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Abstract: A number of classical and
not so classical problems in number the-
ory concern finding polynomials with
integer coefficients that are of small
norm. These include some old chest-
nuts like the Tarry-Escott problem and

Littlewood’s (other) Conjecture.



Let
n .
Zn:={z aizz:aiEZ}
1=0

denote the set of algebraic polynomi-
als of degree at most n with integer
coefficients and let Z denote the union

over n of all such polynomials.

Let
n .
Fn = { > a2’ ia; € {-1,0, 1}}
1=0

denote the set of polynomials of de-
gree at most n with coefficients from
{—1,0,1}. These are the polynomials
of degree n of height 1.



Let
n .
Ly = { > a;2'ia; € {1, 1}}
1=0

denote the set of polynomials of de-
gree at most n with coefficients from
{—1,1}. In general we will call polyno-
mials with coefficients {—1,1} Little-

wood polynomials.



P1l. The Integer—Chebyshev Prob-
lem. Find the polynomial in Z, that
has smallest possible supremum norm
on the unit interval. Analyse the asmp-

totic behaviour as n tends to infinity .

Let

CN[Oé, ﬁ] L=

| vy \N
min OHaO—I—ala}—I—...—I—aNaz e8] -

a;€z,aNF~

One can show that

Cla, 8] := lim _Cnla, 5]



exists. This is the integer Chebyshev
constant for the interval or the inte-
ger transfinite diameter. One can also
show that

<Clo,1] <
2.3768— € 2.360

Lemma Suppose

qm(w)zam$m++ao, amEZ
has all its roots in (0,1). (That is:
gm € TR(0,1)). Provided (qm,pn) =1

l/n 1
||pn||[0 ]_] 1/m°



It is conjectured (Chudnovskys, Mont-
gomery) that the lemma gives the right
bound. (This is likely false.)



P2. The Tarry—Escott Problem. Find
the polynomial of with integer coeffi-
cients that is divisible by (x — 1)™ and
has smallest possible 1{ norm. (That
Is, minimize the sum of the absolute

values of the coefficients.)

Almost equivalently (though not quite
obviously) this polynomial must have
coefficients {0,—1,41} and so

HP||L2{|Z|:1} = V2n.



The Basis for the Conjecture

214 NPl 2PN = o((z—1)M).

For N =3,...,10 with

[Ot]_,... ,OéN] and [/817"' 7/8N]

e [1,2,6] =[0,4,5]

e [0,4,7,11] = [1,2,9,10]

e [1,2,10,14,18] = [0, 4,8,16,17]

¢[0,4,9,17,22,26] = [1,2,12, 14,24 25]



e [0,18,27,58,64,89,101]
— [1,13,38,44,75,84,102]

o [0,4,9 23 27 41,46, 50]
— [1,2,11,20, 30,39, 48, 49]

e [0,24,30,83,86,133,157,181, 197]
—[1,17,41,65,112,115,168,174,198]

e [0,3083,3301,11893,23314,24186,
35607,44199, 44417, 47500] =

[12,2865,3519,11869,23738,23762,
35631,43981,44635,47488]



New Size 10 and 12 solutions

e [0,12,125, 213,214,412,
413,501,614, 626)]

— [5,6,133,182, 242, 384, 444, 493,
620, 621]

e [-515, 452, —366, —189, —103,
103,189, 366,452, 515]

— [-508,—471, —331, —245, —18,
18,245,331,471, 508]

e [0,11,24,65,90,129, 173,
212,237,278,291, 302]
— [3,5,30,57,104,116, 186,
198,245 272,297, 299]



Diophantine Form

Find distinct integers

[Oé]_,... ,OéN] and [ﬁlwﬂ 7BN]
so that
a1 +...+tay=01+...+ 06N

4. o =624+...+5%

of P oyt =" 48N

The problem is completely open for N >
13.



P3. Erdds and Szekerez Problem.

For each n minimize
(1 —291)(1 —2%2)...(1 —2")||p

where the «o; are positive integers. In
particular show that these mins grow

faster than 8" for any positive constant

3.

Call this minimum Sy. From the PTE

problem

Sy > 2N



Examples

~
o
~ e
N~ N~
i
e e
mmnmm O
n R s s B
M o -
— o - - N M
et BTN S I e B e B
e TR e T
N = OO O MM
e T S
. ONOWMNNOO .~ -
e T S S
w NS ONOON o
- }4534544599
. }333233333.
~ NN AN
YA n e e e e, e, e e e, e~ e e
alllllllllllll
A N i e o e e e s ek e e o
i
— ONOWOWOS 0O
NSO D S NN S
ZHAMOStwWONO S THO



Conjecture Exceptfor N =1,2,3,4,5,6
and 8

Sy > 2N + 2.

e Maltby solves this for N=7, 9 and 10.



P4. Littlewood’s Problem In L.
Find the polynomial in L, that has small-
est possible supremum norm on the unit
disk. Show that there exist positive
constants c1 and c» so that for any n
is it is possible to find pn € Ly, With

c1vn < |pn(2)] < cov/n
for all complex z with |z| = 1.
Littlewood, in part, based his conjec-

ture on computations of all such poly-
nomials up to degree twenty.

Odlyzko has now done 200 MIPS years
of computing on this problem



P5. Erdos’s Problem in L. Show
that there exists a positive constant c3

so that for all n and all p, € Ly, we have
lpnllp > (1 + c3)/n.

P6. The Merit Factor Problem.
Find the polynomial in L, that has small-
est possible Lo nhorm on the unit disk.
Show that there exists a positive con-

stant cq so that for all n and all pp, € Ly,
we have L4(pn) > (1 + c4)v/n.

P7. The Barker Polynomial Prob-
lem. Forn > 12 and pn € Ly La(pn) >

((n+1)2 4 2n))1/4,



A Barker polynomial

n

p(z) = Y apzF
k=0

with each a; € {—1,+1} so that

n

p(2)p(z) == Y 2"

k=—n

satisfies co = n+ 1 and

ei] < 1, i=1,23....



If p(z) is a Barker polynomial of degree

n then

plla < ((n 4+ 1)2 4+ 2n))1/4



P8. Lehmer’s Problem (1933). Show
that a (non-cyclotomic) polynomial p
with integer coefficients has Mahler mea-
sure at least 1.1762.... (This latter
constant is the Mahler measure of 1 +
z—z3—z4—z5—26—z7—|—z9—|—zlo.)

A conjecture of similar flavour is

P12. Conjecture of Schinzel and
Zassenhaus (1965). There is a con-
stant ¢ so that any non-cyclotomic poly-
nomial p, of degree n with integer co-
efficients has at least one root of mod-

ulus at least c/n.



This conjecture is made in Schinzel and
Zassenhaus [1965]. It is easy to see
that P8 implies P12. The best partial
is due to Smyth. If p is a non-reciprocal
polynomial of degree n then at least

one root p satisfies

[o]
p=>14 9¢

n
where ¢ = 1.3247 ... is the smallest
Pisot nhumber, namely the real root of
23— 2 —1.






P9. Mahler’'s Problem. For each n
find the polynomials in L, that have
largest possible Mahler measure. Anal-
yse the asymptotic behaviour asn tends

to infinity.



P10. Multiplicity of Zeros of Height
One Polynomials. What is the maxi-
mum multiplicity of the vanishing at 1

of a polynomial in Fn7?

P11. Muliplicity of Zeros in L,,.
What is the maximum multiplicity of

the vanishing at 1 of a polynomial in
Ln?
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