for each p > 0,

Wallp
s

Actually, Littlewood shows that on |z| =1,

1.

|Wr(2)] 140 (n71/2+6)
Vn
except in a neighbourhood of 1 of radius n~?.
One can compute the expected L, norms of random Littlewood polynomials
gn € L, and their derivatives. Specifically, in Borwein and Lockhart [2001] it is

shown that Elaall) n
=i (T(1+3))
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so for example, the expected normalized Ly norm of a Littlewood polynomial
of degree n tends to 2!/%. (See also E4 of Chapter 4, where the exact value is
derived.) For derivatives,

E(ll¢"[l,) 12 P\ /7
— oy~ @+ D) (I‘ (1 + 5)) .

From this and the inequality
laally _
nllgnlly ~

one can also deduce an expected Bernstein inequality for Littlewood polynomi-

als, namely, I .
Qnllp
E( n ) - —.
nllgnllp V3

This should be compared to interesting results of Nazarov and of Queffélec and
Saffari [1996], which say that

Ighlls , |
gn€Ln 1||gnlp

for all p > 1, except p = 2 where the limsup is 1/v/3.

The Littlewood Problem in L.

The principal problem of this section is due to Littlewood, probably from some-
time in the 1950s. It is discussed in some detail in Littlewood [1968].

P4. Littlewood’s Problem in L.,. Show that there exist positive constants
c1 and ¢y such that for any n (or ot least for infinitely many n) it is possible to

find p, € L, with
avn+1<|pp(2)| <ecavn+1

for all complex z with |z| = 1.

Such polynomials are often called “flat.” Because the Ly norm of a polyno-
mial from £, is exactly v/n + 1, the constants must satisfy ¢; < 1 and ¢z > 1.
Littlewood partly based his conjecture on computations of all such polynomials
up to degree 20. Odlyzko has now done extensive computations that tend to
confirm the conjecture. However, it is still the case that no sequence is known
that satisfies just the lower bound, although computations in Robinson [1997]
tend to suggest that the lower bound can be satisfied with a constant ¢; > 0.6.
As we have seen in Chapter 4, a sequence of Littlewood polynomials that satis-
fies just the upper bound is given by the Rudin—Shapiro polynomials.

The best known lower bounds in Littlewood’s problem arise as in C1 of
Chapter 4. Suppose p € £, satisfies

Ip(2)] = (n+1)*
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for all z of modulus 1. Then ¢(2) := p(2"*1)p(2) is in L4, where the degree is
d=(n+1)% -1, and

lg(2)| > (d+1)*
for all z of modulus 1. So any particular example that gives rise to an a as

above gives an infinite sequence of examples. The best a known that arises in
this fashion is 0.4308... . It comes from the Barker polynomial of degree 12.

The conjecture P4 is refined by a conjecture of Erdés [1962].

P5. Erdds’s Problem in L.,. Show that there exists a positive constant c3
such that for all n and all p, € L, we have ||ppllec > (1 + c3)v/n + 1.

This is also still open, though a remarkable result due to Kahane [1980] shows
that if the polynomials are allowed to have complex coefficients of modulus 1,
then “flat” polynomials exist, and indeed, that it is possible to make ¢; and
ce asymptotically arbitrarily close to 1. Another striking result, due to Beck
[1991b], proves that “flat” polynomials exist from the class of polynomials of
degree n whose coefficients are 1200th roots of unity.

The merit factor problem of the last chapter conjectures, for p € £,, and n
sufficiently large, that ||p||3 > (1 + 6)(n + 1)2. This, of course, implies Erdés’s
conjecture above.

Littlewood [1961] gives a proof of Erdds’s problem for real trigonometric
polynomials. We offer the following easy resolution of P5 for reciprocal Little-
wood polynomials.

Theorem 3. Let P be a reciprocal Littlewood polynomial of degree n. Then
4
1P > |/ 2vaTT

Proof. Let P be areciprocal Littlewood polynomial of degree n. Observe that
Inequality 10 of Appendix A gives
n
IP'(2)]loo < S 1P(@)lloo-

So with Parseval’s formula, we have

o (n+ 1)n? <o nn+1)(2n+1)
3 - 6
1o N
=5/ |P'(e*) | do

<o (2) 1P,
and
PGl > | 3T

follows. 0
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Konyagin [1997] conjectures the following for polynomials in A: for any fized
set E C 8D (the boundary of the unit disk) of positive measure there exists a
constant ¢(E) > 0 (depending only on E) such that for any distinct positive
integers k; and any integer n,

().

In the same paper he shows that for each positive e, there exists a set £, C 0D
of measure 7 and a choice of exponents k; such that

[

7=0
However, if his conjecture is correct, E. must vary with e.

E.

Konyagin’s conjecture is proved for subarcs. Borwein and Erdélyi [1997b]
show that Littlewood polynomials (and many other related polynomials) cannot
be arbitrarily small on any fixed subarc of the unit circle, and as a consequence,
the following holds.

Theorem 4. Let A be a fized subarc of the unit circle. If {pr} is a sequence of
monic polynomials that tends to 0 in L1 (A), then the sequence H(py) of heights
tends to 0o.

Introductory Exercises

E1. Show that if p is in £,, then

Iplls > ((n + 1)2 +n)**

with equality only if p is a Barker polynomial of even degree.
There is no better lower bound known.

E2. Let L
Wa(z2) :== "Z ehtkt+1)mi/n k
k=0
Show that
IWalld = n? + 0 ().
Show that

Wi(=Cnz) = 2Wa(2) + (14 (=2)"),

where ¢, := exp(2mi/n). Deduce that W, is of constant modulus at nth roots
of unity when n is odd.
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E3. Show that a reciprocal Littlewood polynomial of sufficiently large degree
has at least one zero of modulus 1.

E4. Show that if {p,} is a sequence of Littlewood polynomials (with p, € £;,)
and 0 < a < 8, then

llpnlls

vn+1

—1

implies
pnlo

vn+1

— 1.

E5. Show that if {p,} is a sequence of Littlewood polynomials (with p,, € L),
then

llpn||4

APnll g

vn+1
implies

|pn(z)|

vn+1

—1

for almost every z of modulus 1.

4 27 i0Y]2 2
(n+1)2 27 J, (n+1)2

Hint:

O
E6. Golomb Rulers. Consider polynomials of the form
p(z) = 2% + 292 4 .- - 4 2%,
where 0 < a1 < as < --- < ap. Let G denote the collection of all such
polynomials.
Show that p(z) € Gy satisfies
1/4
()l > (252 = %)/
with equality iff all differences of pairs of elements of A := {a;,as,... 04} are

distinct.

The problem of finding the minimum value of oy, for which there exists a set
{0 =a1 < ay <--- < ag} of integers such that the differences aj — oy are all
distinct is sometimes called the Golomb ruler problem.

Show that this minimum exists for all &£, and find the minimum for £ < 10.
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Computational Problems

C1. Find the maximal merit factors of Littlewood polynomials for degrees up
to 40. Do the same calculation for symmetric and skewsymmetric Littlewood
polynomials for degrees up to 80.

C2. Golay and Harris [1990] suggest a heuristic for finding Littlewood polyno-
mials of degree 2n with large merit factors. The idea is to find skewsymmetric
Littlewood polynomials for which the even part and odd part both have a rela-
tively large merit factor. Explore this heuristic.

C3. Examine the zeros of the polynomials W,,.

The zeros of Wsyg.

s v 05 i
i

C4. Construct a program to find the optimal polynomials in Littlewood’s con-
jecture, and run it up to degree at least 20.

As before, a polynomial is skewsymmetric if p(z) = £2%(—1/2), where d is
the degree of p.

Extend the above search as far as reasonable for skewsymmetric polynomials.

Research Problems

R1. Find the maximal merit factors of Littlewood polynomials for degrees up
to 100.

R2. Prove that the merit factor of Littlewood polynomials is bounded above
independently of the degree.

R3. Prove the conjecture of Konyagin [1997]: for any fized set E C 0D (the
boundary of the unit disk) of positive measure there exists a constant ¢(E) > 0
(depending only on E) such that for any distinct positive integers k; and any

integer n,
n
EliS

il |dz| > ¢(E).
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R4. What is the minimum number of zeros of modulus 1 of a real-valued
Littlewood polynomial of degree n?

Littlewood [1966, problem 22] poses the following research problem, which
appears to still be open: “If the n,, are integral and all different, what is the
lower bound on the number of real zeros of Eﬁzl cos(n,f)? Possibly N — 1,
or not much less.”

R5. Erdés’s Problem in L., for Reciprocal Polynomials. Show that
there exists a positive constant ¢ such that for all sufficiently large n and all
reciprocal polynomials p, € L, we have ||pn||oc > (\/ﬁ—i— c)vn+1.

This implies Erdés’s problem (P5). It is supported by computational evi-
dence up to degree 50 or so. “Sufficiently large” in this case may well mean
n > 8.
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Chapter 16

Spectra

In this chapter, we examine spectra, the sets of values which result when various
classes of polynomials are evaluated at a fixed number q. When this class is F
and q is a Pisot number, the spectrum

{p(q) :p e F}

is, quite surprisingly, discrete. Indeed, from E1 of Chapter 3, we have that for
q a Pisot number and p € Z of height h with ¢ not a root of p,

[p(q)| > c(g, h),

where the positive constant ¢(q, h) depends only on ¢ and h. This suggests the
question of establishing the exact value for ¢(g,h). Specifically, we search for
the minimum positive value in the spectrum of height h polynomials evaluated
at a number g, where ¢ is between 1 and 2.

Erdds, Jo6, and Komornik [1990] look at spectra with respect to the class of
polynomials A in the following way. Consider

Y(q):={p(a):p€ A} ={0,1,q,a+1,¢>,¢" +1,¢" +4q,... },

ordered as 0 = yo < y1 < y2 < y3 < ---. They show that for ¢ > 7 (where 7 is
the golden ratio), there exist infinitely many k& where y1 — yr = 1. They also
show that if ¢ < 7 and ¢ is a Pisot number, then yg+1 — yr /4 0.

Erdds, Jod, and Joé [1992] show further that yr+1 — yr < 1 for all k, and if
g is the Pisot number which is a root of 2 — 2! —... —1 =0, then

lim inf(ye1 - yi) = 1/g.

(To see that liminf(ygr1 — yx) < 1/q, see E8.) They ask which other ¢ make
this infimum strictly greater than 0. We denote this infimum by

Ug) := liminf(yr1 — yr)-

133
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We define wider classes of spectra by
Y™(q) == {p(q) : p(2) := €n2" + --- + €0, €6 € {0,...m}}

which we order as yi* =0 < y" < y3* < y3* < ---. We extend the definition of
I(q) in the obvious way to

I"™(g) := liminf (y", — yi') -

It is clear that
I(q) =1"(a) > %(q) > () > -+ > 0.

Bugeaud [1996] proves the following result.

Theorem 1. If q € (1,2), then 1*¥(q) > 0 for all k if and only if q is a Pisot
number.

He also studies the related problem of lim sup(yg+1 — yx)- Define
L™(g) := limsup (yg1 — yi*) -

Clearly, L*(g) > L*(q) > --- > 0 and L™(q) > I"™(q)-

Bugeaud shows that L'(q) < 1 for all ¢ < 7, and L?(¢q) < 1 forall 7 < g < 2.
He also shows that if ¢ is not a root of a polynomial of height 1, then I(q) = 0
by a pigeonhole argument (see E4).

A good overview of these problems is found in Joé and Schnitzer [1996].
They list a number of problems, all of which are still open at the time of the
printing of this book. These include:

1. For q € (1,2), is I(¢) > 0 if and only if q is a Pisot number?
2. For 1 < q < 7, does I(q) = 0 imply L(q) = 0?

3. If 1 < g < g1 (where g; is the smallest Pisot number), is I(¢) = 07

In the study of I™(q), we wish to find the minimal positive value in Y™ (q) —
Y™(q). Since Y™(q) — Y™(q) is the set of all height m polynomials evaluated
at ¢, we are led to the definitions

Ag) = {p(e) : p € 7}
and
A™(q) == {p(q) : p € Z,H(p) < m}.
We can equivalently define I(q) and I™(q) as
I(q) = inf{ly| : y € Aq),y # 0}

and
™ (q) :=inf{|y| : y € A™(q),y # 0}
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(see E2 for this equivalence).

There are a variety of further results by Erdés and Komornik [1998], includ-
ing the following.

Theorem 2.

(a) If q is not a Pisot number and m > q — q~', then A™(q) has a finite
accumulation point.

(b) If g € (1,2) is not a Pisot number, then I™(q) = 0 for allm > [g—q ] +
f[q—1].

(¢) If 1 < q < 2Y* and if ¢* is not the first or second Pisot number, then
I™(q) =0 for all m.

Komornik, Loreti, and Pedicini [2000] show that if ¢ is the Pisot number
which is a root of 22 — 22 — 1, then I(q) = ¢> — 2. For general m, and ¢
the golden ratio, they give a complete description for "™ (q). If F}, is the kth
Fibonacci number (Fp =0, Fy =1, F, = F,_1 + F,,_»), and ¢* 2 <m < ¢*1,
then I"™(q) = |Fiq — Fry1|-

These results are extended to all unit quadratic Pisot numbers by Borwein
and Hare [to appear] in the following way. (Unit quadratic Pisot numbers are
Pisot numbers that satisfy polynomials of the form 22 — az & 1.)

Theorem 3. Let q be a unit quadratic Pisot number with conjugate r. If q
has continued fraction approximations {C,/Dy}, and k is the greatest integer
such that

1
Dyr — Cy| <m—
|Dyr Ck|_m1—|r|’
then
I"™(q) = |Drq — Ckl.

Another spectrum that is studied is the class of +1 polynomials evaluated
at ¢, defined by

Aq) =={p(e) : p € L}
with the minimal value a(q) defined by

a(q) :=inf{|y| : y € A(q),y # 0}.

Determining which ¢ € (1,2) make A(q) discrete is of interest. A spectrum
A is discrete if for any finite interval [a, b] of the real line, A N [a, b] has only a
finite number of elements. A spectrum is uniformly discrete if there exists an €
greater than zero such that any two distinct values in the spectrum are at least
€ apart. A spectrum is nonuniformly discrete if it is discrete but not uniformly
discrete. Peres and Solomyak [2000] show that if ¢ is a Pisot number, then
A(q) is uniformly discrete. However, examples of ¢ where A(q) is nonuniformly
discrete are given in Borwein and Hare [to appear] and in the exercises.
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It is clear that A(q) C A(g). Peres and Solomyak prove the next result.

Theorem 4. A(q) is dense in R for almost every q € (\/5, 2). Also, if
q€ (1, \/5) and q? is not the root of a height 1 polynomial, then A(q) is dense.

An Algorithm for Computing Spectra

There are good algorithms that allow for a computational exploration of various
spectra. An algorithm to determine A(q)N[—1/(¢—1),1/(¢—1)]is given by Lau
[1993]. This algorithm is extended by Borwein and Hare [to appear] as follows.
Let S be a finite set of integers with s; the smallest and s, the largest. Let p
be a polynomial with coefficients in S, and let ¢ > 1. Set oy := —s, /(g — 1)
and a, = —s;/(q—1). If p(q) ¢ [ay, ], then ¢p(q) + s ¢ [y, ] for all
s € S (see E3). Thus, if p(q) ¢ [y, o], it follows that if ps(z) is a polynomial
with coefficients in S whose leading terms are equal to z¥p(z) for some k, then
ps(q) ¢ [ou, o), and thus ps(2) can be ignored in a search for spectral values in
[0q, @] Further, if af < oy and o}, > «,,, then the same result follows for the
range [a;,a}]. The fact that A™(q) is uniformly discrete for ¢ Pisot gives that
|[A™(q) N [a, b]| is finite. This guarantees that the algorithm terminates.

The algorithm below takes as input an algebraic number g and a set of inte-
gers S which are the coefficients of the polynomials considered for the spectrum.
It returns the spectrum in [oy, o).

Spec(S,q)
Oy 1= ————— mlz(jses);
o = —— maZESISES)Q
LO = S,
d = 0;
repeat
Lgyq := Lg;

forpe Ly, s€ S do
if gxp+ s €[y, ay] then
Lgy1 = Lgy41 union {gp + s}
end if
end do
d:=d+1;
unti] Ld+1 = Ld;
RETURN(Ly);
end;

It is often an advantage to compute exactly using the minimal polynomials
of ¢, so as to avoid floating-point errors.

This algorithm allows us to compute various spectra. For example, for A,,(q)
we use S = {—m,...,m}, and for A(q) we use S = {£1}. It performs surpris-
ingly well. Many of the exercises are based on these explorations. A small
example of how this algorithm works is given below.
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Let us compute A(g)N[—1/(g—1),1/(g—1)] for ¢ satisfying ¢> —2¢?>+g—1. So
we have (to nine decimal places) ¢ = 1.754877666 and 1/(¢ — 1) = 1.324717958.
Printed below are the various values of L.

Lo =[-1,0,1],

Ly = [—1,—0.754877666, 0, 0.754877666, 1],

Ly = [—1.324717957, —1, —0.754877666, —0.324717957, 0, 0.324717957,
0.754877666, 1, 1.324717957],

L3 = [—1.324717957, —1, —0.754877666, —0.569840291, —0.430159709,
— 0.324717957,0,0.324717957,0.430159709, 0.569840291, 0.754877666,
1,1.324717957],

L = [—1.324717957, —1, —0.754877666, —0.569840291, —0.430159709,
— 0.324717957, —0.245122334, 0,0.245122334, 0.324717957,
0.430159709, 0.569840291, 0.754877666, 1, 1.324717957),

Ls = [—1.324717957, —1, —0.754877666, —0.569840291, —0.430159709,
— 0.324717957, —0.245122334, 0, 0.245122334, 0.324717957,
0.430159709, 0.569840291, 0.754877666, 1, 1.324717957).

Since Ly = L4, we see that the algorithm has terminated. From this we see
that the minimal element in the spectrum is I(q) = 0.245122334.

Introductory Exercises

E1. Show that I™(q) > 0 for all m and for all Pisot numbers q.

Hint: See E1 of Chapter 3. O

E2. Show that A(q) = Y(q) — Y(q). (Hence the two definitions for I(q) are
equivalent.)

E3. Let S be a finite set of integers with s; the smallest and s,, the largest. Let

p be a polynomial with coefficients in S, and let ¢ > 1. Set @, := —s;/(q¢ — 1)
and oy := —sy/(q — 1). Show that if p(q) ¢ [au, @], then gp(q) + s ¢ [ou, ]
forall se€ S.

E4. Show that if ¢ is not a root of a height 1 polynomial, then I(g) = 0.

Hint: Find the average distance between yr11 — yx if Y (g) is restricted to poly-
nomials of degree n. O
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E5. Show that if ¢ is not a root of a polynomial of the form
€n2™ + o+ €m2™ + Br_12™ T + -+ Bo,

where €; € {£1} and §; € {£2,0}, then A(q) is not discrete. (As a corollary,
notice that all Pisot numbers in (1,2) must be a root of a polynomial of this
form.)

Hint: Consider the sequence Py =1, P, =1—qP,_1if ¢gP,_1 <1and P, =
qP,_1—1if qP,_1 > 1. O
E6. Show that if [(¢) = 0, then A(g) is not uniformly discrete, and if A(q) is
not uniformly discrete, then (2(g) = 0.

Hint: Show that 2A(q) C A(q) — A(q) C A2%(q). O
E7. Show that if 1 < q is a root of the polynomial 2" — z"~1 — z"=2 — ... —

22 — 2+ 1, then A(q) is discrete. (This ¢ is a Salem number, as follows from E6
of Chapter 3.)

Hint: Consider the algorithm of this chapter, and show that at each step the
number of polynomials added to the spectrum is bounded, and that it eventually
terminates. O

E8. Show that if ¢ is the Pisot number which is a root of 2™ — z" 1 — ... —1,
then I(q) < 1/q.

Hint: Find a p € F such that p(q) = 1/q. O

Computational Problems

C1. Write programs to compute a(q) and I™(q).

C2. Compute a(q), where q is the Pisot number which is a root of 2% — 22 —2,
to show that a(q) > 0. Notice by E3 that I(g) = 0 in this case. Thus by E6,
A(q) is nonuniformly discrete.

C3. Duplicate the results of Komornik, Loreti, and Pedicini [2000] by com-
puting I(g), where g is the Pisot number which is a root of 23 — 22 — 1.

C4. Compute I™(q), where q is the Pisot number which is a root of 2% — 2 —1,
for various m. Compute 1/¢* for various k.
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C5. Compute the spectrum of A(g), where ¢ is the Pisot number which is a
root of 26 — 25 — 22% + 22 — 2 — 1, and show that 0 ¢ A(q). Find other Pisot
numbers with this property.

Research Problems

R1. Let g € (1,2). Show that I(¢) > 0 if and only if ¢ is a Pisot number.

R2. Find an algorithm that computes L!(q).
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Appendix A

A Compendium of
Inequalities

We collect a compendium of the most useful inequalities for polynomials on
the unit disk. Most of the inequalities in this section may be found in either
Borwein and Erdélyi [1995] or Milovanovi¢, Mitrinovi¢, and Rassias [1994].

We first reintroduce the standard notation. As before, let
D:={zeC:|z| <1} and K :=R (mod2n).

We let PS (resp. Pp,) denote the set of algebraic polynomials of degree at most
n with complex (resp. real) coefficients, and denote the set of trigonometric
polynomials of degree at most n by 7,. More precisely,

Tn = {t (t(z) =ao + ;(ak coskz + bysinkz), ag, b, € ]R} .

The supremum norm, or Lo, norm, on a set A is denoted by ||-||4. For positive «,
the L, norm on the boundary of the unit disk is defined by

1 2w o\
vl = (52 [ o) as)

p(2) == ap2" + -+ a1z +ag = an(2 — 21)(2 — 22) -+ (2 — 2n),

1/«

For a polynomial

the Ly norm on D is also given by

Ipllz = Vlan[? + - + a1 |* + |ao .
In the two limiting cases,

Tim lplla = P15 := lIpllos

141
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and \
. 1 4 0 N
ty Il = exp (5 [ Toule)) a0) = Il

This latter quantity is the Mahler measure and is denoted by M (p). It has the

alternative form
M(pn) = |an| H |Zz|
[zi|>1

For 0 < a < f,
1flla < NI£lls;

andfor 0 <r <s<t,

—s s—r

115 < A = LA =

If1<a< B <ooand a~ !+ 37! =1, then Holder’s inequality states that

£ gl < Wl fllallglls-

The height of a polynomial p, denoted by H (p), is just the size of the largest
coefficient of p. The length is denoted by L(p) and is just the sum of the absolute
values of the coefficients of p. If p(z) := a,2™ + -+ - + a1z + ag, then

L(p) := l(p) := |an| + - - + |a1| + |ao|

and
H(p) := max{la,|,. .. ,|ail, |ao|}.

The length is also the /; norm, where generally,

a a a1/
la(p) = (Jan|® + -+ + |ar|® + |ao]®) /.

Norm Inequalities

1. Bernstein’s Inequality for Trigonometric Polynomials. Fort € 7,
and 6 € R
[t'(0)] < nlltllx-

2. An Inequality of Bernstein. For p € P¢ and |2| > 1,
Ip(2)] < |2["lpllp-

3. Bernstein’s Inequality on the Disk. For p € P¢ and |z| > 1,

Ip' ()| < nlz"lpllp-
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4. Bernstein-Type Inequality in L,. Fort € 7, and a > 0,

2 2
/ |t'(9)|* df < na/ [t(8)|* dé.
0 0
Equivalently, for € P: and a > 0,

1P (2)lla < nllp(2)]la-

For a > 1, this is due to Zygmund. The extension for a > 0 is due to Nevai.
Von Golitschek and Lorentz [1989] give a simpler proof of this. For a = 0, the
result is due to Mahler; a proof of this case may be found in Everest and Ward
[1999].

If p has no zeros in D, then de Bruijn shows, for a > 1, that

IP'(2)lla < canllp(2)lla;

where N
@ = ﬁr(f + 1) )
ST T(E D)
5. An Inequality of Szeg6. If p € P¢ and 21, 2s,...,22, are any equally

spaced points on the unit circle 0D, then

/
< .
I#llp < n max |p(0)

Proof. See Frappier, Rahman, and Ruscheweyh [1985]. O

6. Markov’s Inequality. For p € P,

1P ll=1,1 < n*[IPll—1,1-

7. Chebyshev’s Inequality. For p € P, and z € R\ [-1,1],

p(@)] < |Tn(@)] [|pll—1,11;

where T, is the Chebyshev polynomial of degree n as defined in Chapter 7.

8. Riesz’s Identity. There are real numbers a; with Zf;ll |a;| = n such that

fort € T, and 6 € R,
2n
t(0) = ait(6 +6;),
=1

where

2 -1
6; =

i=—m,  i=12....m,
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and .
(-1

 4psin? (%) ’
(This is, apart from the explicit determination of the numbers a;, an identity
discovered by M. Riesz.)

i=1,2,...,2n.

9. A Nikolskii-Type Inequality of Arestov. For p € P; and a > 0,
Ip(2)lla < en(a)llp(2)llo,

where
cn(a) =27 (25
(f T (5= )>
Proof. See Milovanovié, Mitrinovié, and Rassias [1994, p. 449]. O

The above inequalities are, for the most part, discussed in Appendix 3 of Borwein
and Erdélyi [1995], where the treatment is through an interpolation theorem of
Shapiro. This gives something of a unified treatment of these results.

Norm Inequalities with Restrictions

10. Lax’s Inequality. @ We have
n
Illo < 5 lIpllo

for all p € P§ that have no zeros in the open unit disk.

Proof. This is in Lax [1944]. It also follows from Inequality 12 below. O

11. An Extension. Associated with

let

Then

max (|p'(2)] + [p'(2)]) = nllpllp

for every 0 # p € PL.

Proof. See Malik [1969]. ]



Appendix A. A Compendium of Inequalities 145

12. An Observation of Krodé. Suppose p € P satisfies that if p(z) = 0 for
some z € D, then p(1/Z) = 0 (there is no restriction for the zeros of p outside
D). Then

n
llp'[lp < 5 lIpllo -

Proof. If p € P¢ satisfies the assumption, then |p/(z)| < |p*'(2)| for every
z € 9D. The proof now follows from the preceding inequality. O

13. An Inequality for Reciprocal Polynomials. Suppose that p € PS
satisfies p(z) = 2"p(1/%). Then for |z| =1,

nlp(z)] < 21p'(2)l,

and for each a > 0,

n
el < 117l

14. An Inequality of Ankeny and Rivlin. Let r > 1. The inequality

r"+1
max [p(z)| < max [p(z)]
|z|="r 2 |z|=1

holds for all p € PS that have no zeros in the open unit disk.
Proof. See Ankeny and Rivlin [1955]. 0

15. Let

be reciprocal. Then

1
Nl —
Ip'llo = (Z T |zk|> el

k=1
Proof. This follows from Inequality 11 above and the fact that

R N
T+2] 1427t
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16. Let r € (0,1]. The inequality
n
/
>
1Pllp > - lIpllp

holds for all p € PS that have all their zeros in the disk {z € C: |z| < r}.
Proof. Consider p'(z)/p(z). O

17. An Inequality of Govil. Let r > 1. The inequality

n
Ip'llo >

> = lpllo

holds for all p € PS that have no zeros in the disk {z € C: |2| < r}.

Proof. See Govil [1973]. ]

Derivatives of Rational Functions

Let 0D denote the boundary of the unit disk D. The following two inequalities
are proved in Borwein and Erdélyi [1995].

18. Bernstein-Type Inequality for Rational Functions. Define the
Bernstein factor By, for {z;}7_, C C\ 8D, by

B,(z) :=max { B (z), B, (2)}

with
n 2 n 2
ze|” =1 _ 1 — |z
Bt (z) := |7 and B (z) := _
|zp|>1 |zp|<1
Then
|f'(2)] < Bu(2)Ifllop, 2 €D,

for every

fe{%:mﬁ}-
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19. A Lax-Type Inequality. Given {z;}7_, C C\ D, let the Bernstein
factor C,, be defined by

Then
W (2)] < 5Cn(2)||bllop, 2 €D,

for every

he{il_[ p(2) :pePfL}

Z:l (Z - Zk)

having all its zeros in C \ D.

Inequalities Involving Coefficients

20. Visser’s Inequality. Let p(z) := a,2" +---+a1z+ap € PS and suppose
lp(2)||p < 1. Then

lao| + |an| < 1.

21. Malik’s Refinement. Let p(z) := an2™+---+a12+ag € PS be reciprocal
and suppose ||p(z)||p < 1. Then

lao| <

)

N | =

andfor1<k<n-1,

-1
n 1
|a0| + (k‘) |ak| < 5

22. Szasz’s Inequality. Let p(2) := anz™ + --- 4+ a1z + a¢ and suppose
llp(2)l|p < 1. Then, for 0 <i < j <n,

i/ G—9)] 2
1/2 4
w+lals > () <2
k=0

See Milovanovié¢, Mitrinovié¢, and Rassias [1994, pp. 123-135] for proofs of
these inequalities.
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Inequalities for Length, Height, and Measure

23. The Measure of the Sum and Product of Numbers. Suppose «
and [ are algebraic numbers of degree m and n respectively. Then

M(a+p) <2™"M(a)"M(B)™
and

M(aB) < M(a)"M(8)™.

24. The Measure of the Sum of Polynomials. Suppose p and ¢ are
polynomials of degree n. Then

M(p+q) < L(p+q) < L(p) + L(q) < 2"(M(p) + M (q)).

25. Some Inequalities. Suppose that p(z) = a,2™ + - -+ a12 + ag is a
polynomial of degree n with complex coefficients. Then

n
lajl < (j)zmp),
L(p) < 2"M(p) < 2"L(p),

and
L(p) < nH(p).

26. Gongalves’s Inequality. If
p(z) = a2+ -+a1z+ag=an(z—a1)(z —az) - (z — ay) € PE,

then
M (p)? + |aoan|*M(p)~* < Ipl3,

and more generally, for any 1 <m < n and A > 2, if p is monic, then

n A/2
a1+ am|* + |amtr - an|* < <1+Z|ai|2> .
i=1

These inequalities may be found in Mignotte [1992].

Inequalities for Zeros

27. Enestrom—Kakeya Theorem. If
p(2) = apz" +an, 12" +---+ag,a; €R,

with
ap > ar > --->a, >0,

then all the zeros of p lie outside the open unit disk.
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28. Suppose a,8 > 1and @ !+ 371 = 1. Then the polynomial p € P¢ of the

form
p(z) =anz" +a, 12" +---+ag, an # 0,

has all its zeros in the disk {|z| < r}, where

8/ay /B

n—1 o
A T D1
j:0 |an|

29. Pellet’s Theorem. Suppose a, #0, |apt1|+--- =+ |an| > 0, and

9(z) := |ao| + |ar|z + - - + |ap_1|zP " — |apla? + |ap1 |z + - + |ag|z”

has exactly two positive zeros s; < s3. Then

f(2)i=apn2" +an_12" 14+ +ag € Ps

has exactly p zeros in the disk {z € C : |z| < s1} and no zeros in the annulus

{z€ C:5 <|z| < s2}.
30. An Inequality of Schur. Suppose
n .
p(z) == Z a;z’ € Py,
7=0

has m positive real roots. Then

lao| + |a1| + -+ + |an|>

VlaOanl

m? < 2nlog (
See also Chapter 7.

31. A Theorem of Szeg6. Suppose f,g,h € PS, where

n

)= o (Z) *, an#0,

bk (Z) zk 3 bn # 07
k=0

g(2):

and

h(z) == g} arbi (:) ",

Suppose f has all its zeros in a closed disk F', and g has zeros (i, ...

all the zeros of h are of the form —g;v; with ; € F.

, Br- Then
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32. A Theorem of Fejér. Let
n
p(z) == Zakz’\’“ , ar € C, agpa; #0
k=0

where 0 < A\; < Ay < ... < A,. Then p has at least one zero zy € C such

that
ao 1/M1

ai

|20] < A2ds - An v
=00 =2 = A1) (O — A1)

33. Lucas’s Theorem. Let p € PS. All the zeros of p' are contained in the
closed convex hull of the set of zeros of p.

34. Walsh’s Two-Circle Theorem. Suppose p € P¢ has all its n zeros in
the disk D; with centre ¢; and radius 71, and suppose ¢ € Pg, has all its m
zeros in the disk D with centre ¢ and radius r2. Then:

(a) All the zeros of (pg)' lie in D1 U D U D3, where D3 is the disk with centre
cs and radius r3 given by
_ ncy +me _nrg+mn

C3 r3 =
n+m ’ n+m

(b) Suppose n # m. Then all the zeros of (p/q)’ lie in D; U Dy U D3, where Ds
is the disk with centre c3 and radius r3 given by

nece — mey nre + mrq
C3 ' = ——, r3gi= -
n—m |n —m)|

All of the above inequalities are in Chapter 1 of Borwein and Erdélyi [1995].

Inequalities for Factors

35. An Inequality of Kneser. Suppose that p = ¢r, where ¢ € P¢, and
r € PS_,.- Then

lalli-1lirll-1.1 < 5CnmCnn-mllpll-1.17

where
m
Cnm :=2" H (1 + cos W) .
k=1

Furthermore, for any n and any m < n, the inequality is sharp in the case that
p is the Chebyshev polynomial T,, of degree n and the factor g € Pg, is chosen
to make ¢ vanish at the m zeros of p closest to —1.
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36. The Norm of a Single Factor of a p € PS on the Unit Disk. Let
p € P¢ be monic and suppose p = gr, where ¢ € PS, and r € PS_,,,. Then

1/2
HO)2llgllp < (3Cum) " Iln,

where C), ,, is the same as in Inequality 35. This bound is attained when m
and n are even, p(z) = 2™ + 1, and ¢ € Pf, vanishes at m adjacent zeros of p on
the unit circle.

Also,
lallo < B Ipllp,

where 8 :=M(1+z+y)=13813....

37. The Norm of the Factors of a p € P, on the Unit Disk. Suppose
p = qr, where ¢ € P,,, and r € Py_,,,. Then

lallplirllp < (3CamCrn-m)"’ Ipllp,
where C), ,, is the same as in Inequality 35 and
(CrmCrnmem)/® <6:=MQA+2+y—2y) =1.7916... .
This bound is attained when m and n are even, p(z) = 2" + 1, and ¢ € Pg,

vanishes at the m zeros of p closest to 1 and r € P,,_,,, vanishes at the n —m
zeros of p closest to —1.

Let p = qr, where ¢ € P, and r € P5_,,,. Then
llgllpllrllp < 6™|plip-

The unrestricted cases of Inequalities 36 and 37 are due to Boyd [1992].

38. Bombieri’s Norm. For Q(z) := Y}_,arz* the Bombieri p morm is

defined by
n n 1-p 1/p
@= (X () laer)
k=0

Note that this is a norm on P¢ for every p € [1,00), but it varies with n. The
following remarkable inequality holds (see Beauzamy et al. [1990]). If Q@ = RS
with Q € P, Re PS,and S € PS_,,, then

maish < (1) an

and this is sharp.
The inequalities of this final section are all in Borwein and Erdélyi [1995].
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Appendix B

Lattice Basis Reduction
and Integer Relations

Lattice basis reduction algorithms and integer relation algorithms are central
tools in the field of computational number theory. In this section we present
LLL (without proof of termination) and discuss in detail the integer relation
algorithm PSLQ. These both rely on constructing an appropriate sequence of
bases for a given lattice. This treatment follows Meichsner [2001].

Definition 1. (Integer Relation). We say that there exists an integer
relation among the numbers x1,xs,... , T, if there exist integers ai,as, ... ,an,
not all zero, such that Y i, a;z; = 0. For the vector x = [1,%a,... ,z,]7, the
nonzero vector a € Z" is an integer relation for x if a-x = 0.

Definition 2. (Lattice). The lattice L spanned by the n linearly indepen-
dent vectors by, by, ... b, is the set of vectors L = {2?21 ribj:r; €L} We
say that the vectors b; form a basis for L.

Although the Euclidean and continued fraction algorithms solve the problem
of finding integer relations for the vector [z, Zs, ... ,7,]T when n = 2, until re-
cently there were no known polynomial-time algorithms that solved the problem
for n > 3, and it is likely that no algorithm exists in general. A breakthrough
was made in 1977 with the generalized Fuclidean algorithm of Ferguson and
Forcade [1979], a recursive algorithm that is guaranteed to find an integer rela-
tion when one exists. Following this, a number of nonrecursive algorithms were
developed, including the PSLQ algorithm, the HJLS algorithm, and a method
based on the LLL algorithm.

153
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The LLL Algorithm

It is often desirable to find a basis for a lattice L that is in some sense reduced.
The obvious choice for a reduced basis by, bs, ... , b, is to let b; be the shortest
vector in L that is independent of the vectors by, bs,... ,b;_;. Although Gaus-
sian reduction finds such a basis for n = 2 (Cohen [1993, p. 23]) and a method
due to Vallée [1986] finds such a basis for n = 3, currently there is no known
algorithm that will construct such a basis in a reasonable amount of time for
n > 3. The following alternative definition of a reduced basis, due to Lenstra,
Lenstra, and Lovész [1982], is useful since there is a polynomial-time algorithm
(LLL) for finding such a reduced basis.

Definition 3. (LLL Reduced Basis). Letby,bs,... b, be a basis for the
lattice L and let b} = bz-—z;-:l pi,;b% where pu; ; = (bi-b})/||b|[*.  (This is the
Gram—Schmidt orthogonalization process.) We call the vectors by,ba,... b,
LLL reduced if:

(1) |pijl <L for1<j<i<n.
(2) IIb} + pi—1bi_q > > 2|bi_[|* for1<i<n.

Condition (1) states that the vectors b; must be close to orthogonal. Con-
dition (2), along with (1), allows us to bound the values ||bj|| in terms of the
norms of the shortest vectors in the lattice L.

Theorem 1. Suppose by,bs,... b, form an LLL reduced basis for a lattice
L. Then for every nonzero vector x € L, we have ||bi|| < 2("=D/2||x||. In
particular, ||by|| is no larger than 2("~1/2 times the norm of a shortest nonzero
vector in L.

Proof. Since the vectors bj and b}_; are orthogonal, Condition (2) tells us
that

* * * * * 2 * 3 *
(b} + piji-1bi_y) - (b + pii—abi_1) = [[bI[1* + |uii—1|” i[> > ZlIbi_4 1%

By Condition (1), this implies ||b}||?> > 1|/b;_,[|?, and so by induction,
1
D11 > 5= b1
Now for any nonzero vector x € L, we can write x as x := Zle a;b; with

1<k <n,a #0, and each a; € Z. Replacing b; with b; = b} + 3\_} ps,;b’
allows us to write x = Zle s;b} with each s; € R and s;, = a;, € Z. This gives

k
2 2
%[> = [sif* D17 > lax|* IbEI* > b1
i=1

> [|by[*2'7* > b [[*2'7" = [|by[*2' 7",
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or equivalently,
by ]| < 20" D72||x]|

for every x € L. O

As shown in Lenstra, Lenstra, and Lovész [1982], one can prove that for an LLL

reduced basis by, bs,... ,b,, and for any set of ¢ linearly independent vectors
X1,X2,...,Xs € L, we have the inequality
b1l < 207D max([lxa [, lIxall, - - - s Iel]) for 1< j <.

The details of the algorithm used to construct an LLL reduced basis from an
arbitrary basis for L are presented in Figure B.1.

Referring to Figure B.1, we see that the body of the main loop first ensures
that Condition (1) in the definition of an LLL reduced basis is satisfied for
the vectors by, bs, ... ,bg and then checks to see whether Condition (2) holds.
Note that at the beginning of the main loop, the vectors by, bs,... ,bg_; form
an LLL reduced basis for the lattice that they span. For proof of termination
and improvements on the basic algorithm, one is referred to Lenstra, Lenstra,
and Lovész [1982] and Cohen [1993]. For example, the bound of 2(n~1)/2 in
Theorem 1 may be improved to (4 + €)("~1)/2 at the expense of increasing the
running time of the algorithm. The complexity of LLL is as follows. Let C' > 1
be greater than the maximum of the norms of the vectors in a basis for the
lattice. Then LLL will find a reduced basis using

O (n*logC)

exact arithmetic operations. These operations can be performed on integers of
size

O (nlogC)

if the lattice is in Z™.

Finding Integer Relations with LLL

One use of the LLL algorithm is to find small integer relations among nonzero

values x1,Z2,...,Z,. To use the LLL algorithm to find an integer relation for
X = [z1,T2,... ,2s]7, define the (n + 1) x n lower trapezoidal matrix B as
1 0 A (| 0
0 1
B=
1 0
0 0 R () 1
| Noy Nzo --- --- Nz, |
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The LLL Algorithm

This algorithm takes an arbitrary basis by, ba, ... , b, for the lattice L as input
and uses it to construct an LLL reduced basis.

Step 1 Initialization
Let by, bs,... ,b, be a basis for L.
for i to n do )
set by :=b; — Y07] i ;b3
calculate ||bf||? and pj; fori+1<j<n  (uj;:= (b;j-b})/||b:?)
end do
set k=2

Step 2 Main Loop
Repeat
for j from (k — 1) downto 1 do
q:= |pr,;] (nearest integer, with either choice at %)

bk = bk - qu
for ¢ to j do pk,i := pr,s — g4 end do
end do

It b2 > (3 = )by 12
then set k: =k +1
else interchange by and by_;.
Update bz, b; ., ||bill%, ||b;_,||* and the p; ;’s as follows:
set b;'; 1 .—b + fk k- 1b271
D%/ I” := 051> + (k1) [IbF_y 17
m = a1 1D 2/ [
' L

bj/ := by —mbj_,' = @by | —mb;
b
b/ [1? = 2l b |12 + m?| by

= Bl b 12/, 12
interchange pg ; with pp_1,; for 1 <i <k —2
for i from k 4+ 1 to n do
U= Mik, Mik = Mik—1 — Mkk—1 ik, Mik—1 =1+ Mk
end do
set Mkk—1 == M
set by = by/, b5 == [Iby'|,
by =bp_, [Ibi_[* := [Ibj_,[I*.
set k :=max(2,k — 1)
end if
until k =n+1
At this point the vectors by, ba, ... , b, form an LLL reduced basis for the lattice
L.

Figure B.1: Pseudocode implementation of the LLL algorithm
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(where N is a large number) and let by, bs, ... , b, be the column vectors of B.
If we now consider the vectors in the lattice L spanned by by, bs,... ,b,, we
see they are of the form

n n T
!
m = E m;b; = |my,ma,... ,my, N E m;x;

i=1 i=1

We may view the last term in m’, N Y m;z;, as a penalty term. If the vector
m = [my,ma, ... ,my)|T is an integer relation for x, then this term will be zero.
However, if m is not an integer relation for x, then this term will be large,
provided that N is large enough. The penalty for not being an integer relation
depends on the choice of N. If N is taken large enough and m is a short integer
relation for x, then m’ will be one of the shortest vectors in L. With this in
mind, to find an integer relation for x we choose a suitably large value of N
and run the LLL algorithm on the vectors by, bs,... ,b,. The first vector, b},
in the returned basis will be one of the smallest vectors in L. (Note that b} is
not necessarily the shortest vector in the returned basis. We may also wish to
consider the other b} as well.) If N is large enough and if an integer relation
exists, then LLL will succeed.

Lemma 1. Suppose there are integer relations for x = [z1,T2,... ,2,]7T.
Then the method presented above will find one, provided that N is large enough.

Proof. Let M be the norm of a smallest integer relation for x and consider the
finite set of vectors {y € Z": [ly|| < 2"2 M (y - x) # 0}. From this nonempty
set, choose a vector y with the property that |y -x| = [} y;x;| is minimal.
For this y, choose N so that N |Y yz;| > 2*/?M. Now for any m' € I, if
S miz; # 0then ||m'|| > 27/2M. If m = [m1,ma, ... ,my]T isnot an integer
relation for x, then the norm of the vector m' = [my,ma,... ,mu, NS m;z;]T
is greater than 2((»+*1)=1)/2 times the norm of a shortest nonzero vector in L
and hence cannot be the first vector in an LLL reduced basis (by Theorem 1).

O

Although this shows that an integer relation will be found if one exists and N
is large enough, we do not know beforehand how large N must be.

The PSLQ Algorithm

Following the generalized Euclidean algorithm of Ferguson and Forcade [1979],
Ferguson and others developed a sequence of nonrecursive integer relation algo-
rithms (Ferguson [1987]; Bailey and Ferguson [1989]; Ferguson, Bailey, and Arno
[1999]), each an improvement on the previous ones. In this section we cover the
latest incarnation of these, a simplified statement of the PSLQ algorithm. We
follow the general outline of Ferguson, Bailey, and Arno [1999].
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As before, suppose we wish to find a small integer relation among the nonzero
values z1,xa,... ,z,. Rather than using the method of the previous section
(based upon the LLL algorithm), here we attempt to construct a sequence of
bases for the lattice Z™ that converge to the line Rx by examining the projections
of these basis vectors onto x*.

Let x = [z1,Za,--. ,7,]T and suppose we have a set of n linearly independent
vectors aj,ay, ... ,a, € Z" such that the projection of each a; onto x* is small
(we say each vector a; is close to x). If we define A to be the matrix such that
the ith row of A is a] , then A is invertible. Let B = A~! and let b; be the jth
column vector of B. Now, since (a; - b;) = 0 for ¢ # j and each a; is close to
x, we would expect that each b; lies close to x-. The idea behind the PSLQ
algorithm is to start with the standard basis for the lattice Z", and with each
iteration construct a new basis ai,as,... ,a, for Z™ in which the a; are closer
to x. In doing so, we hope to force the vectors b; closer to x". We will see
that as an upper bound on the values ||proj o ai” decreases, a lower bound on
the size of any possible integer relation for x increases. Throughout the PSLQ
algorithm we work with the following matrices:

A: An n x n invertible matrix. The column vectors a; of AT form a basis for
the lattice Z™.

H: An n x (n — 1) matrix with column vectors h; that form an orthonormal
basis for x*.

H': The matrix AH. Each entry h; ; in H' is the inner product of a; with h;.
Note that the projection of a; onto x is Z?;ll (a; - hj)h;. Each time we
begin the main iteration of the algorithm, H' will be lower trapezoidal
(see Definition 4 below) and we will have |h§7j| <i |h97j| for 1 <i < j.
This will give

i—1

1 iz
Joroi, < 13, :
j=1

i
S h < Y Img
j=1

By reducing the |h;’i|, we will reduce an upper bound on ||proj n a,~|| for
each i.

B: B = A~1. The column vectors b; of B will be forced closer to x* by forcing
the vectors a; closer to x.

Definition 4. (Lower Trapezoidal). The m x n matriz C is lower trape-
zoidal if m > n, and each entry c; ; of C equals zero if j > i.

Although forcing the vectors a; closer to x is not sufficient to guarantee that
one of the b; will eventually lie in x*, termination of the algorithm and a bound
on the size of the relation found will follow from Theorem 2. From this we will
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see that reducing the values |h;z| also increases a lower bound on the norm of
the smallest possible integer relation for x.

Theorem 2. Let A be an invertible n x n matriz with integer coefficients, x
a vector in R", and H an n X (n — 1) matriz with column vectors that form an
orthonormal basis for x-. If H' = AH is lower trapezoidal with each diagonal

entry h; ; nonzero, then

1 . .
———— < [|m|| for any integer relation m of x.
max |hi,i|

Proof. For any integer relation m, HH ' m = m, since HH” is the projection

matrix onto x-. Thus Am = H'(H'm). Let a} be the ith row vector of 4,

h{ the ith row vector of H”, and h/ ; the jth diagonal element of H'. Since

A is invertible, Am # 0. Let j be the least integer such that a]Tm # 0. Then

alm = 0 for 1 < k < j, and so by recursion and the fact that H' is lower

trapezoidal with nonzero diagonal elements, hkTm =0forl <k < jand
T T

_ I T . . .
ajm = h’ ;(h; m). Since aj m is a nonzero integer,

! T !
1< |hjs] [hjm] < [A) ;] ml.
The last inequality comes from the fact that the norm of the projection of m
onto the unit vector h; cannot be larger than the norm of m. The result now

follows. 0

The details of the PSLQ algorithm are presented in Figure B.2. Although
one can implement the algorithm in such a way that requires only the matrices
B and H', the matrices A and H are included since they make it easier to follow
the reasoning behind the various steps. While the version presented here is valid
only for real vectors x, it can easily be extended to work with complex vectors
as well (Ferguson, Bailey, and Arno [1999]).

Note that in Step 1, partial sums of squares of the z; are used to construct the
matrix H. It can be seen that the column vectors h; of H form an orthonormal
basis for x" by considering (x-h;) and (h;-h;) for 1 <4, < n—1. By examining
the definitions of the h; and s; in Step 1 of the algorithm, we see the following:

For1<i<n-1,

n n
Si+1 —TET4
(x-hy) = mihii+ Y wrhe; =2 P > Th
k—it1 T pmip1 TR
n
T;iSit1 T; 9
LT
S; $:8i S $:8;
i 192i+1 k—it1 i 191+1

2
TiSi+1  TiSiypr 0
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The PSLQ Algorithm

This algorithm takes a vector x!' = [z1,2s,... ,7,] and a constant T > 1 as
input. It either returns an integer relation for x along with a lower bound on
the norm of the shortest integer relation or it returns a lower bound (> T) on
the norm of any possible relation for x.
Step 1: Initialization

Fix the constant v > \/g .

Let A =B =1, al be the ith row of 4, b; be the jth column of B.
Let H and H' be the n x (n — 1) lower trapezoidal matrices with entries

0 1<i<ji<n-1 n
hg’j:hm: Siv1/8i 1<i=j3<n—-1 where s?szi.
—ziwj/sjsipn 1<j<i<n h=j

Let h} be the ith row vector of H' and h; be the ith column vector of H.
Step 2: Size Reduce H'
for ¢ from 2 to n do, for j from ¢ — 1 down to 1 do
set t = |hj ;/h} ;]
replace a; with a; — ta;, bj with bj + tb;, and h; with h; - th;
end do, end do
Step 3: The Main Iteration
Choose r such that ¢ |h;z| is maximal when ¢ = r.
Repeat the following until either 1/ max |h;’i| > T or both hy, ,_; = 0 and
r=n-—1:
L Leta=hp,, B="h.y,,and A=hy .
Then interchange rows a! and aZH of A, columns b, and b, of
B, and rows hj. and h},, of H'.
2. If r = n—1, then H' is still lower trapezoidal. In this case, the value
of |hp—1,n—1| was reduced by at least a factor of 2.
If r <n—1, then H' is no longer trapezoidal. Remedy this by mod-
ifying the basis for x. Rotate h, and h,,; in the plane they define
so that the projection of a, onto h, is 0. This is done by replacing
Hby HQ and H' by H'Q, where @ is the (n — 1) x (n — 1) unitary
matrix defined as follows:
Set @ = I,_1 and let § = /32 + A2. Then set ¢, , = 3/9,
Gry1,r = A6, @rrp1 = —A/0, and gry1,041 = B/6.
In addition to setting hj; .., to O, this also sets h;, = d and
hpt1,rq1 = —A/6.
3. Size reduce H' as in Step 2.
4. Choose r such that v |h§’i| is maximal as above.

Step 4: Return 1/ max |h};| as a lower bound on the norm of any integer re-
lation for x. If r =n — 1 and h}, ,, ; = 0, then return b,_; as an integer
relation for x.

Figure B.2: Pseudocode implementation of the PSLQ algorithm
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For1<i<j<n-1,

n n
—TjT; Sj41 —TpT; —TETj
(h; -hy) = h;;hj; + E' hkihka#ﬂ kT Tk
b 9, b 9, . . . . . . .
k=g t1 S$iSi+1 Sy =y t1 8iSi+1 SjSj+1
T;T;S ;T -
—ZiTi8i1 iTs
- S$];+ +$8 S]S Zmi
1914197 1914+19359541 k=j+1
g2
_ TS TS
S8iSi+15; 8iSi+15585+1

For1<i<n-1,

SiS;
h=it1 k=it1 NP0l
2 2 n 2 2 2
_ Sz+1 Z; 2 8 — T ;5 2
= + Ty = + ] =1
82 8282 k 82 8282 i+1
i i 2441 k=i+1 i 1 9i+1

The matrix H we start with has the desired property; its columns form an
orthonormal basis for x*.

. . 4
At the beginning of Step 1 of the algorithm we set the constant v > \/; .

This requires an explanation. As stated above, if we reduce the values |h;z| for
each 4, then we reduce an upper bound on the values Hproj N aiH and increase a
lower bound on the size of the smallest possible norm for any integer relation of
x. Now, since r is chosen such that ~" |h’m| is as large as possible, if r <n —1
then [h) 1y ,y1| < 2[Ry, |. Inthis casewelet @ = hj, ., B=hypy o A= Dl 4,
and set d = /3% + A2. We then replace b, , with . From the reduction of H'
we have that |h'T+1,T| <i |hlr,r|> which then gives

2 2 1 1
5:,/ﬂ2+)\2<1/%+%=|a|\/1+?. (B.1)

Thus |h’m| is reduced as long as ,/i + 71—2 <lor~vy> \/g . Although this also

increases |hl .1 | (since kL, ., is replaced with —a)/6 and |hL bl 4 . \y| =
|0 - aA/d] = |aA| remains unchanged, we see that |h'T+17T+1| increases), this
is not a significant problem. At each step we are forcing the larger diagonal
elements of H' toward h;, ;, ;, where their size can be reduced by at least a
factor of 2 when r =n — 1.

Even though we strive to reduce the diagonal entries of H', none will ever
equal zero. From the fact that hj; # 0 initially for any i, and since h;., and
Phii1-41 are replaced with nonzero values when r < n — 1, the only way a
value hj; may become zero is if we interchange rows hy, ; and h;, of H' when
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hnn—1 = 0. However, we would exit the algorithm before this interchange oc-
curred, and we need not concern ourselves about division by zero when com-
puting |} ;/h} ;] during the reductions of H'.

Now, in the event that the algorithm terminates with A, ,—1 = 0, the col-
umn vector b, 1 of B is an integer relation for x. To see this, recall that
xTH = 0,BA = I,AH = H', and hy—1n—1 # 0. This gives 0 = x'BH' =
[x” Bh!,xT Bh},... ,xTBh/,_,| where h} is the ith column vector of H'. Since
the only nonzero entry in hj,_, is hln—l,n—l’ we have 0 = x'b, 1hn 1n 1,
which yields x’b,,_; = 0. The (n — 1)th column vector of B is an integer
relation for x.

A Bound on the Relation Found by PSLQ

We have just shown that if the PSLQ algorithm terminates with h; , ; = 0,
then the column vector b,,_; of B is an integer relation for x. Since we are
looking for a small integer relation, we would like to show that the relation
found is not much larger than the smallest possible integer relation for x. To
do this, we need the following lemma.

Lemma 2. If the PSLQ algorithm terminates with h,'n’nf1 equaling zero, then
the norm of by,_1, the integer relation found, is

1
ba-1l| = 77—
|hln—1,n—1
Proof. Let ej,es,...,e, be the standard orthonormal basis for R" and let
ej,e), ..., el ; be the standard orthonormal basis for R*~!. As b,,_; is an

integer relation for x, (HHT)b,_; = b,,_;. Using the facts that AH = H' and
b,,_; is the (n — 1)th column of B = A~!, we see that

H'H™, =AHH", ;1 =4b, 1 =e, 1 =10,0,...,1,0]”
or
HTb,_, = (H)e,_1

where (H')! is the left inverse of H'. We know that H' has a left inverse because
the row vectors of the lower trapezoidal matrix H' span R*~!. However, since
the only nonzero element in the last column of H' is h;,_; ,_q, the (n — 1)th

column of the (n — 1) X n matrix (H')" must be equal to 1/h}, ,, e}, | =

[0,0, ...,0, 1/h,’n71,n71]T. The linear combination of the rows of H' required
to construct e;” cannot use the (n — 1)th row of H' when i # n — 1 and must
have a multiple of 1/h! , times the (n —1)th row when ¢ = n—1. It follows

n—1,n—
that

T
1 1
|[H by | = HH'Ten_lﬂ = lo,o,... ’O’h/i] =T

n—1,n—1 nfl,n71|
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Now, since b,,_; lies in x* and the rows of H” form an orthonormal basis for

xt, we see that ||H7b,_1|| = ||ba_1|| which gives the result we are after:
1
bnall = 77—
|hlnfl,n71

Armed with this lemma, it becomes a simple matter to find a bound on the size
of an integer relation found by the PSLQ algorithm.

Theorem 3. Let M be the norm of the smallest integer relation for x. If the
PSLQ algorithm terminates because by, ,_; =0 and r =n — 1, then

[bn—il < 7" 72M.

Proof. By Lemma 2, we know that ||b,_1]| = 1/|h},_; ,_,|. Since r =n -1,
we have 4"~ |k}, 4| > 4" |hi;| for 1 <i < n— 1. From Theorem 2, since

none of the diagonal elements of H' are zero, M > 1/ |h;]| for some j, and so

ST v S v
~hl Tl | = At

n—1,n—1

Myt = 7bnl],

or

[bnsl <" 72M.

We cannot guarantee that the PSLQ algorithm will return a smallest integer
relation for x. However, if we have max |h;7i| = |h’n71’n71| upon termination,
then we have found an integer relation for x of smallest possible norm. It should
be noted that if we stop the algorithm when h;, ,,_; = 0 but before r = n — 1,
then the above bound does not apply. Although b,, ; will still be an integer
relation for x with norm equal to 1/|h!,_; ,, |, this norm may not be as small
as we can make it. If we continue until » = n — 1, then we may increase the
value |hp—1,n,—1| (it will not decrease) and hence decrease the norm of by,_;.

Termination of the Algorithm

We first consider the case when the vector x has integer relations. In this case,
termination of the algorithm rests upon Theorem 2 and the method used to
reduce the diagonal elements of H'. To begin, define 7 so that

1_ [T 1
T v2'

] =
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In Step 1 of the algorithm, v was chosen so that v > \/g , and thus we see that

7 > 1. To show that the algorithm terminates, we show that II(k), a function
of the diagonal elements of H', is bounded and increases with each iteration.

Definition 5. Let h; ;(k) be the ith diagonal element of H' at the end of the
kth iteration for k > 1, and let h; ;(0) be the ith diagonal element of H' at the
beginning of the first iteration. Let vy be as chosen in Step 1 and let M be the
norm of a smallest integer relation for the n-dimensional vector x. Then define
TI(k) to be

n—1 1 n—i
II(k) :== min | Y""'M, ———— .
il;[l l ( |l ()]
The following lemma shows that the function II(k) is bounded.

Lemma 3. At the end of the kth iteration (k > 0) we have that

1 <TI(k) < (v*' M) (3.

Proof. From Step 1 of the algorithm we see that

Sit
Si

|hi;(0)| =

<1 for1<i<n-1.

Now suppose that at the beginning of the kth iteration, |h;z(k)| < 1 for each 3.
Then if r = n — 1, only |h’n_1,n_1(k)| changes, and is reduced by at least a
factor of 2. If r < m — 1, then only |, (k)| and |}, ..,(k)| change. As
was shown previously in equation B.1, |h). (k)| is replaced with the smaller
value |8], and |h}. 4 ., (k)| is replaced with |2}| < |a| = |h] (k)| < 1. Thus
|h§’i(k+1)| < 1forl1 < i< mn-—1We see that for each ¢ and k& > 0,
|hi ;(k)| < 1. Since both v and M are larger than 1, it follows that for any
k >0, min (y"'M, 1/ |h} ;(k)|) > 1 for 1 <i < n — 1. This establishes one of
the desired inequalities, 1 < II(k) for each k£ > 0.

For the second inequality, note that

n—1 : n—1 1
AT M > min (7 M’7|h’~(k)|>

and so
n—1 » E"_l .
H(k) S H (,Yn—lM)” — (,yn—lM) =1
i=1

Since Y7 'i = @ = (), we have the required result. O
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Before showing that II(k) increases by at least a factor of 7 with each itera-
tion, we need the following lemma.

Lemma 4. Suppose the positive constants a, b, and t satisfy the following
inequalities:

a>b, a>t, and 12>t
Then

min(a, 1) min(b, t)

> 1.
min(a, t) min(b, 1) —

Proof. The proof is a simple verification. If one lists all 24 possible orderings
of a, b, 1, and t and then crosses off those orderings where it is possible to have
a <b,a<t,orl<t, then only the following 5 orderings remain:

a>b>1>t,
a>1>b>t,
a>1>t>b,
1>a>b>t,
1>a>t>b.

With these remaining orderings, one easily checks that the inequality holds. O

Lemma 5. For any k >0, II(k + 1) > 71I(k).

Proof. We will show that the quotient II(k +1)/II(k) is greater than or equal
to 7. When r < n — 1, the 2 x 2 submatrix of H'

n. (k) 0 ] B [ a 0
r1,r(K)  higq g (k) B A

where § = /82 + A2. All other diagonal elements of H' remain unchanged. It
follows that in this case,

0 0

] becomes {aﬂ/& —a/s |’

II(k+1) min (7"‘1M, 1/ |6|)n_T - min (fy"_lM, |5/(oz)\)|)n_r_1

H(k) min (’Y"*lM, 1/ |a|)n—7‘ - min (’Y"flM, 1/ |/\|)n—r—1

If we make the substitutions a = y*~1M |§| and b = 4"~ M |A|, then we have

Mk +1) min(a, 1) ( min(a,1) min(b,|d/al) ) n—r—1 |

II(k) Zmin(a,|5/a|) min(a, |6/a|) min(b,1)

Now, since § = /% + A2 > |A|, we have a > b, and since vy > \/g, equation B.1
shows that |§/a| < 1. By Theorem 2 and the choice of r, we also have that
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M>1/ |h;]| for some j and " |a| > 7 |h;z| for 1 <i <mn—1. Since v > 1,
this implies that

r J
i > . e > — (B.2)
|h o

M,yn—l Z 7
lal = |af

>

! |
4.
or equivalently, that

a=My""t§> i

lal
Since the conditions of Lemma 4 are satisfied, we see that
Ik +1) S min(a, 1)
(k) = min(a,|d/al)

If a > 1, then

)z‘%‘z o

min(a, 1) 1
min(a, |0/ %2+%; \/%+71_2

=T

Otherwise, we have 1 > a > |/, and so

min(a, 1) 1
— 7 = MA" >
min(a, pjap) ~ 1127

from equation B.2 above. From the definition of 7 we see that 1/72 > 1/42, or
that v > 7. Thus if r < n — 1, then
O(k + 1) > 7II(k).

If r = n—1, then the only diagonal entry of H' that changesis |hl,_; , ;| = |a].
In this case we have |h’n_17n_1(k + 1)| < |a| /2, and so
0(k+1) _ min(y" 10,2/ [a]) _ min(y"'M|a] ,2)
(k) ~ min(3»-1M,1/]a]) _ min(y"~ M |a|,1)’

Again, from equation B.2 we have y" "1 M |a| > v > 1. Now, since &5 = 1+
1, we have 2 > 7, and so if y" 1M |a| > 2, then

>

Qm| -

Ok +1)
2 R Y
(k) >T
On the other hand, if 2 > 4"~ M |a| > 1, we have
T(k + 1)

="M |al > .
Tk ¥ laf > > 7

So, if r = n — 1, we also have

TI(k + 1) > rTI(k).
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We are now in a position to give bounds on both the number of iterations
required to find an integer relation for x and the number of exact arithmetic
operations required to find this relation.

Theorem 4. If the vector x has integer relations, then the PSLQ algorithm
will find one in less than

n log(y™~1 M)
2 log T

iterations, where M is the norm of a shortest relation for x, v is as chosen in
Step 1 of the algorithm, and 7 > 1 is defined by % = % + '71_2

Proof. Suppose we have completed k iterations of the algorithm and have not
yet found an integer relation for x. Then from Lemma 5 we see that

(k) > 7k — 1) > --- > 7*11(0).

From Lemma 3, it follows that
(,yn—lM) (;) > H(k) > Tk.
Now, since 7 > 1, we have

(5) log(y* ' M)

> k.
log T

Corollary 1. Ifx has integer relations, then the PSLQ algorithm can be made
to find one using

O (n* +n®log M)

exact arithmetic operations.

Proof. From the above theorem, we see that the PSLQ algorithm takes fewer
than
n?+n ((n—1)log~y + log M)
2 log T

iterations, which is O (n® + n?log M). Examining the algorithm, we see that
Parts 1, 2, and 4 of the main iteration can be completed using O(n) exact
arithmetic operations, and Part 3, the size reduction of H', requires O(n?®). Thus
the algorithm as given requires O(n® + n®log M) exact arithmetic operations.
However, if we examine the proof of Lemma 5, we see that the full reduction of
the matrix H' is not necessary. All that is required for this proof to go through
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is that |hf ;| < 3|hl,| for 1 <i < n—1. If we make this change to the
algorithm, then Part 3 can be completed in O(n) exact arithmetic operations
as well. Thus, if x has integer relations, then the PSLQ algorithm can be made
to find one in O(n* + n®log M) exact arithmetic operations. O

Although we can modify Part 3 of the main iteration so that it requires only
O(n) exact arithmetic operations, this was not done, since our final goal is to
implement the PSLQ algorithm using inexact arithmetic. If we do not do a full
reduction of the matrix H', but instead do only a partial reduction, then the
algorithm becomes unstable. More is said on this matter when we discuss the
HIJLS algorithm and its relation to PSLQ.

The proof of termination of the algorithm when x has no integer relations
of norm less than T is very similar and requires only cosmetic changes. In this
case, we define a new function IT*(k) as

‘ - 1 n—i
min (’y T, 7|h;1(k)|>] .

Exactly as in Lemma 3, we have that

n—1

(k) =[]

=1

1< T (k) < ("' T)(3).

Now, rather than using Theorem 2 in Lemma 5, we instead use the fact that if
the algorithm has not terminated after the kth iteration, then there is at least
one j such that

If we redefine a and b so that
a=+""'T§ and b=~""1T|},
then equation B.2 becomes

AR ]

L > s
[Pl lal o

Ty ' > > —

la|’

or equivalently,

a=Ty""'6> i

|

Everything carries through as before. We see that

* (k + 1) > 7I1* (k).
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The results of this section are summarized in the following theorem:

Theorem 5. Let y = min(M,T), where T is the bound passed to the PSLQ
algorithm and M is the norm of a smallest integer relation for x (if x has no
integer relations, then M = oo). Then the PSLQ algorithm will terminate in
fewer than

(n) log (Y"' 1)

2 log T

iterations. Upon termination, the algorithm will either return an integer relation
for x of norm no larger than Y 2M or return a lower bound > T on the norm
of any integer relation for x.

The fact that the PSLQ algorithm can return a lower bound on the size of
an integer relation for x is very useful. For instance, Bailey and Plouffe [1997]
use this to show that if Euler’s constant satisfies an integer polynomial of degree
50 or less, then the Euclidean norm of the coefficients must exceed 7 - 10'7.

The HJLS Algorithm

Initially given the preferable name of the small integer relation algorithm, HJLS
is an integer relation algorithm which was developed by Hastad, Just, Lagarias,
and Schnorr [1989]. As with the PSLQ algorithm, it is based on work stem-
ming from Ferguson and Forcade’s generalized Euclidean algorithm. The idea
behind HJLS is again to construct a sequence of bases for the lattice Z" in
such a way that a lower bound on the size of any possible integer relation for
X = [z1,T2,--. ,2,]T increases. We present the details of the algorithm in Fig-
ure B.3. The proof of termination and a bound on the number of iterations
required is essentially the same as that given for the PSLQ algorithm and will
be omitted.

Theorem 6. The HJLS algorithm correctly returns either an integer relation
for x or the value 2% as a lower bound on the norm of any possible relation.

)
If an integer relation is found, it is no more than v/2 "7 times as large as the
smallest possible relation for x.

Note that there is nothing special that requires having a power of 2 for the
lower bound found by HJLS. This lower bound on the norm of any possible
integer relation for x is only a consequence of the termination condition, which
can be modified.

As in the proof of termination for the PSLQ algorithm, the HJLS algorithm
will terminate, provided that we always have |pri1,r| < % before exchanging a,
and a,11. Due to this fact, the authors claim that having |u;,;| < & for all i > j
is unnecessary in the real number model of computation, and so implement their
algorithm with only a partial reduction done at each step. This is unfortunate,
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The HJLS Algorithm

This algorithm takes a vector x = [z1,Z2,... ,7,]’ and a constant k as input.
It either returns an integer relation for x or shows that x has no integer relations
of norm less than 2*.

Step 1 Initialization

Set A=B =1,.
Let a be the ith row vector of A and b; be the ith column vector of B
Set aj = x and a} = a; — Z;;tlh’,ja;' fori=1,...,n,

a,wa;-‘ *

where i) — { fat 12511 # 0,

0. llgll=o0.
The vectors aj,a},... ,a}, span x .
If ||a%|| = 0, then return b,, as an integer relation for x.

Step 2

Repeat

Choose the value r that maximizes 27||a}||*> for 1 < r < n.
Partial Reduction: (Ensure |prq1,,] < %)
Set Ar41 = Ap41 — |_,U/’r'+1,7'Jar
Set bry1 = byy1 + [pr41,-]byr to maintain B = A1
Update the values pp41,4,1 <i<r
Exchange and Update:
Exchange rows a! and a’,; of A.
Exchange columns b, and b,;1 of B.
Update ay, ||a:||a a:-',-la ||a:+1”7 Br+1,rs
and the values p; , and p; 41 for r +2 <¢ <n.
Until |la%]| # 0 or ||a}]| < 27% for all i with 1 <i < n.

If ||ak|| # O, then return b,, as an integer relation for x. Otherwise, return
2% as a lower bound on the norm of any possible integer relation for x.

Figure B.3: Pseudocode implementation of the HJLS algorithm
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since it leads to numerical instability in the algorithm when implemented with
inexact arithmetic operations. If we implement HJLS with full reductions, which
actually forces the projections of the basis vectors to tend to zero, then we simply
have another implementation of the PSLQ algorithm. The equivalence of PSLQ
and HJLS is treated in Meichsner [2001], where it is shown that HJLS with
full reductions is equivalent to PSLQ with v = /2. Specifically, we have the
following.

Theorem 7. For each iteration, the matrix A from the HJLS algorithm with
full reductions and the matrix A from the PSLQ algorithm are the same, and
(up to sign) the column vectors of the matrizx H from PSLQ are the same as the
first n — 1 column vectors of the matriz H from HJLS.

Practical Implementations of PSLQ

Given a set of values z}, 2}, ... ,z, in symbolic form, it is often far too costly to
find an integer relation using exact arithmetic operations. Instead, we would like
to let the values z1, 3, . .. , T, be good rational approximations of i, 5, ... ,z,,
and attempt to find an integer relation for x = [z, Z2,... ,2,]T using inexact
arithmetic. As stated in Bailey and Broadhurst [2001], a simple information
theory argument gives a lower bound on the number of digits of precision that
must be used. If we wish to recover a relation a € Z™ with coefficients of at
most d digits in size, then the coefficients of x must be given to at least nd
digits. Although this simple lower bound is often too low, the PSLQ algorithm
usually recovers a given relation using only about 15% more digits than this
bound suggests are necessary. Now, in the event that we do recover a suspected
relation a € Z" using inexact arithmetic, there is no guarantee that it is a true
integer relation for x'. If the values z},x},... ,z! are computed to twice the
precision and a still appears to be an integer relation, then this gives us evidence
that it probably is one. While this cannot prove that a is an integer relation for
x', it suggests that it may be worthwhile to search for a rigorous proof.

In what follows, we present implementations of PSLQ using inexact arith-
metic.

The Basic Algorithm

We begin with the basic implementation of the PSLQ algorithm, similar to that
given in Ferguson, Bailey, and Arno [1999], Bailey and Plouffe [1997], and Bailey
and Broadhurst [2001]. The details are presented in Figure B.5. Note that the
only significant differences between this implementation and the algorithm given
in Figure B.2 are that here the matrices A and H have been omitted and the
termination condition has been modified. Rather than waiting until r =n — 1
and hj, , ; = 0, termination occurs as soon as x - b; = 0 for some column
vector b; of B. Although any returned relations tend to be small in practice,
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The HJLS Algorithm with Full Reductions

This algorithm takes a vector x = [z1,Z2,...,2,]’ and a constant T as input.
It either returns an integer relation for x along with a lower bound on the norm
of a shortest integer relation or shows that x has no integer relations of norm
less than T'.

Step 1 Initialization

Set A=B=H =1I,.

Let a; be the ith column vector of AT

and let b; be the ith column vector of B.

Set hy = x/||x||, entry h,, of H to 0,

and let h; be the ith column vector of H.

For j from 1ton—1do  (Gram-Schmidt)
set hj = hy — 3770 (hy - hy)hy
set h; = h; /[[hy]|

end do.

Set M =AH=Has A=1,

Let m; be the ith row vector of M and m; ; the (i, j) entry of M

Step 2 Size Reduction of M
for ¢ from 2 to n do, for j from i —1 to 1 do
set t = |_mi7j/mj’j'|
replace a; with a; — taj, b_] with b] + tb“ and mj with m; — th
end do, end do
Step 3: The Main Iteration
Choose r such that \/Tmm- is maximal when i = r.
Repeat the following until either 1/max(m; ;) >T or both m, ,—1 =0 and
r=n-—1

1. Let a = My, B = My41,r, A= Mr41,r4+1, d= V B? + A%,
and let S =1, ;.

Set sy = 3/0, sp1,r = A/0, Sprq1 = A/0, and s;41,,41 = —3/0.
2. interchange rows al and al,; of A, columns b, and b, of B, and
rows m, and m,; of M.

3. Replace H with HS and M with M S
4. Size reduce M as in Step 2.

5. Choose r such that \/Tmi,i is maximal as above.
Step 4: Return 1/max(m;;) as a lower bound on the norm of any integer

relation for x. If my ,—1 = 0, then return b,,_; as an integer relation for
X.

Figure B.4: Pseudocode implementation of the HJLS algorithm with
full reductions
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The Basic PSLQ Algorithm

This algorithm takes a vector xT = [z1,%s,... ,2,] and a constant T > 1 as
input. It either returns a suspected integer relation for x or a lower bound (> T')

on the norm of any possible relation for x.
Step 1: Initialization

Fix the constant v > \/g .

Let B = I and let b; be the jth column vector of B.
Let h{ be the ith row vector of H', where the entries of H' are defined as

follows:
0 1<i<j<n-—1, n
hi; =< Sit1/si 1<i=j<n-1, where s?:Zmi.
—x;x5/858541 1<j<i<nm, k=j

Set y = x/||x|| and let y; be the ith component of y.

Step 2: Size Reduce H'
for 4 from 2 to n do, for j from ¢ — 1 downto 1 do
Replace b; with b; + tb;, h; with h; — th’, and y; with y; + ty;

end do, end do

Step 3: The Main Iteration
Repeat the following until either 1/ max |h;’i| > T or miny,/||bj|| < e:

1. Choose r such that y* |h§7i| is maximal when ¢ = r. Then interchange
columns b, and b,y of B, rows h]. and h]_, of H’, and entries y,
and y,41 of y.

2. If r <n —1, then

set «=hyyy,.,8="h ., v="h, ., and § = /B + )2
for ¢ from 7 to n do

set t = h;,r’ h;',r = %h;’,r+§h;,r+li a‘nd h;',r+1 = _%t+§h;,r+l
end do

3. Size reduce H'

For ¢ from r + 1 ton do, for j from min(i — 1,7 + 1) downto 1 do
set t = |y ;/hj ;]
Replace b]‘ with bj + tb;, h; with h; — th;, and Yj with yj +ty;

end do, end do

Step 4: If min{y;/||b;||} < €, then return the corresponding b; as an integer
relation for x; otherwise, return 1/ max |h;z| as a lower bound on the norm
of any relation for x.

Figure B.5: Pseudocode implementation of the basic PSLQ algorithm
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this modified termination condition causes us to lose the ability to claim that
they have norm no larger than 4"~ 2M where M is the norm of a smallest integer
relation for x.

Some care must be taken when checking to see whether x-b; = 0. We shall
claim that x - b; = 0 when = - ”Eﬁ < €, where € depends on the level of
precision being used. If we look only at the values y; = b; - ”—;”, then we may
miss a relation. If ||b;|| is large enough, then b - My May be larger than the
given value of e. Since it is undesirable to require the calculation of the values
|[bj|| for 1 < j < n with each iteration, it is noted that in practice the values
y; tend to stay within a few orders of magnitude of each other and gradually
decrease until one of the b; is an integer relation for x. As one would expect,
when b; - x = 0 the corresponding value y; suddenly decreases. Rather than
checking all the values y;/||b;|| to see whether one is less than €, we can select
the value j such that y; is minimal and look only at the corresponding value of

y;/lIbjll-

Periodic Reductions and the Multipair Algorithm

For a first improvement to the basic algorithm, we note that the full reductions
of the matrix H' are a bottleneck. As the standard HJLS algorithm shows, we
cannot omit the full reductions altogether, since this causes severe numerical
instability. We can, however, perform them periodically and still achieve good
results. Rather than fully reducing the matrix H' at each step, we will perform
a full reduction only when r = n—1. If r < n—1, then we will perform a partial
reduction prior to exchanging h, and h,;; to ensure that |hl,, .| < |l |/2.
The details of the PSLQ algorithm with periodic reductions are presented in
Figure B.6.

On a similar note, but with an eye towards a parallel implementation, Bailey
and Broadhurst [2001] have introduced a variant of PSLQ that they call the
multipair algorithm. The idea behind this variant is to first select a number of
disjoint pairs (r;,7; + 1) and then perform the normal operations of PSLQ on
each pair with 7 = r;. One can easily do this in such a way that the operations
from one pair do not affect the operations of another, since the pairs are disjoint.
In addition, they have also reordered the steps in which the full reduction of
the matrix H' are performed. Even though it has been designed for a parallel
implementation, when run on a single processor the multipair algorithm offers
an improvement to the basic algorithm. However, in this case it amounts to little
more than the PSLQ algorithm with periodic reductions and a poor selection
procedure. The selection procedure used in the algorithm is as follows:

1. Sort the entries of the length (n — 1) vector [y* |k} |] in decreasing order,
producing the sort indices.

2. Beginning at the sort index r; corresponding to the largest v |h;~’i|, select
pairs of indices (r;,r; + 1), where r; is the sort index. If at any step
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The PSLQ Algorithm with Periodic Reductions

T

This algorithm takes a vector x* = [z1,%2,... ,%,] and a constant T > 1 as
input. It either returns a suspected integer relation for x or a lower bound (> T')
on the norm of any possible relation for x.

Step 1: Initialization (see Figure B.5)

Step 2: Size Reduce H' (see Figure B.5)

Step 3: The Main Iteration
Repeat the following until either 1/ max |h;z| > T or miny;/||bj|| < e:

1.

set doFullReduction = false
while doFullReduction = false do

Choose r such that 7' |h} ;| is maximal when i =r.

Set t = Lh;“+1,r/h;",r]

and let b, = b, +tb,;1, h.; =h],, —th}, and y, = y, + tyr11.
Interchange columns b, and b,4; of B, rows h]. and h].,, of H',
and entries y, and y,4+1 of y.

If r <n—1, then

set a = h;""lﬂ" /8 = h;‘,T’ 7= h;',r+17 and 0 = V ,82 + )\2
for ¢ from r to n do

set t = h%,r’ h';',r = %h’;’,r + %h{i,r—f—la
and let R, ., = —3t+2h; .,
end do
else
doFullReduction = true
end if
end do

2. Size reduce H' as in Step 2 above

Step 4: If miny;/||bj|| < €, then return the corresponding b; as an integer
relation for x; otherwise, return 1/ max |h} ;| as a lower bound on the
norm of any relation for x.

Figure B.6: Pseudocode implementation of the PSLQ algorithm with
periodic full reductions
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either r; or r; + 1 has already been selected, pass to the next index in the
list. Continue until either the maximum number of pairs desired has been
selected, or the list is exhausted.

It has been reported that for certain problems, the multipair algorithm falls

into a cycle. Examining the selection criterion, we see that although we pass

to the next index in the list if either r; or r; + 1 has already been selected, we

do allow pairs (r;,7; + 1) where r; + 1 has already been passed over. We allow

pairs (r;,7; + 1) where |h’”,ri| <7 |h’n, s +1|. If we restrict ourselves to pairs

where either r; = n —1 or |h], .| > 7|kl 1,41, then we cannot fall into a
—1 n—i

cycle. This can be shown by considering the product P =[]}, |h;z|

First, consider the pair (ri,7; + 1), where r; < n —1. Let a = h;, .,

§2: hlZ"}'l{"’ )\d:/thZi+l’”/+41’ anﬁl let 6 = /B2 + A2. Then since 3% < a?/4,
< a*/v%, and 1/v* < 3/4 we have

6" " Jan/8" 18] _ VBN VAt al/y _\/1 1

- e N -+ — <1
|a|n—7‘¢ A|n ri—1 |a| |Oé| |Oé| 72

4

Since the algorithm replaces h, ,. = a and h; ...y = A with the values §

and —a)/d, at the end of the iteration the term |hl, .
in the product P has been decreased.

In the case when r; = n—1, the algorithm simply exchanges rows h’,, and h',,_;
of H', resulting in a decrease of the value |h’n_1’n_1| by at least a factor of 2.
Here, the term |h'n,1’n,1| of the product P decreases as well.

n—"ri |1 n—ri—1

ri+1,r;+1 |

This shows that P =[]} |1}|* " decreases with each iteration of the mul-
tipair algorithm, provided that we add the restriction |hL . | > |k 41 41|
to our selection procedure. Since the product P strictly decreases with each

iteration, we cannot fall into a cycle.

A Multilevel Implementation

Although using periodic full reductions can reduce the time required to execute
the PSLQ algorithm, run times can still be excessively long for large problems.
As a further improvement we consider a multilevel implementation (Bailey and
Broadhurst [2001]), an implementation in which the majority of the calculations
are done using low-precision arithmetic. Even though this introduces a signifi-
cant amount of additional overhead, it drastically reduces the time spent within
the main iteration and results in an overall savings.

To apply such a scheme, we first perform the usual initialization and reduc-
tion steps to produce the full precision versions of B, H', and y. We then let
H' be the double-precision equivalent of H'/max |h;~’j|, let ¥ be the double-
precision equivalent of y/ min |y;| a, and repeat the following until either a rela-
tion is found or the desired bound on the norm of any possible integer relation
is achieved:
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1. Using only double-precision arithmetic, set both A and B equal to I and
repeat the main iteration of PSLQ with periodic full reductions on the
matrices B, H', A, and the vector ¥. Note that to maintain A = (B)™!,
when we interchange columns b,. and b,.;; of B, we must interchange rows
a’ anda’,, of 4, and when we set b; = b;+tb; we must set @; = a;—taj.
Stop when either a relation is found, min |y;| < €, or max [a; ;| > fi, where
good choices for the values € and 7z are 107'2 and 10'2. The reason for
requiring a bound on the integral entries of 4 is that if they become too
large, then they can no longer be accurately stored.

2. Returning to full-precision arithmetic, let B = BB, H' = AH', and y =
xB. Then let ¥ be the double-precision equivalent of y/min |y;| and let
H' be the double-precision equivalent of H'/max |h;,j|. Using double-

precision, perform an LQ factorization of the matrix H' and set H' equal

to L.

For full details of the multilevel PSLQ algorithm, see Meichsner [2001]. A three-
level scheme is also outlined in Bailey and Broadhurst [2001].

It is of interest to note that the code is in some sense self-correcting. Even if
some errors are introduced within the double-precision loop, causing incorrect
choices of ¢ and r, we may recover from this. As long as the matrices A and B
have integral entries and LQ factorization of AH' produces a matrix L for which
the maximum diagonal entry has decreased, then we have increased a lower
bound on the norm of any possible integer relation for x and have everything
we need to proceed. Even with small errors at the double-precision level, we
may still move forward and recover an integer relation or an appropriate lower
bound.

A Selection of Timings for the Various Algorithms

To give a brief idea of the relative efficiency of the algorithms considered, we
present a small selection of timings. Although we have covered only the basic
LLL algorithm, timings are also presented for Maple’s 1in_dep routine, a routine
based on the integral LLL algorithm.

For the timings, the four algebraic numbers a; = 3'/4 — 21/4 a, = —3'/5 +
21/5 g = 31/5 4 21/6 and ay = 3'/6 — 21/6 were considered. As the minimal
polynomials of these numbers are

p1(z) = 2% — 2022 — 6662° — 3860z* + 1,

po(x) = 2% + 52%° + 37602'° — 112402'° 4 1162552° + 1,

p3(z) = 2%° — 182%° — 102°* + 1352%° — 73802 + 402'® — 5402'°
— 135540z — 561602 — 80212 + 12152 — 3364202°
+ 5383802% — 4392027 + 802° — 1458z° — 1020602:*
— 9828023 — 205202 — 1440z + 697,
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and
pa(z) = 2% — 302°° — 162212 — 61828028 + 3137919212 — 42816902° + 1,

we see that there exist integer relations for the vectors x; = [1,a;, 02, ... ,al]T
where n; = 16, no = 25, ng = 30, and ngy = 36. Both the time and number
of digits required to recover these relations are presented in Table B.1. These
were found by successively reducing the number of digits in increments of 5
until an incorrect relation was returned. The time and number of digits used
in the last correct run appear in the table. All algorithms were implemented
in Maple V, Release 5, and run on a machine with a 600 MHz Pentium IIT
processor.
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a = 31/4 _ 21/4

sy = _31/5 + 21/5

Algorithm Digits Time | Digits Time
LLL

The Basic Algorithm 60 10.8 s 130 94.9 s

Maple’s 1in_dep routine 60 3.1s 140 34.5s
HIJLS

With full reductions 80 21.6s 180 347.3 s

PSLQ (7 = V2)

The Basic Algorithm 80 13.5s 175 212.3 s

Periodic Full Reductions 80 5.8s 175 73.1s

Multilevel scheme 80 2.2s 180 34.4 s

PSLQ (7 = v/473)

The Basic Algorithm 70 15.3 s 150 184.2 s

Periodic Full Reductions 70 6.3 s 150 73.1s

Multilevel scheme 70 2.1s 145 20.1s

oz = 3175 1 2178

oy = 3176 — 9178

Algorithm Digits Time || Digits Time
LLL

The Basic Algorithm 435 1672.2 s 250 1148.7 s

Maple’s 1in_dep routine 315 296.1 s 265 315.5 s
HILS

With full reductions 245 1415.5 s 335 4722.1s

PSLQ (y = v2)

The Basic Algorithm 245 1125.0 s 330 3400.9 s

Periodic Full Reductions 245 353.7 s 330 1025.1 s

Multilevel scheme 245 136.9 s 325 448.2 s

PSLQ (v = v/4/3)

The Basic Algorithm 205 843.2 s 280 3427.3 s

Periodic Full Reductions 210 3124 s 280 728.9 s

Multilevel scheme 200 94.6 s 280 309.3 s

Table B.1: Selected timings for the various algorithms
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Appendix C

Explicit Merit Factor
Formulae

The main purpose of this chapter is to give explicit formulae for the L4 norms
(on the boundary of the unit disk), and hence also the merit factors, of various
polynomials that are closely related to the Fekete polynomials (see Chapter 5).
These are all related to the old problem of constructing sequences of polynomials
with coefficients in the set {+1, —1} and with small Ls norm.

Throughout this appendix we will be using the notation (m,n) for the great-
est common divisor of m and n. As before, the L, norm on the boundary of
the unit disk is defined by

o= (= [ ()" a0
Plla = 27 J, bi\e

Let p be a prime number and let (5) be the Legendre symbol. We now define
the particular polynomials we consider. The Fekete polynomials are defined by

) =S (%) o,

n=1

1/a

and the closely related polynomials, F},, by

Fp(2) =1+ fo(z) = 1+ :é (%) .

If we cyclically permute the coefficients of f, by about p/4 places, we get an
example of Turyn’s that we denote by

R =S (),

n=0 p
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where [-] denotes the nearest integer, and we denote the general shifted Fekete

polynomials by
p—1
n+t\ ,
fi(z) = Z (—) 2"
n=0 p

Note that the above polynomials are either Littlewood polynomials or differ
from Littlewood polynomials in a single coefficient.

The {R,} above are a sequence with asymptotic merit factor 6. Golay [1983]
gives a heuristic argument for this observation of Turyn’s, and this is proved
rigorously in Hgholdt and Jensen [1988]. The Fekete polynomials themselves
have asymptotic merit factor %, and different amounts of cyclic permutation
can give rise to any asymptotic merit factor between % and 6. This result is
recovered, in more generality, in Corollary 1. Much material on the Fekete

polynomials may be accessed in Conrey et al. [2000].

The Legendre symbol (Z) is an example of a real primitive character mod-
ulo p. One can extend the analysis of the L4 norm to the character polynomials
associated with nonreal primitive characters modulo N and to the Jacobi sym-
bol (%) for squarefree odd integers N. Our main objective is to prove explicit
formulae for the Ly norm of Fekete and Turyn polynomials. We also state re-
lated results for nonreal primitive characters and Jacobi symbols that can be
proved in a similar fashion.

Let x be a primitive character mod N. Let
N-1
£ = S xm)zn
n=0

be the character polynomial associated to x. Let w := €™M and let 7(x) be
the Gaussian sum defined by

Since x is primitive,

Fx(@*) = 1()x(K) (1)
for k=0,1,...,N — 1. Also, we have
rOOP =N and  7(x) = x(-1)7(%) (2)

(see Chapter 8 in Apostol [1976]). The shifted polynomial fZ(z) obtained by
shifting the coefficients of f,(z) to the left by ¢ is defined as

Z

) = 3 xn 1)

n=0
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for 1 <t < N. Clearly, if x(n) = (%), then the Fekete polynomials f,(z)
and Turyn polynomials R,(z) are examples of f.(z) with t = p and t = [p/4]
respectively. It is easy to see that

£ (@F) =™ (W) 3)
for any 0 < k < N — 1. Thus, from (1)—(3), we have

2 [0 i (NE)#£1,
S @

Suppose N is odd. It can be shown fairly easily by an interpolation argument
(Hgholdt and Jensen [1988] or Borwein and Choi [2002]) that

1 N-1 4 N-1 4
17115 = W{Z [ @)+ 2 1 (=) } (5)
k=0 k=0

Using (4),

N-1 A
> 1 WH] = N2V, (6)
k=0
It remains to study the second summation
N-1 A
pIRTACTU
k=0
For1<t<Nand 0< k<N —1, we have

R () = A0 ()
In particular, we have |ff (-w*)| = |f¥="+! (—w™)| for 0 < k < N —1 and
hence, for simplicity, we may assume 1 <t < (N + 1)/2 from now on.
We use the basic approach of Hgholdt and Jensen [1988], which is by inter-
polation at the 2Nth roots of unity. Using the Lagrange interpolation formula
at the Nth roots of unity, we have

N-1
1 2N -1
t - Jft(,,J
X(z)_N z_w]wfx(w)
Jj=0
It follows that
4
N-1 N—-1|N-1
16 w?
t k14 _ t
S ) = e )
k=0 k=0 | j=0
16 =
= Ni D @) fLwP) £ (w) fLwwte
a,b,c,d=0
8 = wk 1 wk
wk +wawk+wbwk _|_wcwk +wd'
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We group the terms in the above summation over a, b, ¢, and d by the following
cases: (1) a =canda#b#d; 2Qa=b=c#d; 3) a=bc=d;4)
a # b # ¢ # d, and we obtain the following formula:

N-1 16
S 15 (b = 54+ B+ ), "
where
A= i]\ﬂ(N2 —}-2)NZ_1 | /L (wa)|4
BRC S
- Nt . N0 F) (wF 41)
B:—TRe{;)U;(w” ffc(w); : wh — 1] ’
N—-1 N—-1 rt( a—k 2
c=NY |7 w3 %
a=0 k=1
N2 Nl NZL ek ’
~ - Re { Z:; Fi(we)? (; %) ' ®

Here A, B, and C are the sums of terms according to the above cases (1), (2),
and (3) respectively, and the sum of terms corresponding to case (4) is zero.

Using (4), we have

(9)

and

Il
|z
23
——

¥

%H

||Mf
E
z
:
E
_|_
-

||P12

R/—/

n=0

2
o~
Il
=
£
I
o

k
N2 N-1 N-1 N-—1
= ___Re ab Z (wk(1+t+a+b) + wk(t+a+b)) Z X(n)X(n — k)

because

w]_l NanJ" 1<j<N-1. (10)
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We now observe that

N-1 - N-1 N-1
> ot S K H = Y x) Y X B
n=0 n=0 k=0
N—-1
= D x(nw" fi(w®)
n=0

and hence
N3 = N3 = N4(N —1)24(N)
B="r b+ b| - .
AR 1K ;
(a+btt+1,N)=1 (a+b N)=1

(11)

We now study term C'in (7). From (1) and (10), the second term in (8) equals
2
N2 N-1 N1t (wemk)
— = Re { D fi(we)? ( T
a=0 k=1
N N-1 =5\ >
w(a — k)
__Re{z (Z wk —1 ) }
=0 k=1
N— N-1 N-1 2
=—— Re Z ( n Z x(a — k)wk(t"'")) .

Using (1) and (3) again, this is equal to

4 N-1 7_— N—1 4 2
- Re { Y x(a) (% 3 nx(n + ) - %x(a)) }

a=0 n=1
N4 —)2 N-1 N-1
=g e { D5 Y mmx(n+ xtm +1) Y (@) }
n,m=1 a=0
N* (N -1)\° NN -1 [700 = in
-5 (T) o(N) + 5 Re § — D nax(n+ ) fy (W)
n=1

N2 N1
=——Re {T(X) Z nmx(n + t)x(m + t)Cy2(n +m + 2t)}

n,m=1

NN -12$(N)  N'N-1) [ =

— A + 5 > onf. (12)
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Here C\ (1) is the character sum defined by
N-1
Cx(D) := Y x(n)w™,
n=0
and if x = xo, the principal character, then Cn (1) := Cy,(I) is the usual Ra-
manujan sum. Note that Cy (1) = fy (w'). Similarly, the first term in (8) equals
2

N—1 N—1 st/ a—k
N Y | Y A
a=0

wk —1
k=1
N-1 N-1 5|2
wx(a—k
-V Y @) | X
a=0 k=1
N-1
=N3 Z nmx(n + t)x(m + t)Cn(n —m)
nm=1
NN - 126(N) 4 S
+ 1 —N*(N -1) z_:l nl|. (13)
(n+t.N)=1

Thus from (7), (9), (11), (12) and (13), we prove the following.

Proposition 1. For any primitive character x modulo N and any 1 < t <
(N +1)/2, we have

gy 4 16
> If (b = A+ BO), (14)
k=0
where
4= NN +2) ()
B 48 ’
N3 N—-1 N3 N—-1 N4(N—1)2¢(N)
e 2 agl Pt 2 Q;I ab] = 4 ’
(atbti+1,N)=1 (a+btt,N)=1
(15)
N2 9 N-1
C=- - Re < 7(x) Z nmy(n + t)x(m + t)Cy2(n +m + 2t)
n,m=1
NY(N —1)*$(N)
+
8
- N-1
ISy NY{(N -1
+ N2 3" umx(n + ) x(m + £)Cn(n — m) — % .
n,m=1 —~
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For convenience, we let

N-1
Ci(x,t) := Z nmx(n + t)x(m 4+ t)Cy2(n + m + 2t)
n,m=1
and
N-1
Co(xt) := Y nmx(n+t)x(m+ t)Cn(n —m),
n,m=1
so that
N 4N = 1)2¢(N
€ =3 Re{Cix )y + TR
N4(N -1 =
+ N3Cs(x, t) — % nl. (16)
(ntt.N)=1

We next study the terms B and C in more detail.
For any real z, define

z —[z] if z is not an integer,
{z}:= D
1 if x is an integer,

where [z] is the integral part of . Note that {z} is the fractional part of x
except when z is an integer.

Lemma 1. For any positive integers k and N > 2, we have

N-1

Z nm

n,m=1
k+n+m=0 (mod N)

3 (o e (o e{)

Proof. Clearly, we may assume 1 < k < N. Suppose 2 < k < N — 2. Then

N-1 N—k-1 N-1
Z nm | = Z n(N—-k—n)+ Z n(2N —k —n)
n,m=1 n=1 n=N—k+1
k+n+m=0 (mod N)
N-1 N-1
:Zn(N—k—n)-i-N Z n

1 n=N—k+1

(N? —6N — 1+ 6k + 3Nk — 3k?) .
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Our lemma follows by noting that ¥k = N{k/N} because k/N is not an integer.
The cases k =1, N — 1, and N can be verified directly. O

Lemma 2. For any integers t and N > 2, we have

:Z: ab | = N‘i(QN)(SNz—GN—%
(a+b+t,N)=1
a3 (avo{3) (ea-efz))

Proof. By using the formula (Theorem 2.1 of Apostol [1976])
1 ifk=1
Sua-{) 1oy
m 0 ifk#£1,

the left-hand side of (17) is equal to

N-1
Z ab Z u(d)
a,b=1 d|N
dla+b+t
N—-1
=) u(d) > ab
d|N a,b=1
a+b+t=0 (mod d)
! d-1
= Z u(d) z Z (a +dn)(b+dm)
d|N n,m=>0 a,b=0

a+b+t=0 (mod d)
Now formula (17) follows from this, Lemma 1, and the fact that
5 ) _ 9)
d N
N

(see Theorem 2.3 of Apostol [1976]). O

Formula (17) immediately gives an asymptotic estimate
N-1 1
> ab= ZN3¢(N) +0 (N3d(N)) ,

a,b=1
(a+b+t,N)=1
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and hence from Proposition 1, the term B satisfies

B <« NSd(N), (18)

where d(N) is the number of divisors of N. One expects that the order of || ff(”i
should be N2, and this corresponds to the fact that

S =H)[

is of order N* according to (5). In view of (18) and (14), the term B does not
contribute to the main term of || f)tCH:

The term B can be evaluated precisely for some special cases by using for-
mula (17).

Lemma 3. If N =p is an odd prime, then

4

B=%(p2+3p+2—6t—6pt+6t2). (19)
Proof. This follows from (17) and (15) when N = p. O

We now study the term C of (16). Unlike the term B, which doesn’t depend
on the choice of primitive character x but only on the modulus N, the term C
is more sensitive to the character x. The evaluation of the term C;(x,t) differs
according to whether x is a nonreal or real character.

It is well known (see Apostol [1976]) that Cn (k) is a multiplicative function
of N and

_ -1 if (p,k) =1,
)= {p— L (k) £ 1. 20)

We first consider the term Ca(x,1).

Lemma 4. Let N = p be an odd prime and let x be any primitive character
modulo p. Then

2

p—1
Ca(x,t) = g (2p* — 9p® + p + 12pt — 6t°) — Z nx(n +1t) (21)
n=1
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Proof. In view of (20), we have

2

Gt = 3 nmxtn+ 0 F DGy —m) 1)~ o+
=p§:n2|x<n+t)|2— pénx(nﬂ) 2
=p<§n2—(p—t)2> - 102;:17"»(("%)2
= o (§r- 1P -1 - - 07) - pénx(nw) 2

If x is real, then x? = x¢, and C,2(l) = Cn(1) is just a Ramanujan sum.
From (20), we have the following.

Lemma 5. Let N = p be an odd prime and let x be a real primitive character;
that is, x(n) = (%), the Legendre symbol. Then

(7) p (p* — 12p® — p + 24pt + 6p’t — 12pt> — 6t7)

2

- (Z nx(n + t)) . (22)

1
Cl(Xa t) = 6

Proof. If y is real, then x2 = xo, and hence by (20),

Ci(x,t) = pi nmx(n + t)x(m +t)Cp(n +m + 2t)
n:ijl p—1 2
= > nmx(n+t)x(m +1)(Cp(n +m +2t) + 1)— (Z nx(n + t))
n,m=1 n=1
p—1 p—1 2
=p Z nmx(n+t)x(m+1t) | — (Z nx(n + t)) i
n,m=1 n=1

n+m+2t=0 (mod p)

Now when n+m +2¢t =0 (mod p), x(n+t)x(m+1t) = (’71) Xo(n +t), and so
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-

- (pi nx(n + t))

=1

by Lemma 1.

From (16), Lemmas 4 and 5, and the fact that

p—1

>

n,m=1,(n+t,p)=1
n+m+2t=0 (mod p)

nm

p—1

2

n,m=1
n+m+2t=0 (mod p)

nm

—N—
(SRS

2

p—1

> =1 - -1,

n=1

(n+t,p)=1

- (Pi nx(n + t))

- ) (1) - <n§:jlnx(n+t))

(p2—6p—1+6t(2+p—2t))—(p—t)Q}

2

191

the term C can now be evaluated precisely. From (14), (19), (21), and (22), we

have

p—1 o
> 11 (=)
J=0

Wi

26

We prove the main theorem of this Appendix.

Theorem 1.

Let p be an odd prime and

=3 (”—“) .

p

n=1

S

n=1

(7p* + 9p + 8 + 48t — 24pt — 48t)

()]
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Then for any 1 <t < (p+ 1)/2, we have

||ft||4— (5p + 3p + 4) + 812 — 4pt — 8t
SHENECY) - @

n=1 p
The last term in (23) can be further estimated. By using the partial sum-
mation formula and the known estimate (Hua [1982, p. 172])

> (2)]<

2 ()5 ()

n=1 n=1

1/2 logp

one can show that

()

n=1

< p*/? log p.

From this and Theorem 1, we have the following.

Corollary 1. Let p be an odd prime and 1 <t < (p+1)/2. Then

||ft||4 —;D2 +8t2 —4pt+ O (plog D).

By making the optimal choice of ¢t = [p/4], we obtain the Turyn-type poly-

nomials
9= (L[P/‘ﬂ)
b

which possess the lowest known asymptotic Ly norm among such polynomials
so far. In this case, the last summation in (23) can be evaluated precisely in
terms of the class number h(—p), where

d-1 ( )
k=1 d
is the class number of the imaginary quadratic field Q (\/—d). More precisely,
we have

Theorem 2. For any odd prime p, we have

7¢> 1
?—q———%

R, ||} =
|1 Rgll2 5
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where

h(—q)(h(—q) —4) if ¢=1,5 (mod 8),
Y= 12(h(=0))’ if ¢=3 (mod8),
0 if ¢g=7 (mod ).

We have just shown how to obtain a precise formula for || f;(z)Hj for the
case N = p and x(n) = (%) by using the formulae in Proposition 1. If x is a
nonreal primitive character modulo p, all the evaluations in (14), (19), and (21)
of the terms A, B, and Ca(x,t) are still valid except for the term Cy(x,t), and

C\2(1) is no longer a Ramanujan sum. Instead, we have

Cilt) = 3 mmx(n+ Ox(m + )y (o)
=7(x%) i nmx(n + t)x(m + t)x*(n +m + 2t)

n,m=1

from (1) and the fact that x? is still primitive. In this case, the term Ci(x,t)
becomes more sensitive to the choice of the primitive character x. Although a
simple form of this term seems to be difficult to obtain for a general primitive
character, an asymptotic estimation of Cy(x,t) is accessible and is given in
Borwein and Choi [to appear]. By transforming C4 (x,t) in terms of generalized
Dedekind sums, it is shown that

Cl(Xat) = %

+ 0 (p3 log® p) .
From this, we deduce the following.

Theorem 3. Let p be an odd prime and let x be a nonreal primitive character
modulo p. Then for any 1 <t < (p+1)/2, we have

17405 = 12 + 0 (21087 p) .
X4 3

It is worth noting that the main term of || f;z Hj is uniform for any shift ¢ and
any nonreal primitive character modulo p. This is quite different from the real
primitive (Legendre) case.

One can also study the average of || f;“ among all characters modulo p. In
Borwein and Choi [to appear] it is shown that for any odd prime p and any shift
t

S =@ -3 -1,

x (mod p)
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where the summation is over all characters modulo p.

For composite N, since the Ramanujan sum Cy (k) is a multiplicative func-
tion of N, C1(x,t) and Cz(x,t) can be estimated as before with x(n) = (%),
the Jacobi symbol. The explicit formulae are as follows.

Theorem 4. Let N = pq, where p and q are odd primes, and

N-1

If p=q+2, then

(BN + 9N +4— (8N +1)(p+q))

3 3

q 2 9 p 2 9 12 ,
ud (o (2 —u? (1 (2 il

N2( (p>>h” N2< (q>>h"+N2hN’

and if p=q+4 and ¢ = 3 (mod 4), then

1113 =

+ =

171 = 5 (BN +9N +4— (SN + 1)(p+ )

3 3
q 2 2 p 2 2 12 2
+12_ — — — — (1= — + —
2 (5 3( ))h’p 36 2 ( (q))h/q 2h‘N7

where hy == """ n (%) for an odd integer 1.
For asymptotic estimates, we have the following.
Theorem 5. Let N =pips---pr with p; < ps < --- < p, and

=3 (B

n=0
with 1 <t < N. Then

t 14 o 2 2 N2+€
ISl = §N? —aNt+86 +0 (—— ).
1
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Research Problems

Research Problems

P1l. The Integer Chebyshev Problem. Find a nonzero polynomial in Z,
that has smallest possible supremum norm on the unit interval. Analyze the
asymptotic behaviour as n tends to infinity.

P2. The Prouhet—Tarry—Escott Problem. Find a polynomial with in-
teger coefficients that is divisible by (z — 1)™ and has smallest possible length.
(That is, minimize the sum of the absolute values of the coefficients.)

P3. The Erdds—Szekeres Problem. For each n, minimize

(1 =2%) (1 =2%) .- (1= 2|

oo ?

where the «; are positive integers. In particular, show that these minima grow
faster than n® for any positive constant f3.

P4. Littlewood’s Problem in L,,. Find a polynomial in L,, that has small-
est possible supremum norm on the unit disk. Show that there exist positive
constants ¢1 and co such that for any n it is possible to find p, € L,, with

avn+1<|py(2)| <cavn+1

for all complex z with |z| = 1.

P5. Erdés’s Problem in L,,. Show that there exists a positive constant
c3 such that for all sufficiently large n and all p, € L, we have ||pn||cc >

(1+e3)vn+1.

195
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P6. Erdéss’s Problem in L, for Reciprocal Polynomials. Show that
there exists a positive constant c§ such that for all sufficiently large n and all
reciprocal polynomials pn € L, we have ||pn||co > (V2 +¢5) vn + L.

P7. The Merit Factor Problem of Golay. Find the polynomial in L, that
has smallest possible Ly norm on the unit disk. Show that there exists a positive
constant ¢4 such that for allm and all p, € L, we have ||pn|ls > (1+c4)vn + 1.

P8. The Barker Polynomial Problem. For n sufficiently large (n > 12
may suffice) and p, € L, show that

Ipalle > (0 +1)2 +n+1)"*".

Equivalently, show that no polynomial in L, of degree greater than 12 can have
all acyclic autocorrelation coefficients of size at most 1.

P9. Lehmer’s Problem. Show that any monic polynomial p, p(0) # 0, with
integer coefficients that is irreducible and is not a cyclotomic polynomial has
Mahler measure at least 1.1762 ... . (This latter constant is the Mahler measure
of 1l +2—2%—24 =25 =28 — 27 4+ 294+ 210))

P10. Mabhler’s Problem. For each n, find the polynomials in L, that have
largest possible Mahler measure. Analyze the asymptotic behaviour as n tends
to infinity.

P11. Conjecture of Schinzel and Zassenhaus. There is a constant ¢ > 0
such that any monic polynomial p, of degree n with integer coefficients either
has Mahler measure 1 or has at least one root of modulus at least 1 + ¢/n.

P12. Closure of Measures Conjecture of Boyd. The set of all possible
values of the Mahler measure of polynomials with integer coefficients in any
number of variables is a closed set.

P13. Multiplicity of Zeros of Height One Polynomials. What is the
mazimum multiplicity of the vanishing at 1 of a polynomial in F,?

P14. Multiplicity of Zeros in L,,. What is the maximum multiplicity of
the vanishing at 1 of a polynomial in L, ?
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P15. Another Erd6s Problem. FEstablish whether there is a positive con-
stant ¢ such that if

Vo = (1 +zb1) (1 +zb2) (1 +zbn)

is in A, then
max{b;} > c2".

P16. A Montgomery Question. Show that the minimal s arising as in
Lemma 1 of Chapter 10 does not give the right value for Q[0,1]. Does Q[0,1]
have a closed form?
P17. Schur—Siegel-Smyth Trace Problem. Fix e > 0. Suppose

pn(z) = 2" + an—lzni1 +---+ag € 2,

has all real, positive roots and is irreducible. Show that, independently of n,
except for finitely many explicitly computable exceptions,

jan—1] > (2= e)n.

Research Problems from Chapter 2

R1. TIs it possible to approach the merit factor problem (P7) using LLL? For
which other norms is there an analogue of LLL that gives polynomial-time
algorithms for finding short vectors with respect to that norm?

R2. Are there polynomial-time algorithms for any of the problems P1 through
P17? (To make sense of this, one has to decide how to measure the size of an
instance of the problem.) Note that it isn’t clear that P2 is even algorithmic,
and indeed, this is an open problem.

Research Problems from Chapter 3

R1. Verify Lehmer’s problem up to, say, degree 100. (Currently it has been
checked exhaustively by Rhin and Qiang up to degree 40.)

R2. Solve Lehmer’s problem for some interesting classes of reciprocal polyno-
mials; for example, the class of reciprocal Littlewood polynomials.
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R3. In Exercise E8 of Chapter 3, is it possible to make p divide a height h
polynomial with the same measure as p? (That is, can the factor ¢/p be chosen
to be a product of cyclotomic polynomials?)

R4. Show that the minimum Mahler measure (> 1) of a monic polynomial in
Z is attained by a Salem polynomial.

Research Problems from Chapter 4

R1. There are many ways to extend the Rudin—Shapiro construction. One
can consider iterations of three or more terms, for example (see E3 of Chapter
4). Is it possible to extend the construction to get good lower bounds in P47

R2. Extend the formulae of the exercises of Chapter 4 for the average of
[[p(2)||%. So, for example, extend the formulae of Theorem 2 of Chapter 4 for
Bn(m, H) for all even n.

Research Problems from Chapter 5

R1. Tt is natural to ask about the growth of the Fekete polynomials on the
disk D. Montgomery [1980] shows that

1/p(2)lIp > v/ploglog p

and that
Il7p(2)llp < /plog p.
Which is the correct rate of growth? Extend the above result to the shifted

Fekete polynomials of E1 of Chapter 5.
Research Problems from Chapter 6

Conjecture. A Littlewood polynomial P(z) of degree N — 1 has Mahler mea-
sure 1 if and only if P can be written in the form

P(z) = £, (£2)®p, (£2P1)--- @, (L2PP2Pr-1)

where N = p1ps - - - pr and the p; are primes, not necessarily distinct.

R1. Prove the above conjecture for N even.

R2. Is there a characterization of all measure 1 polynomials with coefficients
just 0 and 17
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Research Problems from Chapter 7

R1. (Erdélyi) Establish whether every polynomial p € £,, has at least one
zero in the annulus ¢ ¢
[1-S<p<1+2},
n n

where ¢ > 0 is an absolute constant.

Research Problems from Chapter 8

R1. Prove or disprove that a polynomial p € A,, has all its repeated zeros at
0 or on the unit circle.

R2. Can the multiplicity of a zero of a height 1 polynomial in {z € C: 0 <
|z] < 1} be arbitrarily large?

R3. Isit true that there is an absolute constant ¢ > 0 such that every p € A,
with p(0) = 1 has at most clogn real zeros? If not, what is the best possible
upper bound for the number of real zeros of polynomials p € 4,7 What is the
best possible upper bound for the number of distinct real zeros of polynomials
p€eA,”?

Research Problems from Chapter 9

R1. Let  denote the set of all zeros of all Littlewood polynomials. Show that
the boundary of € is a fractal set and compute its Hausdorff dimension. Show
that Q is path connected. (Odlyzko and Poonen [1993] prove that the set of all
zeros of all polynomials with coefficients in the set {0,1} is path connected.)
Determine whether € contains holes. Equivalently, does the complement of 2
have more than two components?

These questions should also be addressed for the polynomials of height 1.

Research Problems from Chapter 10

Congjecture. Suppose [az/ba,a1/b1] is an interval whose endpoints are con-
secutive nonintegral Farey fractions. This is characterized by (a1bs — asby) = 1.

Then
o (|22, %) = max 11
by’ by N by’ by )’

R1. Compute Q[a, 3] exactly on any interval of length less than 4.
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R2. It is very natural to explore the integer Chebyshev question in many
variables, say polynomials in two variables on triangles or on squares. See
Chudnovsky [1983].

The following two theorems are proved in Borwein, Erdélyi, and Kés [1999].
They relate to how small one can make polynomials in F,, and A,.

Theorem. There are absolute constants c; > 0 and co > 0 such that

exp (—c1v/n) < O;éipneffn lIplljo,1) < exp (—c2v/n) -

The left side of the above inequality in fact holds for polynomials p of the

form
n

p(z) = Zajzj, lag| =1, |aj| <1, a; €C
Jj=0
Theorem. There are absolute constants c; > 0 and co > 0 such that

exp(—c1log®(n + 1)) < o0, IP(=2)llo,1) < exp(=c2 log”(n +1)).

In the light of the above two theorems, it is natural to ask the following
questions, which are the height 1 analogues of the integer Chebyshev problem.

R3. Does

i log(info-pe 7, [IPll[0,17)
im
n—00 \/ﬁ

exist? If it does, what is it?

R4. Does .
lim log(mfo;epe;ln ||p(—z)||[071])
n—oo log™(n +1)

exist? If it does, what is it?

Research Problems from Chapter 11

R1. Find infinite families of ideal solutions of the Prouhet—Tarry—Escott prob-
lem of size 9 and size 12 or show they can’t exist.

R2. Find an ideal solution of size 11 or any size greater than 12.

R3. Show for some n that no ideal solutions of the Prouhet—Tarry—Escott
problem exist.
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Research Problems from Chapter 12

R1. Show that N*(k) < k2.

R2. Is it true that N*(k) = o(klogk)? This would be a significant result,
since it would give better bounds for the easier Waring problem than those that
follow from the current bounds for the usual Waring problem.

Research Problems from Chapter 13

R1. There is an amusing problem related to Theorem 2 of Chapter 13, whose
solution would let one compute the exact /[y norm in the case p = 3.

Problem. For each n, write
(1—2)(1=2%) (1—2%) (1=2°)--- (1= 2%"F1) (1 - 2%"2) = Zaizi.
Show that a; > 0 if and only if 3 divides 1.

A similar result should hold for p = 5. See Andrews [1995].

R2. Prove the conjecture that except for N € {1,2,3,4,5,6,8}

E% > 2N +2.

Research Problems from Chapter 14

R1. Show that no Barker polynomials exist for n > 12.

R2. Are there any primitive Golay pairs for n > 1007 (See Borwein and
Ferguson [to appear].)

R3. If
p(z) := Zakzk,
k=0

where the a; are complex numbers, then the kth acyclic autocorrelation coeffi-
cient is defined by

n—k
L = E ajaj+r and c_p =Cg.
j=0
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Then .
@Il = [pp@||, = - lal
k=—n

A natural generalization of a Barker polynomial would be a polynomial with all
coefficients complex numbers of modulus 1 that satisfies |cx| < 1 for k # 0.

Do generalized Barker polynomials exist for all n?

Research Problems from Chapter 15

R1. Find the maximal merit factors of Littlewood polynomials for degrees up
to 100.

R2. Prove that the merit factor of Littlewood polynomials is bounded above
independently of the degree.

R3. Prove the conjecture of Konyagin [1997]: for any fized set E C 8D (the
boundary of the unit disk) of positive measure there exists a constant ¢(E) > 0
(depending only on E) such that for any distinct positive integers k; and any

integer n,
/ )
k.
Z z !
Bl

|dz| > c(E).

R4. What is the minimum number of zeros of modulus 1 of a real-valued
Littlewood polynomial of degree n?

Littlewood [1966, problem 22] poses the following research problem, which
appears to still be open: “If the n,, are integral and all different, what is the
lower bound on the number of real zeros of 2%21 cos(n,,0)? Possibly N — 1,
or not much less.”

R5. Erddés’s Problem in L, for Reciprocal Polynomials. Show that
there exists a positive constant ¢ such that for all sufficiently large n and all
reciprocal polynomials p, € L, we have ||py|loec > (V2 +¢) vn + 1.

Research Problems from Chapter 16

R1. Let g € (1,2). Show that I(¢) > 0 if and only if ¢ is a Pisot number.

R2. Find an algorithm that computes L(q).
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