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Abstract

We compute Padé approximants to Riemann’s symmetric Zeta function. Next we
calculate the zeros and poles of these rational functions. Lastly we attempt to fit these
to algebraic curves.

Consider a function f(z) with power series

f(z) =
∞∑
i=0

ciz
i. (1)

Definition 1. A Padé approximant [L/M ], of f(z), is a rational function

[L/M ] =
a0 + a1z + ... + aLzL

b0 + b1z + ... + bLzM
,

which has a Maclaurin expansion that agrees with (1) as far as possible.

The Padé approximant [L/M ] fits the power series (1) though orders 1, z, z2, ..., zL+M . In
more formal notation,

f(z) =
∞∑
i=0

ciz
i =

a0 + a1z + ... + aLzL

b0 + b1z + ... + bLzM
+ O(zL+M+1).

The function that we would really like to compute with is the following symmetric Rie-
mann Zeta function:

f := s 7→ 1

2
s(s− 1)π−

1
2
sΓ(

1

2
s)ζ(s). (2)

Why look at the Padé approximants to the Riemann zeta function? The first reason, ob-
viously, is the relationship to the Riemann hypothesis. Presumably, if one really understood
any of the diagrams in these notes one would be able to prove the Riemann hypothesis. A
worthwhile but rather too lofty goal.
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But even assuming the Riemann hypothesis the particular behavior of the approximations
is not obvious. Clearly there are limit curves both of the zeros and the poles. One goal is to
figure out what these probably are.

It is harder than it looks to generate these pictures. Standard symbolic packages fail. So
another part of the story is to describe the necessary computations.

There is a lovely body of theory due originally to Szegö that describes the zeros of the
partial sums up the power series expansion of the exponential function. This extends to
the zeros and poles of the Padé approximants to the exponential function and a few related
functions. In order to get limit curves one scales the zeros and poles by dividing by the
degree. The analysis is possible because there are explicit integral representations of the
numerators and denominators.

There are no useful explicit representations known for the Padé approximants to the zeta
function. Or even for the Taylor series. And indeed the principal problem in generating the
approximations numerically is to derive large Taylor expansions.

This is the principal story that we want to tell in this paper. And to describe the
computational difficulties that it involves.
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16 Order 210 + 1: diagonal Padé approximant. . . . . . . . . . . . . . . . . . . . 14



Taylor Series. 3

1 Taylor Series

(a) All zeros. (b) Quadrant I of Figure (a) with degree 2
curve fit to extraneous zeros.

Figure 1: Zeros of the truncated Taylor series of order 26 +1 of the symmetric Zeta function.

(a) All zeros. (b) Quadrant I of Figure (a) with degree 2
curve fit to extraneous zeros.

Figure 2: Zeros of the truncated Taylor series of order 27 +1 of the symmetric Zeta function.



Taylor Series. 4

(a) All zeros. (b) Quadrant I of Figure (a) with degree 2
curve fit to extraneous zeros.

Figure 3: Zeros of the truncated Taylor series of order 28 +1 of the symmetric Zeta function.

(a) All zeros. (b) Quadrant I of Figure (a) with degree 2
curve fit to extraneous zeros.

Figure 4: Zeros of the truncated Taylor series of order 29 +1 of the symmetric Zeta function.
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(a) All zeros. (b) Quadrant I of Figure (a) with degree 2
curve fit to extraneous zeros.

Figure 5: Zeros of the truncated Taylor series of order 210+1 of the symmetric Zeta function.
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(a) Curve from Figure 1(b):
0.998759 + 0.010069x − 0.048769y −
0.000351x2−0.000115xy+0.000365y2.

(b) Curve from Figure 2(b):
0.999563 + 0.006174x − 0.028906y −
0.000147x2−0.000035xy+0.000010y2.

(c) Curve from Figure 3(b):
0.999844 + 0.003601x − 0.017305y −
0.000055x2−0.000009xy+0.000032y2.

(d) Curve from Figure 4(b):
0.999949 + 0.002524x − 0.009778y −
0.000021x2−0.000005xy+0.000007y2.

(e) Curve from Figure 5(b):
0.99998397233832516156127808097689+
0.0017114866390274882214362533125239x−
0.0053968338455743015329285156850858y−
0.0000076913868171049289130164708154098x2−
0.0000021399957002464736373025075642063xy+
0.00000080896194920156322933685037036162y2.

Figure 6: Curves that fit extraneous zeros in Figures 1–5.
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2 All Padé approximants together

(a) Poles. (b) Zeros.

Figure 7: Zeros and poles of all Pade approximants [L/M] for L+M = 64

(a) Poles. (b) Zeros.

Figure 8: Zeros of all Pade approximants [L/M] for L+M = 128
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3 Order 24 + 1

Figure 9: Red zeros and blue poles of the [8/8] Padé approximant about x = 1/2 to the
symmetric Zeta function.

4 Order 25 + 1

Figure 10: Red zeros and blue poles of the [16/16] Padé approximant about x = 1/2 to the
symmetric Zeta function.
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5 Order 26 + 1

(a) Zeros and poles. (b) Fit degree 2 curve to the poles in quadrants I
and IV.

(c) Fit degree 2 curve to the zeros in quadrants I
and IV.

(d) Quadrant I of Figure (a) with curves fit to zeros
and poles.

Figure 11: Various views of the red zeros and blue poles of the [32/32] Padé approximant
about x = 1/2 to the symmetric Zeta function.
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6 Order 27 + 1

(a) Zeros and poles. (b) Fit degree 2 curve to the poles in quadrants I
and IV.

(c) Fit degree 2 curve to the zeros in quadrants I
and IV.

(d) Figures (b) and (c) together.

Figure 12: Various views of the red zeros and blue poles of the [64/64] Padé approximant
about x = 1/2 to the symmetric Zeta function.
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(a) Expand about x = 0. (b) Quadrant I of Figure (a).

(c) Expand about x = 1/2. (d) Quadrant I of Figure (c).

(e) Expand about x = 1. (f) Quadrant I of Figure (e).

Figure 13: Views of the [64/64] Padé approximant expanded about various x values
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7 Order 28 + 1

(a) Zeros and poles. (b) Quadrant I of Figure (a).

(c) Fit degree 2 curves to Figure (b).

Figure 14: Various views of the red zeros and blue poles of the [128/128] Padé approximant
about x = 1/2 to the symmetric Zeta function.
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8 Order 29 + 1

(a) Zeros and poles. (b) Quadrant I of Figure (a).

(c) Fit degree 2 curves to Figure (b).

Figure 15: Various views of the red zeros and blue poles of the [256/256] Padé approximant
about x = 1/2 to the symmetric Zeta function.
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9 Order 210 + 1

(a) Zeros and poles. (b) Quadrant I of Figure (a).

(c) Fit degree 2 curves to Figure (b).

Figure 16: Various views of the red zeros and blue poles of the [512/512] Padé approximant
about x = 1/2 to the symmetric Zeta function.
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