EFFICIENT ALGORITHMS
FOR THE ZETA FUNCTION

PETER BORWEIN

Simon Fraser University

Typeset by AMS-TEX

Abstract.

A very simple class of algorithms for the compu-
tation of the Riemann-zeta function

to arbitrary precision in arbitrary domains is pro-
posed.

These algorithms far out perform the standard
methods based on Euler-Maclaurin summation.

They do not compete with the Riemann-Siegel for-
mula based algorithms for computations concern-
ing zeros on the critical line (Im(s) = 1/2) where
multiple low precision evaluations are required.

They are easier to implement and are far easier to
analyse.

3

Algorithm 1. Let p,(z) := >._,arz” be any
polynomial of degree n not zero at -1. Let

) = (1) (Zum pn<1>>

k=0

then
| nolo .
R s AT D (R D
where
B 1 1 1 pn(x)|log z|*~1
Ens) = pn(—1)(1 — 21—s)r(3)/0 T

Here I' is the gamma function.

4

Proof. We use the standard formulae.

1 S—
C(s) = ! /|1ng| “dr Re(s)) >0
0

(1 —21=5)I'(s) 14+ 2
and
1 1 ! m s—1
(1) = F(s)/o "™ |log x|°~ “dx
Now
&n(3)
- 1 1 1 pn(x)]log z[*1
C opa(=1)(1 = 2172) T(s) /0 I
B 1 1 Lo (—1)|log 1571
pn(—1)(1 —217%) I'(s) /0 1+ e
1 1 ! pn(_]-) _pn(x) s—1
IO E Ty i el

The first term above gives ((s) and the last term

expands to give the series expansion in the algo-
rithm [l

The trick now is to choose p,, so that the error in
the integral for ¢, divided by p,(—1) is as small
as possible.

The Chebychev polynomial, shifted to [0, 1], and
suitably normalized maximize the value p,(—1)
over all polynomials of comparable supremum norm
on [0,1].

So the Chebychev polynomials are one obvious
choice for p,,.

Another obvious choice is p,(z) := 2™ (1 — x)".

Both have interesting features.

Algorithm 2 Let

ke
n—|—7,—1 '4Z
=n
n—z
0

1=

then

C(S) 1_21 3 i dk_d)+7n(3)

=0

DN =

where for s = o + it with o >

2 1 1

(3+v8)r II(s)] (1 —2172)

[(s)| <

t|m

.3 G +2[t))e' T
T (348 [(1—2179)

7

Proof. The formula we need for the nth Cheby-
chev polynomial on [0, 1] is

n—l—k— 1)!
T (nz 2k, 4k pk

from which the expression for dj is deduced. To
estimate the error we observe by Algorithm 1

1 1 LT, (x)|log x]* !

n — d
¥ ()] d,(1— 21=5) T(s) / 1+ .
< 2 / | log z|*~
3+ VB)" |(1—213 s)| I+
Now use

Ik
/ dr < .68
o L4+
and

8

Since (3 4+ v/8) = 5.828... and this is the driv-
ing term in the estimate, we see that we require
roughly (1.3)n terms for n digit accuracy, provided
we are close to the real axis.

An even simpler algorithm, though not quite as
fast, can be based on taking p,(x) := 2™(1 — z)".

Algorithm 3 Let

I n!
¢ = (=1 [; A= 2

(where the empty sum is zero). Then

—1 plany €4
()= g & Gy

where for s = o + 1t with o0 > 0

|t

1 (14]L])e
n < >

If —(n—1) <o <0 then

1 4lol
(s)| <
S S)

(Note that v,(s) =0for s = —1,—2,... ,—n+1.)

10

The fact that convergence persists into the part of
the half plane {re(s) < 0} is a consequence of the
fact that

1

ni] — n

/ L (.TC) |1ng|s—1
0 1+

converges provided Re(s) > —n.

Thus Algorithm 3 gives another proof of the ana-
lytic continuation of the {(s)(1 — s).

Because 1/I'(s) = 0 for s a negative integer we
have that v,(s) =0 for s=—1,-2,... ,—n + 1.

However since

_Bon

((—2n+1) = >

the sum in Algorithm 3 computes Bernoulli num-
bers, for s = —1,... ,—n + 1, exactly.

11

For modest precision (100 digits or less) Algorithm
3 above compares with Maple’s inbuilt algorithm.
However, we were computing ((5) at lest ten times
faster at 1000 digits precision.

Neither Maple nor Mathematica would compute
5,000 digits of ((5) on SGI R4000 Challenges.

By comparison Algorithm 3, implemented in Maple,
computed 20,000 digits in under two CPU hours.

For Euler-Maclaurin Bernoulli numbers have to
be computed. If they are then stored a second
evaluation will be much faster. Euler-Maclaurin
is unattractive for very large precision computa-
tions. It is storage intensive to compute Bernoulli

numbers. (Pari crashes with a 40 mb stack on
5000 digits.)

The binomial-like coefficients of Algorithms 2 and
3 are much easier to compute and require only
one additional binomial coefficient per term which
computes by a single multiplication and division.

12
Optimality
Algorithms 2 and 3 are nearly optimal in the fol-

lowing sense. There is no sequence of n-term ex-
ponential polynomials that essentially better.

Theorem 1 Let 1 < a < f and let n be fixed.
Then

and
16(5) = 3" Tl = (D B)"
k=1 "k

for any real (a) and (bg).

Here D(a,) is a positive constant that depends
only on o and 8 and ||.||jo,5 denotes the supre-
mum norm on |«, (3].

13

Proof. Under the change of variables s — —log(x)/log(2)
for some real (ci), (di) and (eg)

n

1¢(s) = Z—gn[a,m

k=1

= | leog(k)/log@) — Z Akt |[[2-5 20
k=1 k=1

n n
> 1) a" =D diea[lz-p 5-a)
k=0 k=1

where the last inequality follows by a comparison
theorem. Now we have the explicit estimate

mn mn 1
1> 2" =) dra|lp--m g 2 T
k=0 k=1 (C+vC?—1)

where C := (3 +27 =) /(1 —2=(F=2))

