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Muntz’s Theorem and Friends.

A very attractive variant of Weierstrass’ theorem
characterizes exactly when the linear span of a sys-
tem of monomials

M = {z?° 2™, ...}

is dense in C|0, 1] or Ls[0, 1].

Miintz’s Theorem in C|0,1]. Suppose {\;}2,
1s a sequence of distinct positive real numbers not
converging to 0. Then

span{l, 2™, z2,...}

is dense in C|0, 1] in the uniform norm if and only
if

o 1 B

25"

This theorem follows by a simple trick from the
Lo version of the theorem.
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Miintz’s Theorem in L»[0,1]. Suppose {\;}2, C
(—1/2,00) is a sequence of distinct real numbers
not converging to —1/2. Then

span{z™®, z™ ...}

is dense in L3[0,1] if and only if

0

(Full Miintz in L,). Let p € [1,00]. Suppose
{N:}$2, is a sequence of distinct real numbers greater
than —1/p. Then

span{z, z*1 ...}
is dense in L,|0, 1] if and only if

>\ —|—1/p
+1/p)?

@M%%
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Full Miintz in C|0,1]. (B&E). Suppose {\;}2,
1s a sequence of distinct, positive real numbers.

Then

span{l,z*', z2,...}

is dense in C|0, 1] if and only if

;A§+1:OO'
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Orthonormal Miuntz-Legendre polynomials.

We can orthonormalize

span{z™, ..., z "}

Define L}, the n-th orthonormal Miintz-Legendre
polynomial defined by

/ nl—[lt%—xls—l—l xtdt
27‘('7, t—)\k t—)\n

n
— Z ClonT*, z € (0, 00)
k=0

with L B
[Ti=o Q&+ +1)

Ck,n ‘— n
[0, 26 (A6 = Aj)

and B
L = (14 Xy 4+ X)Y2 L.

Then we get an orthonormal system, that is,

1
/ L* ()7 (@)dz = Smmy myn=0,1,....
0



Proof of Muntz’s Theorem. We consider the ap-
proximation to ™ by elements of

span{z°, ...z "1}
in LQ[O, 1]

For L}, the n-th orthonormal Miuntz-Legendre poly-
nomial we have

n—1
L (x) = Z a;x™ + apz™
1=0

where

m+ A +1
m—)\i .

n—1
lan] =v1+2m ||
1=0

It follows from ||L;||12[0,1 = 1 and orthogonality
that L* /a, is the error term in the best Ls[0, 1]
approximation to £ from

span{z?, ...,z "1},



Therefore

min
b, eC

n—1
" — E b,z
i=0

L2[0,1]

11 "Hl m— A
o an]  VIF2m Lt mA N+ L]
So, for m # A,

™ € span{z™, 2™, ...}

(where span denotes the L2[0,1] closure of the
span) if and only if

n—1

2 1

lim sup H m
n i=0

1— =0
m-l—)\i—|-1‘




Muntz Rationals.

A surprising and beautiful theorem, conjectured
by Newman and proved by Somorjai , states that
rational functions derived from any infinite Mintz
system are always dense in C|a,b],a > 0. More
specifically we have

Denseness of Miintz Rationals. Let {)\;}52,

be any sequence of distinct real numbers. Suppose
a>0. Then

n ¥
{%é:ozzix caq,b; €R, TLEN}
i=0 Vil

is dense in Cla, b].

The proof of this theorem, primarily due to Somor-
jai, rests on the existence of zoomers. A function
Z defined on [a, b] is called an e-zoomer (e > 0) at

¢ € (a,b) if

Z(x) > 0, T € |a,b]
Z(x) <€, T < (—€
Z(z)>e !, z>(+e



While (approximate) é-functions are approximate
building blocks for polynomial approximations, the
existence of e-zoomers is all that is needed for ra-
tional approximations.

A comparison between Mintz’s Theorem and this
shows the power of a single division in these ap-
proximations. In what other contexts does allow-
ing a division create a spectacularly different re-
sult.

Conjecture 1 (Newman 1978). If M is any
infinite Markov system on [0, 1] then the set of ra-
tionals

{g . D, q € Span M}

is dense in C'0, 1].

He calls this a “wild conjecture in search of a coun-
terexample”. It does however hold for both

M = {zro g, ), A >0
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1 1
M:{ : }
r— 01 ¥ — 09

We give a counterexample to this conjecture. How-
ever, the characterization of the class of Markov
systems for which it holds remains as an interest-
ing question.

and

Newman also conjectures the non-denseness of prod-
ucts

Conjecture 2 (Newman 1978).
{Sa;z" H{Shx' }

is not dense in C|0,1].

He speculates that this “extra” multiplication of
Miintz polynomials should not carry the utility of
the “extra” division.
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We will show that products of two Miintz polyno-
mials from non-dense Miuntz spaces never form a
dense set in C]0, 1].

Non-Dense Ratios of Miintz Spaces. Sup-
pose 0 < \g < A1 < ---. Let a > 0. Show that

n PV
{%;f:obazx_x ca;,b; ER, n € N}
i=0 0it "

is dense in Cf[a, b], if and only if > =, 1/A; < oo.

The following example is due to Boris Shekhtman
and P. B.

A Markov System with Non-Dense Ratio-
nals.

We construct an infinite Markov system as follows.
Consider non-negative even integers

OZ,LL0<>\1<,LL1<>\2<,LLQ<

"'<)\n<,un<"'
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which are lacunary in the sense that there exists
g > 1 so that

i Ai
Hi >q and +1

Ai L

> q, 1=1,2,....

Let i € C[—1,1] be defined by

po =1, paop(z) =M

and

Then {pg, ¢1,...} is a Markov system on [—1, 1].
But the rational functions of the form

Z;’J:O 0/]' 90.7
> icobiv;’

aj,b;j € R, n,meN

are not dense in C[—1, 1] in the uniform norm.
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Revised Newman Conjecture. If M is any

infinite Descartes system on [0,1] then the set of
rationals

{g . p,q € Span ./\/l}

is dense in C|0,1].
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Chebyshev Polynomials in Chebyshev Spaces.

Suppose
H, :=span{fo,..., fn}

is a Chebyshev space on [a,b] and A is a compact
subset of [a,b] with at least n + 1 points. We can
define the generalized Chebyshev polynomzal

Ty :=Tn{fo,.- s fn; A}
for H,, on A by

n—1
1, =c (fn — Zakfk>

where the numbers ag,a1,...,a, € R are chosen
to minimize

A

and where ¢ € R is a normalization constant cho-

sen so that
|Tn]|a =1
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Denseness and Zeros of Chebyshev Polyno-
mials.

For a sequence of Chebyshev polynomials 7T;, as-
sociated with a fixed Markov system on [a, b] we
have the mesh of T, is defined by

M, = M, (T, : |a,b]) ;= max |z; —x;—1|.
1<i<n+1

where x; are the zeros of T,.

Theorem (P.B.). If M = {1, f1, fo,...} is an
infinite Markov system on |a,b] with each f; €
Clla,b]. Then span M is dense in Cla,b] if and
only if

lim M, =0

n—o0

where M,, is the mesh of the associated Chebyshev
polynomials.

Corollary (Weierstrass’ Theorem). The poly-
nomials are dense in C|—1,1].
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Denseness and Unbounded Bernstein Inequal-
ities.

Definition (Unbounded Bernstein Inequal-
ity). Let A be a subset of Ctla,b]. We say that A
has an everywhere unbounded Bernstein inequality

if

sup{M:pEA p#O}:oo
19/l a.o |

for every o, 8] C [a,8], o # B.

Bernstein-Type Inequality for Chebyshev Spaces. Let
{1, f1,..., fn} be a Chebyshev system on |a,b] such
that each f; is differentiable at xy € |a,b]. Let

T, = Tn{la fla s 7fn7 [CL, b]}
be the associated Chebyshev polynomial. Then

|p{n($o)| < 2
1Pnllae) = 1 — |[Tn(zo)]

for every p,, € span{l, f1,..., fn} provided |T, (xq)| #
1.

|75, (o)
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Characterization of Denseness by Unbounded
Bernstein Inequality. Suppose M := {fy :=
1, f1,...} is an infinite Markov system on |a,b]
with each f; € C?[a,b] . Then span M is dense in
Cla,b] if and only if span M has an everywhere
unbounded Bernstein inequality.

Corollary (Weierstrass’ Theorem. The poly-
nomials are dense in C|—1,1].
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Classical Polynomial Inequalities.

Remez Inequality. The inequality

Ipll—1,1 S T (2 +5)/(2 = 5))

holds for every p € P, and s satisfying

m({x e [-1,1]: |p(x)| <1}) > 2 —s.

Here T, is the Chebyshev polynomial:

T, (z) := cos(n arccos x).

Bernstein’s Inequality. For p € P

"(x < 111, —l<z<l,
(@)l < A== IPli-11

Markov’s Inequality. For p € P¢

19" [l1- 1,17 < n*[Ipll;-
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e The L, analogue of Markov’s Inequality states
that

1 1
/ Q' (z)|Pdx < P n?P / Q(z)[Pda

—1 —1

for every () € P, and 0 < p < oo, where c is an
absolute constant.

e We will prove this more generally with a constant
12.

e The best possible Markov factor in L, is still an
open problem even for p =2 or p = 1.

Miintz Systems (Dirichlet Sums).

The system
{z?° 2™, ...} on[0,1]

is called a Muntz systems.
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Mintz-Chebyshev polynomials.

In principal it is possible to construct an analogue
of the Chebyshev Polynomial for a Mintz System

span{z, ...,z "}

This will be an equioscillating “polynomial” and
will be extremal for a number of problems

One needs these in the proof of the Full Miintz
Theorem.

In particular one needs the characterization of dense-
ness of an infinite Markov system in terms of dense-
ness of the zeros of the associated Chebyshev poly-
nomials.
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Inequalities in Miintz Spaces.

We first present a simplified version of Newman’s
beautiful proof of a Markov-type inequality for
Miintz polynomials. This modification allows us
to prove the L, analogues of Newman’s Inequal-

ity.

Newman’s Inequality. Let {\;}52, be a sequence
of distinct nonnegative real numbers. Then

v ol 392)‘

1210,

for every p in the linear span of

{gro oM .z}

In L, we must replace the constant 9 by 13 .
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For p > 1 and P € span{z?°, 2™ ,...  z**} with
exponents A, greater than —1/p .

Sharp Markov Inequality. (B&E)

|z P ()| z,0,1] <

13 (Z()\j + 1/p)> 1P[[z,00,11

j=0
Nikolskii-type Inequality. (B&E)

1y P P(y)]| £.to,1] <

n 1/p
13 (Z()\j + 1/}?)) | Pl 0]

3=0

e Note the implication for Miintz’s Theorem with
exponents tending to —1/p.
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Lorentz’s Problem for Miintz Polys.
Conjecture.

/
o PO o
p ||p||[0,2]

where the sup is over all Miuntz polynomials

p(x) = ag + Zajx’\j, a; € R, )\j >0
j=1

independent of the exponents.

e These following results improve inequalities of
Lorentz and Schmidt and others going back 25
years.

e Lorentz finally conjectured the above with a C'xn
bound?
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Theorem. For every 0 <a <b

| p'(a) | 2n?
sup =
p ||IPlljay)  a(logb—loga)

The sup s over all Muntz polynomzals

x):a0+2ajx>‘j, a; € R, )\j > 0.

Theorem 3.2. The inequalily

/ —_
- |f( )| < _ 2n —1
Oséf | fllfap) ~— min{y —a,b -y}

holds for every y € (a,b). where

t) =ao+ Zaje)‘jt, aj,\j € R.
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A Remez Inequality for Miintz Spaces.

e This Remez-type inequality allows us to resolve
two reasonably long standing conjectures.

e The first, due to D. J. Newman and dating from
1978, asserts that if

il/)\i < 0
=1

then the set of products

{p1p2 : p1,p2 € Span{x%,x’\l, ... }}

is not dense in C'[0, 1].

e The second is a complete extension of Miintz’s
classical theorem on the denseness of Miuntz spaces
in C]0, 1] to denseness in C[A], where A C [0, 0c0)
is an arbitrary compact set with positive Lebesgue
measure.
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Muntz’s Theorem Generalized. For an arbi-

trary compact set A C [0, 00) with positive Lebesgue
measure,

span{z™, z ...} A > 1

is dense in C|A] if and only if

=1

o Let N
p(z) := Z a;x
i=0

where 0 = \g < A1 < A9 < --- The most useful
form of our Remez inequality states:
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Bounded Remez Inequality. (B&E).

For every sequence {\;}52, satisfying

il/)\z < 0
=1

there is a constant c¢ depending only on {\;}2,
and s (and not onn, o, or A) so that

12]10,0) < €llp]| A

for every Muiintz polynomial p, as above, associ-
ated with {\;}52,, and for every set A C |o, 1] of
Lebesgue measure at least s > 0.
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Sharp Extensions of Bernstein’s Inequality
to Rational Spaces.

Let
Pc(ay,az, - ,an; A)
( )
G N
\ H(z—aj)
Jj=1 J

where the A indicates that the poles are to avoid

A.

e If the a; tend to infinity we recover the ordinary
polynomials. So the following results are sharp
extensions of the usual Bernstein inequality.

eThese are also sharp extensions of results of Rus-
sak and others.
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Bernstein-Szegd Type Inequality. (B&E).
For {ar}p_; C C\ [-1,1], let

o-ge ()

ap — T

where the root \/a% — 1 s determined by

Ck ::ak—\/a%—l, |Ck|<1.

Then

(1= 2%)f'(2)* + Bu(2)*f(2)* < Ba(2)*If -1,

and
1

V1 — 2

for every f € Pp(ay,az,... ,ay,).

[f(z)] < Br ()| flli-1,1
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Theorem. Let {a1,as,---,a,} CC\0D. Then

[ (z0)I/1I.fllon <

( )
a;|* -1 1 — |a;|?
D D Dl et
j=1 0 = T
( laj]>1 aj| <1 )

for every f € PS(ay,az2, -+ ,a,;0D) .

Theorem. Let {a1,a2, - ,a,} CC\R. Then

[ (@o)l/ Il <

4 )
—  2[Im(ay)| —  2[Im(ay)|
max < :
jz::l |0 — a;? jz_:l |0 — a;/?
| Im(a;)>0 Im(a;)<0 )

for every f € PS(ay,az2, - ,a,;R) .
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Inequalities for p.. /p,.

These are metric inequalities of the form

S(GEC R RN

where 7, is a rational function of type (n,n) and g
is a constant independent of n. Here m is Lebesgue
measure.

Theorem (Loomis). Ifp, € P, hasn real roots
then

m({azeR:p’,”’(x) za}>:n for aa >0
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Lemma. Ifp, € P, is positive on [a,b] then there
exists qn, Sn € Pn nonnegative on |a,b] with all
real roots (in |a,b]) so that p,(x) = qn(x) + s, (x).

Theorem. Let p, € P, then

m({xER:p;”(x)Za}><2n, a> 0.

n () ~a

S

Theorem. If r, = p,/q, € Rpnn then
/
m({xER:T”(CB)Za}>§—n, a > 0.
() o

e It would be interesting to know the right con-
stant above. It might well be 27 This is closely
related to the incomplete rational problem con-
cerning the interval of denseness of

{exp(—nx)pn(z)/gn(x)} .

oo
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Incomplete Rationals

We consider rational approximations of the form

{(1 N Z)an+1pcn(2) }

Gn(2)

in certain natural regions in the complex plane
where p., and ¢, are polynomials of degree cn
and n respectively.

In particular we construct natural maximal re-
gions (as a function of a and ¢) where the col-
lection of such rational functions is dense in the
analytic functions.

So from this point of view we have rather com-
plete analogue theorems to the results concerning
incomplete polynomials on an interval.

The analysis depends on a careful examination of
the zeros and poles of the Padé approximants to
(1 + z)2"*1. This is effected by an asymptotic
analysis of certain integrals.
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In this sense it mirrors the well known results of
Saff and Varga on the zeros and poles of the Padé
approximant to exp. Results that, in large mea-
sure, we recover as a limiting case.

In order to make the asymptotic analysis as pain-
less as possible we prove a fairly general result on
the behavior, in n, of integrals of the form

/0 L1 — 0) /. (6))"de

where f,(t) is analytic in z and a polynomial in %.

From this we can and do analyze automatically
(by computer) the limit curves and regions that
we need.
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The Wellspring:

In a remarkable paper of 1924, Szegd considered
the zeros of the partial sums s, (2) := >_;_, 2~ /k!
of the MacLaurin expansion for e?. Szego estab-
lished that Z is a limit point of zeros of the se-
quence of normalized partial sums,

15n(n2) }nZo;

if and only if
se{z:]zet7%| =1,|2| < 1}.

Moreover, Szeg6 showed that Z is a nontrivial limit
point of zeros of the normalized remainder

(e = sn(n2) 15

if and only if

se{z:|ze' 7% =1, 2| > 1}.
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Padé Approximation to (1 + 2)*":

Theorem. The set of functions

{(14+ 2)"rp(2) : Th(2) € T}
is dense in A(K), the analytic functions on K,
where K 1s an arbitrary compact subset of R3 and
not in any region strictly containing Rs (Rs is the
region in Fig.1).

Theorem 2.1. For the (m,n) Padé approxima-
tion to (1 + 2)*"*1 at 0, a > 0, we have

an+1 pm(z)

(a) (14 z)*+ (o)
2L [ — )™ (1 4 t2) 0
B qn(2) ’

(b) pm(z) = / (t— D)nem=m (1 4 2 — )™,

and

(¢) gn(z) = /O (1— )™ =™(¢(z + 1) — 1)"dt.
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Corollary 2.2. For the (cn,n) Padé approrima-
tion to (1 +2)*"*! at 0, a > 0, we have

an+1 pcn(z)
(a) (1+ z)™* (o)

2L U1 — )94 (1 + t2) <] dt
Qn(z)

Y

(b)  pon(z) = / (- 1)t2(1 + = — t)°]"dt,

and

(©) gu() = / (1 — 0°t°=o(t(1 + 2) — 1)]"dt.

Corollary 2.3. When ¢ =1, we have

(14 2)"pn ( - ) = gn(2)-

14+ 2z
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The Asymptotic Analysis
Theorem 2.4. Let

L= [ o -os@ra= [ Qo

where Q(t) = t(1—1t) f(t) is a polynomial of degree
N n t.

Let ty,to,... ,tny_1 be the N — 1 zeros of Q' (1).
Suppose that

Q)| # Q). i1 #7

Then

lim Ii/” = arg(Q(t:))|Q(t:)| = Q(:)

n—oo

for some 1.
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Theorem 2.5. Let

I(2) = / E(1 — 1) f.(6)]"dt = / Qu (1)t

where Q,(t) = t(1—t)f.(t) is a polynomial in t and
analytic in z on an open connected set U. Suppose

Q= (ti(2))] # 1Q=(t(2))]

for any i # j, and any z € U, where t; := t;(2)
are the zeros of the polynomial %Q.(t) (which by
the above assumption can be given so that each t;
is analytic on U). Then

(a) I,(2)Y™ converges to a non-zero limit point-
wise on U.

(b) |I,(2)|Y™ is uniformly bounded on compact
subsets of U.

(c) I,(2)Y™ converges uniformly to a Q,(t;(2))
on compact subsets of U, and Q,(t;(2)) is analytic
on U. Moreover, Q,(t;(z)) #0 forall z € U .
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Corollary 2.6. Let I,(z), f.(t) and Q.(t) be as
in. Theorem 2.5. Suppose that for each z, Q,(t)
1s a polynomaial of degree N in t, and further that
Q.(t) is analytic in z. Then, the limit points of
the zeros of I,,(z) can only cluster on the curve

12:1Q:(ti(2))] = [Q=(t(2)),  for somei # j}

or at points where Q.(t;(z)) = 0, or at points
where Q,(t;(z)) is not analytic. (Note t; := t;(2),
which is a function of z.)

These results require some careful saddle point
analysis.

The nice thing is that one can guarantee that the
right contours exist without actually constructing
them.

Computing the possible limit curves is now an ex-
ercise in computer algebra.
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Specialization to c =1

pn(2) = /O (b= 1)1 (1 =+ 2)]"dL,
tn(2) = / (1 — )t~ (¢(1 + 2) — D)]dt,

et (2) = /O (1= 0)¢(1 + ) ]"dt.

Let Q.(t) = (1 —t)t* 1(¢(1 4+ z) — 1), then

Q.00)= Q:()=@. () =0

and

d
%Qz (t) ‘t:tl,g(z) — 0

where
a(z+2)+pu

2z+1)(1+a)’

tl’Q(Z’) =

n=(a?2% + 4z + 4)1/2,
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Therefore, from Corollary 2.6 and the above ob-
servation, the critical curve for p,(z), ¢.(z) and

€la—1)n (Z) 18

12 :1Q=(t1(2))] = [Q=(t2(2))]},

which is
az+2z24+24+pu| laz—2—p ozz—|—2a—,ua_1_1
az+224+2—p| |laz—24pu| |laz+ 204+ p B

where
p=(a?2% + 4z +4)1/2,

The critical curves for « = 2, o« = 3, @ = 5 and
o = 8 are shown in Figures 1, 2, 3 and 4 respec-
tively.

In Figures 5 and 6, we plot the zeros of p,(z) and
gn(z) for a = 2, n = 20 and @ = 3, n = 10
respectively. We also plot the zeros of e(q_1)n(2)
for « = 3, n = 15 in Figure 7.
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Theorem 3.1. For a > 1, {g,(2)}*/™ converges
to Q,(t2(z)) uniformly on any compact subset of
R1, Ry and R3, and to Q,(t1(2)) uniformly on any
compact subset of Ry. Moreover, the limit points
of the zeros of {qn(2)}5, are dense on the branch
Bs, which 1s the boundary between R3 and Ry4.

Theorem 3.2. For o > 1, {p,(2)}'/™ converges

o (1 4+ 2)*Q.(t1(z)) uniformly on any compact

subset of Ry and Rs, and to (1 + 2)*Q.(t2(2))

uniformly on any compact subset of R3 and Ry4.

Moreover, the limit points of the zeros of {pn(2)}5%,
are dense on the branch Bo, which is the boundary

between Ro and Rs.

Theorem 3.3. Fora > 1, {e(a_l)n}l/” converges
to (1+2)Q.(t2(2))/2? uniformly on any compact
subset of Ry and to (14+2)%¢,(t1(2))/2? uniformly
on any compact subset of Ry, R3 and Ry. More-
over, the limit points of the zeros of {e,(2)}>2,
are dense on the branch By, which is the bound-
ary between Ri and Rs.
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Theorem 4.1. Let p,(2), qu(2) and e(g—1)n(2)
be as in Corollary 2.2 in the case c = 1. Then we

have that (1 + 2)*" g, (2)/pn(2) converges

(a) to oo uniformly on any compact subset of Ry
and Ry (as in Figures 1,2,3,4);

(b) to 0 uniformly on any compact subset of Ro;

(c) to 1 uniformly on any compact subset of Rs.

Remark. Observe that 1 can not be approximated
on any region strictly larger than R3 by the Rouché’s
Theorem, so R3 s a natural maximal region of
denseness.

Theorem 4.2.

{1+ 2)*"r,(2) : 7h(2) € Thom toeyq

is dense in A(K) where K is an arbitrary compact
subset of R3.
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The Polynomial Case: ¢c=0

Theorem 5.1. If c:=0then q,(z) and eqn(z) have
the same critical curve

{z:12(1+2)% = a®/(1+ ) "},

and the limit points of the zeros of q,(2) or eqn(2)
can only cluster on this curve .

Theorem 5.4.

{(1+2)*"pn(2) : pu(2) € T}
is dense in A(K) where K is an arbitrary compact

subset of R3 as in Fig. 8.

The limit points of the zeros of {q.(2)}S, are
dense wn the boundary between Ri and Rg.

The limit points of the zeros of {ean(2)}SL, are
dense 1n the boundary between Ri and Rs.
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Question. For which sets K is
(L4 2)""rn(2) 1nia
dense in A(K) ?

Uniform convergence to 1 of {x?"r, (x)} is not pos-
sible on any interval [b, 1] with

b < tan* (7 (0 — 1)/46)
and this is essentially sharp. (Saff and Rachmanov)

Uniform convergence to 1 of {e“r,(z)} is not pos-
sible on any interval |0, a| with a > 27 (compare
b = 2 for polynomials).

Question. What is the maximum measure of

{z 1| (2)/ra(2)] >=n}

in the complex plane? (On the line it is 27 )



