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Abstract

Abstract: Two problems of Smale that

imply a version of P %= NP over C.

These are from a paper of Smale en-
titled " Mathematical problems for the

next century.” They are problem 4.



Introduction

Smale Verbatim

Problem 4: Integer zeros of a poly-

nomial of one variable.

A program for a polynomial f € Z[t] of
one variable with integer coefficients is
the object (1,¢t,uq,...,ur) where up = f,
and for all [, u; = u;0uj,¢,5 <l and o
is one of 4,— or %, Here ug = t and
u_1 = 1. Then 7(f) is the minimum of

k over all such programs.



Is the number of distinct integer zeros
of f, polynomially bounded by 7(f)? In

other words, is

Z(f) <ar(f) forallf € Z[t].

Here Z(f) is the number of distinct in-
teger zeros of f with a, ¢ universal con-

stants.

From earlier results of Strassen, com-
municated via Schonhage, Shub, and
Burgisser, it follows that the exponent

Cc has to be at least 2.



Mike Shub and I discovered this prob-
lem in our complexity studies. We proved
that an affirmative answer implied the
intractibility of the Nullstellensatz as
a decision problem over C and thus
P #= NP over C.

See (Shub-Smale, 1995) and also BCSS.

Since the degree of f is less than or
equal to 27, + = 7f), there are no more
than 27 zeros altogether.

For Chebyshev polynomials, the num-
ber of distinct real zeros grows expo-
nentially with r.



Many of the classic diophantine prob-
lems are in two or more variables. This
problem asks for an estimate in just
one variable, and nevertheless seems

not so easy.

Here is a related problem. A program
for an integer m is the object (1, mq, ..., m;)
where m;p = m, mg = 1 and for all [,
m; = mj omy, 5,k <l and o is one of
+,— or x, Then 7(f) is the minimum of
kK over all such programs. Thus 7(m)
represents the shortest way to build up
an integer m starting from 1 using plus,

minus, and times.



Problem: Is there a constant ¢ such
that 7(k!) < (log k)¢ for all integers k?

One might expect this to be false, so
that k! is hard to compute (see Shub-
Smale, 1995).



A Start

As above let S be the set of all poly-
nomials in Z[t] for which there exists a

program
(1,t,uq,...,ug)
where u; = f, and for all [,
Up = U; 0 Uj, 4,5 <

and o is one of 4,— or x,

Here ug =t and u_1 € A where A is a

fixed finite set of integers.



Some programs with k£ :=1

[17t7 2]7 [17t7 0]7 [17t7 1]7 [17t7t —I_ 1]7

[17t7 _t_l_]-]) [17t7t]7 [17t7t_1]7 [17t7 2t]7 [17t7t2]

A variety of length 3 programs are:

[1,¢,2¢, —t 4+ 1, —t2 + ¢]

[17t7 072t7t]
[1,¢,t+1,2¢, 2]
[1,¢t,t—1,—t+1,—2¢+ 1]

[1,¢,t2, 212, 4 %]



One can compute that 5§51 has cardi-
nality 21, S5 has cardinality 189 and
S3 has cardinality 11301.

Theorem 1

1S,| < (3/2)F(k+2)1(k+ 1) < 2¢klog(k)
for some absolute constant c.

Proof. This is an easy induction. Ev-
ery program of length k gives rise to at

most 3((k+ 2)(k + 1)/2) programs of
length k£ + 1.



A Math Review of de A. Moreira
(1997)

The cost of an integer n, denoted 7(n),
IS the least integer m such that there
exists a sequence (sqg,---,sm) Of inte-
gers with the property that sg = 1,
sm = n, and for each [ € {1,---,m}
there exist ¢,5 € {0,--- ,l—1} such that
s; = F(sj,s;) where F is one of addi-

tion, subtraction, or multiplication.



In this paper, the author proves that
for any € > 0, the ratio

log k log k log log loc
#1k < n‘T(k) > loglogk F(1—e) (loglog k)2

n
approaches 1 as n goes to infinity and
that for any € > 0O,

O lO log log o
agn - (34¢) gnlogloglogn

<
m(n) < log logn (log logn)?

for n sufficiently large. He concludes
that

7(n) > logn/loglogn

for almost all n, and that for any € > 0O,
If n is large enough, then

7(n) < (14 ¢€)logn/loglogn.



These bounds improve on earlier re-
sults, such as those in a paper by W. de
Melo and B. F. Svaiter ??Proc. Amer.
Math. Soc. 124 (1996), no. 5, 1377—
1378; MR1307510 (96g:11150)]. The
author also extends the notion of cost
to a polynomial in several variables with
integral coefficients and establishes bounds
for this case which are analogous to
those given above for the integer cost

function.

The final section of the paper is de-

voted to a discussion of some open



problems relating to the integer cost
function 7. The most significant of
these is to determine whether there ex-
ist a sequence of positive integers {n;}:2,
and a positive constant ¢ such that
7(n;i') < (logi)¢ for all i. In a paper by
M. Shub and S. Smale ??Duke Math.
J. 81 (1995), no. 1, 47-54 (1996)] it is
shown that if no such sequence exists,
then an algebraic version of NP #= P is

true.



A Math Review of Q. Cheng (2004)

It has long been observed that certain
factorization algorithms provide a way
to write products of large numbers of
integers succinctly. In this paper, we
study the problem of representing the
product of all integers from 1 to n (n!)

by straight-line programs.

Formally, we say that a sequence of in-
tegers an, is ultimately f(n)-computable
if there exists a nonzero integer se-

quence my, such that for any n,apnmn



can be computed by a straight-line pro-
gram (using only additions, subtrac-
tions and multiplications) of length at
most f(n). M. Shub and S. Smale
[Duke Math. J. 81 (1995), no. 1, 47—
54 (1996); MR1381969 (97h:03067)]
showed that if n! is ultimately hard to
compute, then the algebraic version of
NP %= P is true.



Assuming a widely believed number the-
ory conjecture concerning the density
of smooth numbers in short intervals,

a subexponential upper bound

(exp(cvIognloglogn))

for the ultimate complexity of n! is proved
in this paper, and a random subexpo-
nential algorithm constructing a corre-
spondingly short straight-line program

IS presented as well.



Binomial Coefficients with Division:

Let N, be the set of all integers m for
which there exists a program (0, 1, uq, ..., ug)
where up = m and for all [,

up = u; £ ujg, 1,5 <l
or

Up = Uy ok U, 1,5 <
or

u; = ui/uj, 1,9 <.

(Here division is "integer division” so
a/b := q where a = bg + r where 0 <
r <b.)



T heorem

and

are in

Proof

Consider

2 Both

()

No(log(n))-

Fp = (1 + 10™)"



Then F, is an integer with n? digits
with (") embedded in the middle. Note

that (,:;L) is of maximum size 2". So in

the expansion each binomial is seper-

atd by zeros.

So, for example,

(1+10%)8 =
1000000080000002800000056000000
7000000056000000280000000

300000001.



Note that F;, evaluates as a straight

line program in in O(log(n) steps.

Note also that

2n—1 2 27?,—2 4

27’1,
n | —
(2 ) (2n—1> (2n—2) <2n—3>
So if binomial coefficients are polyno-
mial in log(n) then so are factorials (or

at least factorials of powers of 2).

So if spliting an integer in halfis O(log(n))

then so is computing factorials.



Division allows for this as follows. To
get the (m+1)th through nth digits of

M compute as follows. Let
a:= (m/10™) x 10™.

Then a has lowest m digits zero and
the rest agree with those of M. Now
let

b:= (n/10™) = 10"

and consider (b —a)/10™.



Questions and stuffF.

Question. Does anything distinguish

S analytically/combinatorially?

Question. Can one tell whether an
element is in S without computing all
of Sk?

Question. Is number of irreducible

factors the right question?



Question. Find an unconditional al-
gorithm for n! that is subexpontial in
the sense of [?]. That is better than
eV10dn  And does not require assump-

tions on smooth numbers.

Question. What about binomial coef-

ficients?
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