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Littlewood’s well-known and now resolved
conjecture of around 1948 concerns poly-
nomials of the form

n

p(z) = Z a; 2",

g=1

where the coeflicients a; are complex num-
bers of modulus at least 1.

It states that such polynomials have L
norms on the unit circle

0D :={zeC:|z|=1}
grow at least like
clog n.

This was proved by Konjagin and inde-
pendently by McGehee, Pigno, and Smith.



Pichorides, who contributed essentially to
the proof of the Littlewood conjecture, ob-
served that the original Littlewood con-
jecture (when all the coefficients are from
{0,1}) would follow from a result on the
L1 norm of such polynomials on sets £ C
0D of measure 7.

Namely if

n
E S50

for any subset £ C 0D of measure m with
an absolute constant ¢ > 0, then the orig-
inal Littlewood conjecture holds.

ldz| > ¢

Konjagin recently gave a lovely probabilis-
tic proof that this hypothesis fails.



He does however conjecture the following:
for any fized set £ C 0D of positive mea-
sure there exists a constant ¢ = ¢(F) > 0
depending only on E such that

n
E'%5

In other words the sets . C 0D of mea-
sure 7 1n his example where

n
B30

must vary with ¢ > 0.

|dz| > c(E).

|dz| < €

€

We show that Konjagin’s conjecture holds
on subarcs of the unit circle 0D.



This relates to a variety of conjectures
by Erdos, Littlewood and others from the
fifties concerning p of the form

p(z) == Z Cn 2" cn £ 1.

Erdos’ Conjecture. The supremum norm
of p (as above) on the boundary of the unit

disc is > (1 + €)V/N.

Littlewood’s Other Conjecture. There
is some p (as above) so that for all z on
the boundary of the unit disc

p(2)]
C1 < \/N

Here C7 and Cy are independent of N.

< Chs.
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2. THE MAIN THEOREM

Let & denote the analytic functions f on
the open unit disk D that satisty

1
@IS gy 2D

Theorem 1. For f € § with f(0) = 1.
If X is any arc of the circle of length e,

D [ tog, 1) ldn(2)+ [ Tog_ | £(2)ldu(2)
> (.
and, for any p > 0,
[ 1 @Pdue) > Beexp(=pre),

Here C, D, E > 0 and F' are absolute

constants.



Nazarov has now extended this to L.

Proof: Let D. be a C? Jordan domain
contained in the unit disc D. Suppose
that D, contains the origin and suppose
that the boundary of D, consists of two
pleces: a piece of arc, A\, of length € on
the unit circle and a curve A\, contained
strictly within the unit disc.

Let wp_(z) be the harmonic measure of
D, with respect to the point O.



Recall that if ¢ is a conformal map from
D to D, with ¢g(0) = 0 then the harmonic
measure wp. 1 defined on Borel sets A in
the boundary of D, by

where p is linear Lebesque measure on
the circle normalized to give the full circle
measure 1.

For any sufficiently smooth Jordan domain
(as above) the harmonic measure on Ap is
given by a distribution in the sense that

dwp, (2) = ac(z)du(z)

where « 1s strictly positive and continu-
ous on A;. (On Ay the same distribution
is integrated against the surface measure.)



The function a, is just minus the outward
normal derivative of the Greens function
of D, with a pole at 0 (up to normaliza-
tion.) So its strict positivity is given by
the Hopt Lemma. This all says that har-
monic measure in this instance behaves
like arc length.
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Thus we may assume that D, is chosen
so that there exist positive absolute con-
stants M, Ms, and M3 so that for any
fes

| togls(@)lden. (=) < My
A2
and also so that

| togl#(e)idon. (2
A1

< My / log | £(2)|dp(2)

M / log., | £(2)]du(2)

The first assumption above follows because
log |f(2)] < |log(1 — z)| while the second
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assumption is a consequence of the inter-
mediate value theorem (applied to the in-
tegrals of log, |f(z)| and log_ |f(z)| sep-
arately). We may further assume that on
v1 the measure wp_ behave uniformly like
arclength in the sense that

0< My < wp. (1) < M:
€

and that dwp_(2) = a.(2)du(z) where
Mg < ae(z) < M7

and My, My, Mg and M, are absolute pos-

1t1ve constants.

We are now in a position to prove the the-
orem.
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We first prove the theorem for a fixed D..
Since log | f(z)| is subharmonic we can find
a harmonic function F' that agrees with

log |f(z)| on the boundary of D.. This is
a harmonic majorant for log |f(z)| so

0 = log| £(0)| < F(0).
Thus

0 < F(0) = [\ P, (2

://\2 F(z)dwpe(z)+/ F(z)dwp, (2)

A1

< M, + / log | £(2)|dwp. (=)

< M / log |£(2)|dpa(=)+ M / log., |£(2)|du(2)

1

+ M.



13

Here the last inequality follows from the
assumptions on the contours. For any p >
0 we have by Jensen’s inequality

/ log | £(2)]dwp, (2) <
A1

(1/pon. () log[(wn (1) [ If )P, (2)]
71

Since dwp_(z) = a(z)du(z) with a. strictly

positive and continuous on A; and since

| f(2)] is positive

| f(2)|Pdp(z) > Eeexp(—Fpe™ ).

Y1

Here F := MgM, > 0 and F := M, /M-
are independent of € and p. This completes
the result for a fixed e.
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Up to this point M; and Ms,, in princi-
pal, depend on €. To see that we can
make the estimate independent of € we
argue as follows. First we observe that
it 1s sufficient to prove that the estimate
is uniform for a nested sequence of arcs,
Ae,, Whose lengths, €;, tend to zero. Here
we are denoting by )., the piece of the
boundary of the domain of D¢, that is on
the unit circle. Now suppose we choose,
as we may, the domains D, so that they
satisfy the conditions previously outlined
and they also tend very smoothly to a cir-
cle contained in the unit disc that contains
zero and 1s tangent to the circle at a sin-
gle point. It is now an easy compactness
argument to see that uniformity. This fol-
lows mostly from the fact that the normal
derivatives of the Greens functions stay
uniformly bounded away from zero. [
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It is possible to find a polynomial in the
class § with constant coefficient 1 that is
small on a subset of the unit circle of mea-
sure as close to full measure as one wishes.
This method was suggested by Nazarov.

Lemma 1. For every r € (0,1/2) there
exists a trigonometric polynomaial

n

p(z) =) ¢

j=—n

such that co =1, |¢;| < r and |p(2)| < r
everywhere on the unit circle except in a
set of linear measure at most r.

Proof. The finite Riesz product
N
p(z) =[] (@ +rz™ +rz7m)
71=1
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with m; := 4/ and sufficiently large N is
such an example. For r € (0,1/2) the
Riesz products tend to 0 almost every-
where on the unit circle as N — oco. [

The transfinite diameter of any closed proper
subset of the unit circle i1s less than one so

Lemma 2. For every R > 0 there exists
a polynomial

M

f(z) = Z az"

k=0

with integer coefficients and |f(z)] < R
everywhere on the boundary of the unit
circle except possibly on a set of linear
measure at most R.
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Theorem 2. For every R > 0 there ex-
1sts a polynomaal in the class S with con-
stant coefficient 1

M

f(z) =) a2

k=0

such that |f(2)| < R everywhere on the
boundary of the unit circle except possibly
on a set of linear measure at most R.

Proof. Take f as is in Lemma 2 and con-
sider f(z™) for large, as yet unspecified,
M. (This does not effect the measure of
the subset of {|z| = 1} where f(z™) is

small).

Now Lemma 1 can be used to system-
atically replace any fixed coefficients of
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f(z™) of size greater than one by a coef-
ficients of size one smaller and some addi-
tional terms with coefficients of small size.

This can be done so as to have as small
an effect on the size of the exceptional set
as one desires. (The required sizes of the
M’s depends only on the maximum size ot
coefficient of f and on the choice of r in

Lemma 2.) O



