POLYNOMIALS WITH
INTEGER COEFFICIENTS
AND SMALL NORM

PETER BORWEIN

Simon Fraser University Centre for
Constructive and Experimental
Mathematics

http://www.cecm.sfu.ca/~ pborwein

Typeset by AAS-TEX



2

We survey a number of old and difficult
problems all of which involve finding poly-
nomials with integer coeflicients with small
norm.

These problems are unsolved and most are
at least 35 years old.

e Section I: Integer Chebyshev Problems

e Section II: Prouhet-Tarry-Escott Prob-
lems.

e Section III: Littlewood Type Problems.



I — INTEGER CHEBYSHEV PROBLEMS

The basic problem is very fundamental.
It is to find a polynomial with integer co-
efficients of minimum supnorm on an in-
terval.

Problem 1.1. For any interval [c, 8] find

Qla, f] := lim Qnla, 5]

N — oo



One can show that

Qla, B] := lim Qnla, 5]

N —o00

exists. This quantity is called the integer
Chebyshev constant for the interval or the
integer transfinite diameter.

On [—2,2] (or any interval with integer
endpoints of length 4) this problem is solv-
able because the usual Chebyshev polyno-
mials normalized to have lead coefficient
1 have integer coeflicients and supnorm 2.

So [-2,2] = 1.

There are no other intervals were the ex-
plicit value is known.



Since

Qla, b] < Q,a, b]

for any particular n upper bounds can be
derived computationally from the compu-
tation of any specific ,|a, b]. So if

po(x) ===

.= 29x% — 58x° + 4022 — 11z + 1,

()
()
()
()
ps(x) := 132 — 202° + 9z — 1,
()
()
()
()

+ 32432% — 108923 + 21622 — 23z + 1.



We have

Proposition 1.1. Let

Poro = p5-pS"-p3t - p3-pa-ps-Da-pr-ps-Do;

then

)1/210 1

(I[P2101l10,1] = 93543,

and hence

200,1] < :
0,1] < 2.3543 ...

Refinements on the method

Q[0,1] < .
2.3612 ...




Of course when the coefficients of the poly-
nomials above are not required to be inte-
gers this reduces to the usual problem of
constructing Chebyshev polynomials and
the the limit (provided ay = 1) gives the
usual transfinite diameter. From the un-
restricted case we have the obvious in-
equality

b—a
4 9

Q,[a,b] > 2/m

However inspection of the above example
shows that the integer Chebyshev poly-
nomial doesn’t look anything like a usual
Chebyshev polynomial.



In particular it has many multiple roots
and indeed this must be the case since we
have the following lemma.

Lemma 1.3. Suppose p, € Z, (the poly-
nomials of degree n with integer coefficients)
and suppose qi(z) == apz®+---+ag € Z
has all its roots in |a,b]. If pp, and qx do
not have common factors, then

1/n _
(Ipallfas) "™ > lar| =",

From this lemma and the above mentioned
bound we see that all of p; through pg
must occur as high order factors of integer
Chebyshev polynomials on [0, 1] for suffi-
ciently large n.



There is a sequence of polynomials that
Montgomery calls the Gorshkov—Wirsing
polynomials that arise from iterating the
rational function

 z(l-ux)
u(@) := 1 —3x(1l—x)

These are defined inductively by
go(z) :=2x -1, q(z):=5z°—5z+1
and

In+1 = Gp + Gnln_1 — Gp_1-

It transpires that

n) q?%—l — Qn

(n) _
u — .
2%21—1 — {4n
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FEach ¢ is a polynomial of degree 2* with
all simple zeros in (0,1) and if by is the
lead coefficient of ¢; then

lim bY/?" = 2.3768417062. . . .

Wirsing proves these polynomials irreducible.
If follows now from Lemma 1.3 that

1
Q0,1] > :
0,1] 2 2.3768417062. ..

Montogomery conjectured that if s is the
least limit point of |az|~'/* (as in in Lemma
1.3) over polynomials with all their roots
in [0,1], then Q[0,1] = s. Chudnovsky
further conjectured that the minimal s arises

from the Gorshkov—Wirsing polynomials
and so s would equal (2.3768417062...)" 1.
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We show that

Q[0,1] > ! 4
= 93768417062, .. ©

This shows that either Montogomery’s con-
jecture is false or the the Gorshkov—-Wirsing
polynomials do not give rise to the mini-
mal s. This leads us to ask

Conjecture 1.4. The minimal s arising
in Lemma 1.3 does not give the right value

for Q[0,1].

Habsieger and Salvy show that Integer Cheby-
shev polynomials on [0, 1] need not have

all real roots. The first non totally real
tactor occurs for n = 70.

This is a non-trivial computation and is

quite likely NP hard.
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II. IDEAL SOLUTIONS OF THE
PROUHET-TARRY-ESscoTT PROBLEM

Conjecture 2.1. For any N there exists
p € Z[x] (the polynomials with integer co-
efficients) so that

p(z) = (. — DVq(x) = Spapa”

and
ll(p) = Zk|ak\ = 2.

Note that the degree of the solution is not
the issue. The problem is in terms of the
size of the zero at 1.



13

It is a reasonably simple exercise to see
that 2NV is a lower bound so this would
be the best possible result for any V.

[t is probably equivalent (though not prov-
ably so) to restrict to polynomials with co-
efficients {0, —1,+1} and in this case we
are looking for a p € Z|z] with a zero of
order n at one and with

1P| Log)z|=13 = V2N.

What is actually provable is that any so-
lution of Problem 2.1 must have all coet-
ficients in the set {0, —1,4+1, -2, 4+2}.
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An entirely equivalent form of Problem
2.1 asks to find two distint sets of integers

a1, ... ,an] and [B1,...,ON] so that

041+‘|—04N:51‘|—+6N
aj+...+axn =06 +...+ 6%

aof T tay =00 Ay

This equivalence is an easy exercise in New-
ton’s equations. The later form is the
usual form in which the problem arises
and 1s stated.
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Sets of integers (as above) are called ideal
solutions of the Prouhet-Tarry-FEscott prob-
lem. Non-ideal solutions are ones where
the size of the sets is allowed to be greater
than the number of equations plus one.

This conjecture explicitly goes back at least
to Wright in 1935. It is not clear why the
conjecture is made. There is not a con-
vincing heuristic for it. Solutions exist for
N up to and including 10 and no solutions
are known for any /N > 10. For the cases
up to 10, except for 9, there are known
to be infinitely many solutions. For N =
9 two solutions are known. (We do not
count as distinct solutions that arise by
linear transformation.)
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Suppose
N aN —gPr PV = 0((z—1)N).
We write the solutions in the form

[051,... ,OzN] — [ﬂl,... ,ﬁN]

Solutions for N = 2,3,4...,10 are given
by

0,3] = [1, 2]
11,2,6] = 0,4, 5]

0,4,7,11] = [1, 2,9, 10]

1,2,10,14,18] = [0, 4, 8, 16, 17]

[0,4,9,17,22,26] = [1,2,12, 14, 24, 25]
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[0, 18,27, 58, 64, 89,101] = [1, 13, 38, 44, 75, 84, 102]
[0,4,9,23,27,41, 46, 50] = [1, 2,11, 20, 30, 39, 48, 49]
[0, 24, 30, 83, 86, 133, 157, 181, 197]
=[1,17,41, 65,112,115, 168, 174, 198]
[0, 3083, 3301, 11893, 23314,

24186, 35607, 44199, 44417, 47500]
= [12, 2865, 3519, 11869, 23738,

23762, 35631, 43981, 44635, 47488)]

The size 10 example above illustrates the
problems inherent with searching for a so-
lution.
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The smaller solutions were found by Es-
cott and Tarry in the early part of this
century. The size 9 and 10 solutions are
due to Letac and were found in the early
Forties (without the aid of computers).

Problem 2.2. Design an algorithm to es-
tablish whether or not solutions exist of
modest size (say N < 15) and modest
height (say 1000).

There are only two of size N =9 known.
98, 82,58,34,—13,—16,—69, —75, —99]
= [—98, —82, —58, —34,13, 16,69, 75, 99|
and
[174,148,132,50,8, —63, —119, —161, —169] =
= |—-174,—148, —132, 50, -8, 63,119,161, 169]
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Variations on the Theme.

If we can’t make the [{ norm of a polyno-
mial with a zero of order V at 1 be 2N
how small can we make 1t?

Problem 2.3. Findpyx € Z|z] where py(x) =
(x — 1)V q(x) = Bapz® so that

l1(pn) = Bla;| = o(N7)
or

P(pn) = (Slai)V? = o(N?)

A combinatorial argument shows that

l1(pn) < N?/2

1s possible for all N.
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This is where the problem is stuck (at
least in terms of the principal term of the
asymptotic) and even getting a bound like
N?2/(2 + ¢€) would be major progress.

This problem arises in the context of a
problem Wright called the “easier Waring
problem”. The Waring problem asks how
many positive Nth powers are required to
write every sufficiently large integer as a
sum of Nth powers. The “easier War-
ing problem” allows for differences as well
as sums. The “easier” has proved to be
a misnomer since currently the best ap-
proaches to the “easier Waring problem”
all go through the Waring problem.



21

Fuchs and Wright observed that if

l1(pn) = O(AN)

then the Easier Waring problem is also
O(Apn). (Here N is the power under in-
vestigation in Waring’s problem.) At the
moment Waring’s problem is known to be
O(Nlog N) (though it is suspected to be
O(N)). So showing that

l1(pn) = o(N log N)

would be a very major result.
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If we demand that p has a zero of order
N but not of order N + 1 at 1 then

11(p) = 0((log N) N*?)

1s possible but this is all that is known
(Hua).

This argument is considerably harder than
the one that gives O(N?) without the ad-
ditional requirement that the multiplicity
of the zero be exactly N. Any improvement
on this would be interesting.
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Problem of Erdos and Szekeres (1958).

One approach to the Prouhet-Tarry-Escott
problem is to construct products of the
form

p(x) = (H(l - mo‘z)) .

k=1

Obviously such a product has a zero of
order IV at 1 and the trick is to minimize
the [{ norm.

Problem 2.4. Minimize over {aq,... ,an}
N
lh (H(l — 37&))
k=1

Call this mintmum EY;.
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The following table shows what is known
for NV up to 13.

@%ﬂ@m%@mr—*z

—_ = =
w N = O

Hp”ll

2
1
6
8
10
12
16
16
20
24
28
36
48

{ag,...,an}

{1}

{1,2}

{1,2,3}

{1,2,3,4}

{1,2,3,5,7}
{1,1,2,3,4,5}
{1,2,3,4,5,7,11}
{1,2,3,5,7,8,11,13}

{1 2,3,4,5 7,9,11,13}
{1,2,3.4.5.7.9. 11,13, 17}
(1,2,3,5,7,8,9,11,13,17,19)
{1,....9,11,13,17}
{1,...,9,11,13,17, 19}

)
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For N :=1,2,3,4,5,6,8 this provides a
ideal solution of the Prouhet-Tarry-Escott
problem. For N = 7,9,10,11. that these
kind of products cannot solve the Prouhet-
Tarry-Escott problem. For N = 7,9,10
the above examples are provably optimal.

Conjecture 2.5. FEzxcept for N =1,2,3,4,5,6
and 8
E% > 2N +2.

Erdds and Szekeres conjecture that £
grows fairly rapidly.

Conjecture 2.6. For any K
Ey > NE.

for N sufficiently large.
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III - LitTTLEWOOD TYPE PROBLEMS

Here we are primarily concerned with poly-
nomials with coefficients in the set {41, —1}.
Since many of these problems were raised
by Littlewood we denote the set of such
polynomials by £, and refer to them as
Littlewood polynomials. Specifically

( )
n

L,:=<p:plx)= Zaj:vj, a; € {—1,1}

7=0

Y
.

\ /

The following conjecture is due to Lit-
tlewood probably from some time in the
fifties. It has been much studied and has
assoclated with it a considerable signal
processing literature
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Conjecture 3.1. It is possible to find p,, €
L, so that

Civn+1<|pn(2)| < Covn+1

for all complex z of modulus 1. Here the
constants C7 and Cy are independent of
n.

Such polynomials are often called “locally
flat”. Because the Lo norm of a polyno-
mial from L, is exactly v/n + 1 the con-
stants must satisty C7 <1 and Cy > 1.

It is still the case that no sequence is known
that satisfies the lower bound.
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A sequence of Littlewood polynomials that
satisfies just the upper bound is given by
the Rudin-Shapiro polynomials:

po(z) =1, qo(z):=1
and

Prt1(2) = pu(@) + 2 qu(2),

dn+1(2) = pu(@) = 2 gu(2)

These have all coefficients &1 and are of
degree 2™ — 1. From

Prt1]” + [gnt1l” = 2(Ipal” + |gn]?)

we have for all z of modulus 1

pa(2)] < 2v2" = V2y/deg(p,)

and

40 (2)] < 2V2" = V24/deg(q,)
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This conjecture is complemented by a con-
jecture of Erdos.

Conjecture 3.2. The constant Cy 1n con-
jecture 3.1 is bounded away from 1 (inde-
pendently of n).

This is also still open. Though a remark-
able result of Kahane’s shows that if the
polynomials are allowed to have complex
coefficients of modulus 1 then “locally flat”
polynomials exist and indeed that it is
possible to make C7 and C5 asymptoti-
cally arbitrarily close to 1. Another strik-
ing result due to Beck proves that “locally
flat” polynomials exist from the class of
polynomials of degree n whose coefficients
are 400th roots of unity.
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Because of the monotonicity of the L, norms
it 1s relevant to rephrase Erdos’ conjec-
ture in other norms. Newman and Byrnes
speculate that

pll3 > (6 — &)n”/5

tor p € L£,, and n sufficiently large. This,
of course, would imply Erdos’ conjecture
above. Here

lall, = (/O% l4(0)[7 dﬁ/(%))

1s the normalized p norm on the boundary
of the unit disc.

1/p
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It is possible to find a sequence of p,, € L,
so that

[[pnll3 =< (7/6)n".

This sequence is constructed out of the
Fekete polynomials

=5 (5) 4

k=0 p

where (5) is the Legendre symbol. One

now takes the Fekete polynomials and cycli-
cally permutes the coefficients by about
p/4 to get the above example due to Tu-
ryn.

Computations suggest that the 7/6 con-
stant may be too large. Although it is
conjectured to be best possible.
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Problem 3.3. Show for some absolute
constant 6 > 0 and for all p,, € L,,

plla = (1 +6)v/n

or even the much weaker

Iplla > Vi + 6.

There is a large literature on this prob-
lem sometimes called the “Merit Factor”
problem.

A very interesting question is how to com-
pute the minimal L4 Littlewood polyno-
mials (say up to degree 200).
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A Barker polynomial

n

p(z) = Z apz"

k=0
with each ar € {—1,+1} so that

n

p(2)p(2) := Z 2"

k=—n

satisfies co = n + 1 and
ci| <1, 7 =1,2,3....

Here

n—j

c; = g Ak 0n_ I and C_j = C;j.
k=0
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If p(z) is a Barker polynomial of degree n
then

plla < ((n+ 1)2 1 Qn))l/zl

The nonexistence of Barker polynomials
of degree n is now shown by showing

1palla > (n+1)Y2 + (n+1)"2)2.

This 1s even weaker than the weak form
of Problem 3.3.

It is conjectured that no Barker polyno-
mials exist for n > 12.
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We computed expected L, norm of Little-
wood polynomials (B and Lockhart). For
random q,, € L,

E(T|L|1q/712”p) X (F(l —|—p/2))1/p

and for derivatives

E(lgs"||,)
n(2r+1)/2

- (2r+1)7 AT (L4p/2) 7
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Lehmer’s Conjecture.

Mahler’s Measure 1s defined as tollows: if

n

p(z) = ][ (z = ai)

i=1
then

M(p) = H max{1, |«;|}

or equivalently

M) = e { [ log (e i

Conjecture 3.4 (Lehmer). Suppose p
1s a monic polynomial with integer coeffi-
cients. Then either M(p) =1 or M(p) >
1.1762808....
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This can be thought of as a generaliza-
tion of Kronecker’s theorem which can be
stated as: M (p) = 1 implies that p is cy-
clotomic.

Note that M(p) is really the Ly norm so
this too 1s a growth problem and in fact
for this conjecture it is sufficient to con-

sider only polynomials with coeflicients in
the set {0, —1,4+1}.

The minimal Mahler measure for a non-
cylotomic p is speculated to be given by
pi=a042%9 2" 20— -zt —234+2+1
for which M (p) = 1.17628081825991750. .. .
This is also speculated to be the smallest
Salem number.
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Problem 3.5. Do there exist polynoma-
als with coefficients {0, —1,+1} with roots
of arbitrarily high multiplicity inside the
unit disk.

A negative answer to the above would solve
Lehmer’s conjecture.

Mahler raised the problem of the maxi-
mum Mahler measure.

Problem 3.6. Does there exist a sequence
of Littlewood polynomzials p,, € L,, so that

M (pn,
lim (p):

N

This 1s a weak form of the one Erdos con-
jecture.
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Zeros of Littlewood Polynomials.

Theorem 3.7. Every polynomial p,

n

pn(m):ZaJ-azj, ’a0|:17 ‘aj| <1,
j=0

has at most | 2/n| + 4 zeros at 1.

Theorem 3.8. For everyn there is a poly-

nomial p of degree n with coefficients in
the set {0, —1,+1} having at least

cy/n/log(n +1)

zeros at 1.



40

Thus the right upper bound for the num-
ber of zeros a polynomial p,, with coeffi-
cients in the set {0, —1,4+1} can have at
1 is somewhere between c¢14/n/log(n + 1)
and co4/n with absolute constants ¢; > 0
and co > 0.

Problem 3.8. What is the maximum mul-
tiplicity of the zero at 1 for a polynomuial
of degree n with coefficients in {0, —1,4+1}.
In particular, is it O(n'/?)?

This problem has substantial application
to effective bounds in Roth’s Theorem par-
ticularly if the answer to the above con-
jecture is affirmative.
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Boyd shows that there is an absolute con-
stant ¢ such that every p € £,, can have at
most ¢log? n/loglogn zeros at 1. Since it
is easy to give polynomials p € £, with
clogn zeros at 1 the following question is
suggested.

Problem 3.9. Prove or disprove that there
1s an absolute constant ¢ such that every
polynomeal p € L,, can have at most clogn
zeros at 1.



