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We consider the problem of minimizing the
uniform norm on |0, 1] over polynomials p

p(w):Zaja:'j, la;j| <1, a; €C
Jj=m
with fixed |a.,| # 0.

This is equivalent to the question of how many
zeros such a polynomial can have at 1.

Particular cases include:
Polynomials with coefficients in the set {—1,0,1}.

Polynomials with coefficients in the set {0, 1}
on the interval [—1,0].
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So obviously



2. NUMBER OF ZEROS AT 1

Theorem 2.1. There is an absolute constant
c > 0 such that every polynomaal p of the form

n
p(x):Zajzvj, la;| <1, a;€C
§=0

has at most
¢ (n(1 —log|ao)"/?
zeros at 1.

Applying Theorem 2.1 with g(x) := 2~ "p(z~1)
gives the following:



Theorem 2.2. There 1s an absolute constant
c > 0 such that every polynomaal p of the form

n
p(x):Zaja:j, la;j| <1, a; €C
j=0

has at most
¢ (n(1 - log a,|))"/?

zeros at 1.

Sharpness of the above theorems, up to con-
stants, is shown by the next result.
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Theorem 2.3. It exp(—3n) < |ag| <1, then
there exists a polynomial p of the form

n
p(x):Zaj:cj, la;j| <1, a; €C
j=0

such that p has a zero at 1 with multiplicity
at least

1
(1 (1 = log Jao)) "/ ~ 1.

The next two theorems treat the case ag = 1.
The proofs are attractive and we will work
through them. (As time allows.)



Theorem 2.4. Ewvery polynomial p of the form

n

pz) =Y ajz’,  an|=1, a5 <1
§=0

has at most 5y/n zeros at 1.

Theorem 2.5. For everyn € N, there exists

2n?
pn(x) = Z a;z’
j=0

such that as,2 = 1; ag,ay,... ,as,2_1 are real
numbers of modulus less than 1; and p,, has a
zero at 1 with multiplicity at least n.



Theorem 2.5 immediately implies

Corollary 2.6. For everyn € N, there exists
a polynomaial

n

pn(x) = Zaj:z:j, a, =1,

j=0

ag, a1, ... ,a, are real numbers of modulus less
than 1, and p, has a zero at 1 with multiplic-

ity at least |\/n/2].

The next related result is well known:



Theorem 2.7. There 1s an absolute constant
c > 0 so that for everyn € N there is ap € F,
having at least cy/n/log(n + 1) zeros at 1.

Theorems 2.4 and 2.7 show that the right up-
per bound for the number of zeros a poly-
nomial p € F,, can have at 1 is somewhere
between c1+/n/log(n + 1) and cov/n with ab-
solute constants ¢; > 0 and ¢y > 0.

This gap looks quite hard to close.
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Our final result in this section is a simple ob-
servation about the maximal number of zeros
a polynomial p € A,, can have.

Theorem 2.8. There is an absolute constant
¢ > 0 such that every p € A, has at most
clogn zeros at —1.
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Remark to Theorem 2.8. Let R, be de-
fined by

Ru(2) = [0 +a"),

where a1 := 1 and a;41 is the smallest odd
integer that is greater than >, _, ax.

It is tempting to speculate that R,, is the low-
est degree polynomial with coefficients {0, 1}
and a zero of order n at —1.

This is true for n := 1,2,3,4,5 but fails for
n := 6 and hence for all larger n.
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3. RESTRICTED CHEBYSHEV PROBLEM

Theorem 3.1. There are absolute constants
so that

exp (—cln(l — log \am\))l/Q)

<inf ||pH[0,1]
p

< exp (—eon(1 —log am]))'/?) |

where the inf is taken over 0 £ p of the form

n

p(x):Zajxj, la;j| <1, a; €C

j=m

with |ay,| > exp (3(1 —n)) .
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This specializes to

Theorem 3.2. There are absolute constants
c1 > 0 and co > 0 such that

exp (~e1v/n) < inf pljo.y < exp (~e2v)

for polynomaals of the form

n

p(x):Zaj:Ej, la;j| <1, a,=1.

j=m
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For the class F,, we have

Theorem 3.3. There are absolute constants
c1 > 0 and co > 0 such that

exXp (—61\/5)

< inf
< ot [l

< exp (—CQﬁ(log(n + 1))_1/2> :
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The approximation rate in Theorems 3.2 and
3.3 should be compared with

min ol = 2
p(x)::xn_|_...€73 [O 1] 4 9
and also with
< min [l < S0
1111 .

The first equality above is attained by the
normalized Chebyshev polynomial shifted lin-
early to [0,1] and is proved by a simple per-
turbation argument. The second inequality is
much harder (the exact result is open).
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It is an interesting fact that the polynomi-
als 0 #£ p € Z, with the smallest uniform
norm on [0, 1] are very different from the usual
Chebyshev polynomial of degree n.

For example, they have at least 52% of their
zeros at either 0 or 1. Relaxation techniques
do not allow for their approximate computa-
tion.

Likewise, polynomials 0 # p € F,, with small
uniform norm on [0, 1] are again quite differ-
ent from polynomials 0 # p € Z,, with small
uniform norm on |0, 1].
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The story is roughly as follows. Polynomials
0 # p € P,, with leading coefficient 1 and with
smallest possible uniform norm on [0, 1] are
characterized by equioscillation and are given
by the Chebyshev polynomials explicitly.

In contrast, finding polynomials from Z,, with
small uniform norm on [0, 1] is closely related
to finding irreducible polynomials with all their
roots in [0, 1].
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As we shall see the construction of small norm
polynomials from F,, is governed by how many
zeros such a polynomial can have at 1.

It is interesting to note that the polynomials
0 # p € P, with leading coefficient 1 and
with smallest uniform norm on [0, 1] have co-
efficients that alternate in sign.

This also appears to be true for the analogous
polynomials from Z,, (though this is only con-
jectural and probably quite hard to prove).
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This is quite different from the story for F,.
We show that for polynomials p(—x) with 0 #
p € A, we get a very much larger smallest
possible uniform norm on [0, 1].

Theorem 3.4. There are absolute constants
c1 > 0 and co > 0 such that

exp (—cylog*(n + 1))
< inf —
< it lp(=2)ll.1]

< exp (—czlog®(n + 1))
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4. TOOLS

In the general case the tools are:

Denote by S the collection of all analytic func-
tions f on the open unit disk D := {2z € C :
|z| < 1} that satisfy

F) < —

, eD.
=12

Theorem 4.1. There are absolute constants
c1 > 0 and co > 0 such that
ci1/a C2
)" < exp (Z) I fll-a
for every f € S and a € (0, 1].
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Hadamard Three Circles Theorem. Suppose
f is regular. Let M(r) := max), =, |f(2)].
Then forri <r <rs

M(T)log(frg/rl) < M(Tl)1Og(r2/T>M(T2>log(r/Tl).

Halasz Lemma. For every k € N, there ex-
ists a polynomaal h € Py such that

h0)=1, h(1)=0, |h(z)|<exp (%)
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5. PROOFS OF THE MAIN RESULTS

Theorem 2.4. FEwvery polynomial p of the form

n

p) =3 aal,  laal=1, o<1
§=0

has at most 5v/n zeros at 1.

Proof of Theorem 2.4. If p has a zero at 1 of
multiplicity m, then for every polynomial f
of degree less than m, we have

(*)  aof(0) +aif(1)+--+anf(n)=0.
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We construct a polynomial f of degree at most

5y/n, for which

fln) > fO+[fW]+ -+ [f(n=1)].

Equality (*) cannot hold with this f, so the
multiplicity of the zero of p at 1 is at most the
degree of f.

Let T, be the v-th Chebyshev poly. Let
g:=To+1T1+---+1T) €Ps.
Note that ¢g(1) =k + 1 and
g(cosy) =1+ cosy + cos2y + - - - + cos ky
sin(k + 3)y + sin 3y
2 sin %y '
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Hence, for —1 < x < 1,

N

9(@)] < ==

Let f(x) = g*(3 ~1). Then f(n) = (k-+1)'

SO Dl +f (n- 1|<Z<_J) .

If k:= [ (7?/6)/4y/n| then
fln) > fO+[fW]+ -+ [f(n=1)].

In this case the degree of f is 4k < 5y/n. O
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Theorem 2.5. For every n € N, there exists

2n?
pn(x) = g a;z’
J=0
such that as,2 = 1; ag,ay,... ,as,2_1 are real

numbers of modulus less than 1; and p,, has a
zero at 1 with multiplicity at least n.

Proof of Theorem 2.5. Define
(n!)? ot dt
21t Jr [1aeo (t — K2)

where the simple closed contour I' surrounds
the zeros of the denominator in the integrand.

Ly(x) =
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Then L,, is a polynomial of degree n? with a
zero of order n at 1.

Also, by the residue theorem,

n
L,(z)=1+ Z ck,nxkz
k=1

N () )
" [l jzr(k2—3%)  (n—Fk)}(n+k)

It follows that

Ck,n§2, k:1,2,...,n
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Hence,

L,(z)+ L,(z?)
2

gn(x) :=

is a polynomial of degree 2n? with real co-
efficients and with a zero of order n at 1.
Also ¢, has constant coefficient 1 and each
of its remaining coefficients is a real number
of modulus less than 1. Now let p,(z) :=

2x”2qn(1/x). ]

Proof of Theorem 2.8. Suppose P € A,, has
m zeros at —1. Then (14 z)™ divides P. On

evaluating the above at 1 we see that n >
2™ — 1 and the result follows. [
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6. COMMENTS

There is an obvious interval dependence in the
problem of finding minimal elements from F,,.

On any interval [0, 6] with 6 < 1/2 the only
polynomials from F,, with minimal uniform
norm are +x" .

On [0,1/2] all of £2™ and (2™ — 2"~ 1) are
extremals.

On any interval [0, 6] with 6 > 1/2 the poly-
nomials 4(z" — 2~ 1) work better than z",
so the nature of the extremals change at 1/2.
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