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Introduction.

Let

denote the polynomials of degree n with integer
coefficients.

Let

1/n
(%) Q [a, 0] :=< inf ||p||[a,b])

0#pEZ,

and let

Qla, b] ;= i%f{Qn[a,b]} = lim Q,la, b].

n—oo

Any polynomial satisfying (x) above is called an
n-th integer Chebyshev polynomial on [a, ] .

A main (hard) problem is to determine [0, 1].
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The above limit exists and equals the inf mostly
because

(Qnsmla, )" < (Qafa, B])" (Qnfa, b))

We have from the unrestricted case the trivial in-

equality
b —
Qa,b] > — ‘.

We also have

Qla, b] < Qy,la, b]

for any particular n.

Thus good upper bounds can be achieved by com-
putation (although the computation to any degree
of accuracy is hard).

The limit ©2[a, b] may be thought an integer version
of the transfinite diameter.
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Hilbert showed that there exists an absolute con-
stant ¢ so that

b o\ /2
inf  ||pllryfay < cn'/? ( a>

0#£pEZ, 4

and Fekete showed that

(Qula,B)" <2727 (n— 1) (b . >/

There are many refinements.

From the above it follows that

. . 1/2
’ asﬂ[a,b]s(b “)

4 4

We restrict to b — a < 4.



There is a pretty argument due to Gelfond to see
that integer coefficients really are a restriction on
[0, 1].

If 0 # p, € Z,, then

1
||pn||[20,1] > ||pn||%2[0,1} :/0 pi(w)dw

. m
~ LOM(1,2,....,2n+1)

# 0
where LCM denotes the least common multiple.

Now LCM(1,2,...,n))"™ ~ e, by the prime num-
ber theorem and it follows that

Q[0,1] > 1/e.

This is not however the right lower bound.



The best previous bounds, due to Amoroso and
Gorshkov,

1 1
<Q[0,1] < .
(2.37686.. . . ) (2.3541...)

The upper bound comes by example.

We work hard to improve this result in the third
digit in the upper bound and in the twenty seventh
digit in the lower bound.

For the above lower bound we use



7

Lemma. Suppose p, € Z, and suppose qi(z) :=
apz® 4+ -+ ag € Zi, has all its roots in [a,b]. If
Pn and qi do not have common factors then

1/n _
(Ipalljae) " > lax~H*.

Proof. Let 31, s, ..., 0% be the roots of ¢qi.. Then

|ak|npn(ﬁ1)pn(52) " 'pn(ﬁk)

is a non-zero integer and the result follows. [

There exist infinitely many relatively prime poly-
nomials ¢ € Zj, with all roots in (0, 1), and with

lead coefficients satisfying ai/k < 2.37686.... This
comes from iterating (xr — 1/z) on (—o0, 00).

This number (2.376...) was conjectured (by the
Chudnovsky’s) to be ©[0, 1].

It is also conjectured (by H. Montgomery) that the
best bound given by the lemma is Q[0, 1] .



Computing Integer Chebyshev Polynomials.

We restrict our attention to the interval [0, 1]. Though
we observe in passing that

(Q[-1,1))* = (20, 1])* = [0, 1/4]
as a consequence of the changes of variable x — 22
and z — z(1 — x) and symmetry.

The dependence of the constant €2[a,b] and the
minimal polynomials on [a, b] is interesting and is
explored a little further later.

Even computing low degree examples is compli-
cated. There is no good algorithm and getting
examples of say degree 100 seems intractable.



Very Small Examples.

n n-th integer Chebyshev poly on [0,1]

1

2 (1l — x)

3 r(l —xz)(2z —1)
4 z2°(1—2)* or x(1—2z)(2x—1)?
5 7?(1 —2)?(2zx — 1
6

Note that we do not have uniqueness, though it
is open as to whether we have uniqueness for n
sufficiently large.
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Examples in L, |0, 1]. which minimize ||py || 1,01
This was done in pari by using minum.

Degree 13

(522 — 5z +1)(22 — 1)%2%(2 — 1)°

(522 — 52+ 1)(22 — 1)%(z — 1)%42°

(522 — 52+ 1)(22 — 1)%(2 — 1)%2*

(22 — 1)(522 =52+ 1)(z — 1)°2°

(22 — 1)(52% =52+ 1)%(z — 1)%2*

(22 —1)3(z —1)°2°

(22 — 1)(z — 1)*2%(292* — 582°% + 4022 — 11z + 1)
Degree 14

(522 — 52+ 1)(22 — 1)%(2 — 1)°2°
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Degree 16
(522 — 5z +1)(22 — 1)%(2 — 1)52°
Degree 17
(522 — 52+ 1)(22 — 1)%(2 — 1)%2°
Degree 18
(22 — 1)3(522 =5z + 1)(2 — 1)%2°
Degree 19
(522 =52 +1)(22 —1)3(2 — 1) 27
Degree 20

(522 — 52+ 1)(292* — 582% + 4022 — 112+ 1)(22 —
1)%(z — 1)52°



PolT

We have

12

3243z* — 1089x° + 21622 — 23z + 1
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Proposition. Let

Poio:=po -3 - p3t - pl - pa-ps-pe - props Do

then
1/210 1
P _
(I210]l10.1) (2.3543...)
and hence
1
Q[0,1] <
(2.3543...)

Proof. This proof is obviously just a computational
verification. It is the algorithm for finding Ps1q
which is of some interest. It is based on LLL lat-
tice basis reduction in the following way.

a] Lattice basis reduction finds a short vector in
a lattice. If we construct a lattice of the form

p(z) - Z ot = Zﬁkzk
k=0 k=0
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where p is a fixed polynomial and the set

{(OAQ, aq,... ,Oén)}

1s a lattice then the set

{(507 617 s 7ﬁm)}

is also a lattice, and L LL will return a short vector
in the sense of > 7" |3k|* being relatively small.

Observe that (3°7, |ﬁk|2)1/2 is just the Lo norm
on the unit disk of the polynomial ;" Brz".

So LLL lets us find polynomials of small Ly norm
(and hence small sup norm) on the disk, and we
can do this while preserving divisibility by a fixed

p.

b] Convert the problem from the interval |« f]
to the disk. This is easy. One first maps [, 3] to
[—2,2] by a linear change of variables. One then
lets © := 2z 4+ 1/z. This maps a polynomial in x
on [—2,2] to a polynomial in z and 1/z on the
boundary of the unit disk.
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c] Attack the problem incrementally by using a]
and b]. That is, at the k-th stage find a polynomial
qr of degree kN divisible by ¢r_1 of degree (k —
1)N using LLL on a lattice of size N + 1. This
allows us to keep the size of LLL fairly small and
uses the fact that integer Chebyshev polynomials
tend to have (of necessity) many repeat factors.
We used N = 10 in the actual computation and
started with ¢p :=1. [
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We can computationally refine the above.

Proposition. The inequality

1
Q0. 1/4| <
0,1/4) < (5.5723...)
and hence
1
[0,1] < .
(2.3605...)

holds.

This is done by minimizing over
aq a2 ag
PPy P

which is a linear problem.

Corollary. Let k be a positive integer, and let
P10 be as in the penultimate Proposition. Then
(Pa10)" divides all the n-th integer Chebyshev poly-
nomials on [0, 1] provided n is sufficiently large.
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Proof. Each p;, i = 0,1,---,9 is irreducible and
satisfies

pi(z) = apa® + a2 4o ag

with
lax|/* < 2.36.

Each p; also has all roots in [0, 1]. It follows now
by the first Lemma that if ¢) is a polynomial of
degree n with integer coefficients, and

1/n 1
<
UI@nllo)™"" < 2.3605

then p; divides Q).

Markov’s inequality gives the arbitrarily high mul-
tiplicity eventually. [
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We deduce immediately as above.

Corollary. The polynomials

Po,P1s--- P9

are the only irreducible polynomaials with all their
roots in [0, 1] of the form

p(z) = an2" + an_12" 7"+ 4 ag

with
|an Y™ < 2.36.
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3. Finer Structure.

The exact dependence of Q[a,b] on the interval
la, b] is interesting and complicated. If we let

Qz) = Q|0, z]
Then clearly €2 is a non-decreasing function on
(0,00). Obviously
lim Q(x) =0

x—0

(consider =™ on [0,46]). So Q(x) maps [0, 4] onto
[0,1].

It is an exercise to show that {2 is in fact con-
tinuous. This follows mostly from a theorem of
Chebyshev that gives

1Pnllf0,640 < (14 Fes)"[|Pnllfo,6
for every p, € P,.
What is less obvious is that Q(x) is locally flat on

many intervals. Indeed it is conceivable that the
derivative of {2 is almost everywhere zero.
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Theorem. Let T, :=T,{[0, 1]} be an n-th integer
Chebyshev polynomial on [0,1]. Then T, is of the

form
T,(x) = 2"(1 — 2)*S, _op(x)

where (0.26)n < k if n s large enough.

As a consequence, there exists an absolute con-
stant 6 > 0 (independent of n) so that T;, is an
n-th integer Chebyshev polynomial on larger in-
tervals [—a, 1 + a] for every a € (0, §].

Another consequence is that the Chudnovsky lower
bound conjecture is false. Essentially because the
integer Chebyshev polynomials are geometrically
smaller near the endpoints than over the whole
interval.

Likely, for the same reason, Montgomery’s conjec-
ture is also false.
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The Schur-Siegel Trace Problem.

Let o := a7 be an algebraic number with conju-
gate roots aws, -+ ,a,. We say that « is totally
real (positive) if all the «; are real (positive).
The trace of a totally positive algebraic integer is

a1+ ag 4+ an.

Except for finitely many explicit exceptions, if «
is a totally real algebraic integer then then

M AT S 648 Schur (18)

d
T TN 113, Siegel (43)
a1 +O‘2—g'”+&d > 1.771, Smyth (83).

Note that 4 cos?(w/p) is a totally positive algebraic
integer of degree (p — 1)/2 and trace p — 2 for p
prime. So the best constant in the above theorem
is less than 2.

Connection to the integer Chebyshev Problem is
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Proposition. If

1

(0,1 :
0.1/m] < ——

Then, with finitely many exceptions,

Oz1+ozz;--+ozd > 5

for every totally positive algebraic integer aq of
degree d > 1 with conjugates ao, ... , aq.

Proof. Mostly an application of the original lemma,
and the Arithmetic-Geometric mean inequality. [

Corollary. If a; is a totally positive algebraic in-
teger of degree d > 1 with conjugates as, ... ,aq
then

Qp + Qg + -+ Qy

> 1.752
d

with at most finitely many exceptions. (No excep-
tions of degree greater than 8.)
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This is not as good as Smyth’s result. It, how-
ever, follows immediately from a computation, as
in Section 2, which shows that

210,1/200
0,1/200] < 201.752

and gives the factors of an example which yields
the above upper bound.
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{-1,0,1} Polynomials.

We examine a number of problems concerning poly-
nomials with {—1,0,1} coefficients. We are par-
ticularly interested in how small such polynomials
can be on the interval [0,1] and in what kind of
Markov inequality such polynomials can satisty.

Let

P, = {Z a; ' a; € R}

i=0

Let

Z, = {Z a;x' :a; € L}
Let

Fr = {Z a;x' s a; € {—1,0,1}}
i=0

Let
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So obviously

A C F,C Z, C P,

Theorem A (Chebyshev Problem for F,). There

are absolute constants ¢; > 0 and co > 0 so that

exp (—e1v/n(log(n + 1)))

< inf ||P
<t [Pl

< exp (—CQ\/ﬁ(log(n + 1))_1/2) .

This should be compared with

min lplin = 2
pri=aig...ePy L 0,] 4
and also with
1 e 1+0(1)

< ] n < —-
a6, <o pallo < 55503
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Small norm polynomials from P,, are characterized
by equioscillation and are given by the Chebyshev
polynomials explicitly.

Small norm polynomials from Z,, is closely related
to finding irreducible polynomials with all their
roots in [0, 1]

The construction of small norm polynomials from
F. 1s governed by how large a zero such a polyno-
mial can have at 1.

The polynomials of smallest supremum norm on
0, 1] from P, have coefficients that alternate in
sign. This also appears to be true for the anal-
ogous polynomials from Z, (though this is only
conjectural and probably quite hard to prove). In
both case this is because all the zeros should lie in
the interval [0, 1].
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There are many related results on heights of poly-
nomials with prescribed zeros at 1 (Amoroso, Bombieri,
Mignotte, Vaaler...) and many related results on
minimizing {0, +1, —1} polynomials (Kahane, Lit-
tlewood, Newman...).

The story for F,, is different again. Here poly-
nomials with alternating sign coefficients (that is
p(—z) € A,,) give very much worse rate of approx-
imation.

Theorem B (Chebyshev Problem for A, ). There
are absolute constants c; > 0 and co > 0 so that

exp (—c1 log®(n + 1))

< inf P(—
_o;égleAn” ( 33)”[0,1]

< exp (—czlog?(n + 1))
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We also have a Markov type inequality

Inequality. There is an absolute constant ¢ > 0
so that

1P [lf0,1] < cnlog®(n + D[ P]l[0,1)

for every P € F,.

The Markov factor enlog®(n + 1) should be com-
pared to the factor 4n? which is best possible over
the classes P,, and Z,, (in this case Z, behaves
identically to P,, because the Chebyshev polyno-
mial has rational coefficients and is extremal for
this Markov inequality).
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2. Minimal {-1,0,1} Polynomials on [0, 1].

The proof of the estimate for F,, requires a se-
quence of lemmas.

Lemma. There is an absolute constant cs > 0 so
that for every n € N there is a P € F,, having at
least c3+/(n/log(n + 1) zeros at 1.

Proof. Let F* denote the set of polynomials of
degree at most n with coefficients from {0,1}. The
number of different outputs of the map

M(P) = (P(l), P'(1),. .. ,P<k—1>(1)) . PecF

1s at most
k—1 |
H (n+1)n?) < (n+ 1)k(E+1)/2,
§=0

There are 2"+ different elements of F*. So if
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then there are two different P, € 7 and P, € F}
so that

PP 1)y=rP1), j=0,1,....k

that is 0 # P, — P, € F,, has at least k zeros at 1.
Note that

(2log2)(n+ 1)
kg\/ log(n + 1) —1

implies

which finishes the proof. [
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Proof of the upper bound of Theorem A. Let
P, (z) :=2*"S, () € Fsn
where S,, € F,, is of the form
Su(2) = (2 = 1)* Qn-r(2).,  Qu-k € Pu—s
with k& > c3+/(n/log(n + 1) (see the Lemma ).

Then

1Pl (0,11
< ™ (1 = 2)*ljo,1 | Qn— 0,13
4n n k & en\
< 1)° (—)
= (4n+k> <4n+k> (n+ D77
k
< (n+1)3 (Z) — exp(—klog(4/e) + 3log(n + 1))

< exp (—eav/n(log(n + 1))7/2)

[

For the lower bound we use



32

Lemma. Ifn €N, |ag|,|a1],...,|an_1| <1, and
a, = 1, then the multiplicity of the zero of

p(x) = ag + arx + aox? + -+ + a,x"
at 1 is at most 8y/n.

Proof. If p has a zero at 1 of multiplicity [/, then
for every polynomial f of degree less than [, we
have

(1) aof(0) a1 f(1) 4 -+~ +anf(n) = 0.

We construct a polynomial f of degree at most

8+/n, for which

2)  fl) > [fOI+ A4+ [f(n =1

Equality (1) cannot hold with this f, so the mul-
tiplicity of the zero of p at 1 is at most the degree

of f.

Let T, be the v-th Chebyshev polynomial, k£ € N,
and let

g(z) =To(x)+T1(x) + - + Tp(x).
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This is a polynomial of degree k; g(1) = k+1; and
if 0 <y < 7 then

g(cosy) =1+ cosy+ cos2y + ---+ cos ky

sin(k + %)y + sin 2y
2 sin = 5Y

hence, for —1 <z < 1,

[FO)f+...+[f(n—1)

i%zw—n < 4n?.

If k£ := [2y/n] then (2) holds. In this case the
degree of f is 4k < 8y/n. O

|\
.
IM:
|—\
N
[\
o
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Lemma of Halasz. For every k € N, there exists
a polynomial h of degree k so that

h(0)=1, h(1)=0, |n(2)|<e®, if |z/<1.

The proof of the lemma can be found in “Studies
in Pure Mathematics / To the Memory of Paul
Turan”, pp. 264-265.

Lemma. For every n € N there exists a polyno-
mial
p(x) =ag+ arx+ -+ apa”

so that a, = 1, |ag|,...,|an—1| < 1 and p has a
zero at 1 with multiplicity at least %\/ﬁ

Proof. We may assume that n > 36, otherwise the
statement is trivial.

Let k£ := [\/8n| + 1 and [ := [%] Let h be a
polynomial given by the lemma, that is the degree
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of his k, h(0) =1, h(1) = 0, and if |z| < 1 then
h(2)| < eF. Let

F(@) = (M=) = bo + bra + bya® + - - + bz

The degree of the polynomial f is kI < n; the mul-
tiplicity of the zero of f at 1 is at least [ because
of the choice of h; f(0) = by = 1; and for |z| < 1,
17(2)| < e*. The last inequality, together with
the Parseval formula, implies that

bo|? + |b1|* + - - - + |bwg|?

1 271' ) "
= — [ Jf(e)Pdt<et <eif <e? <2
27T 0
Since by = 1, it follows that each of by, bs, ... , by

has modulus less than 1.

[
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Proof of the lower bound of Theorem A. Suppose
0 # P € F,, has exactly k zeros at 1. Then, using
the Lemma and Markov’s Inequality, we obtain

||P||[0,1] > (2n)_2k|P(k)(1)| > (Qn)—c?,ﬁ

(note that |P(®)(1)| is a positive integer, hence at
least 1), and the result follows O
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Minimal {0,1} Polynomials on [—1,0].

Approximation with positive coefficients on [—1, 0]
is equivalent to approximation with alternating co-
efficients on [0, 1] . The main result of this section
shows that this kind of Chebyshev problem for A,,
gives much worse rate of decrease than the corre-
sponding Chebyshev problem for F,,

Theorem B (Chebyshev Problem for A,,). There
are absolute constants ¢1 > 0 and co > 0 so that

exp (—cy log®(n + 1))

< inf P(—
_o;égleAnH ( x)”[o,l]

< exp (—calog®(n + 1))
The key lemma is the following.

Lemma. There is an absolute constant cs > 0 so
that every 0 # P € A,, has at most c3logn zeros
at —1.
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Proof. Suppose P € A,, has n zeros at —1 and
suppose

It follows on a consideration of the derivatives of
P at —1 that the elementary symmetric functions
in the coefficients {a;} vanish up to order n. Thus

(14 x)" divides Z .

1=0

On evaluating the above at 1 we see that a,, >
2™ — 1 from which the result follows. [

Proof of Theorem B. The lower bound comes fol-

lows from the above Lemma exactly as in the proof
of Theorem A.

The upper bound follows from the following ex-
ample. Let
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n

Qu(z) == [[«* (1 +2)

1=1

Then the degree of @ is less than 6! and its

supremum norm on |[—1,0] is bounded by 1/ e
for some ¢ > 1 from which the result follows. To
see the above estimate observe that for = € [0, 1],

n

3" H (1 — :133k)

k=0
n [3%-1
< (ﬂc?’n(l - :13)”“) H Z e
k=0 \ j=0

n+1 3" n
3"4+n+1 3" +n+1 P

1 n+1
< < n + ) 37 D/2 < oxp (—c(n + 1))

—\3"+n+1

with an absolute constant ¢ > 0. [
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Let R, be defined by

ﬁ 1+ 2%

where a7 := 1 and a,i+1'is the smallest odd integer
that is greater than . _, ay.

It is tempting to speculate that R, is the low-
est degree polynomial with coefficients {0, 1} and
a zero of order n at -1. This is true for n :=

1,2,3,4,5 but fails for n := 6 and hence for all
larger n.



