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e Five old chestnuts.

e All involve Chebyshev type problems for
polynomials with integer coeflicients.

e All very hard.

e All have a highly non-trivial computa-
tional component.

e All have accessible partials?

e All very interesting.
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A. The Integer Chebyshev Problem
of Hilbert and Fekete.

1. Problem. Find

CN[CV, ﬁ] =

1
N

. N

(o plleo + o124+ el )

We will restrict to  — a < 4.

2. One can show that

Cla, 8] := lim C,la, 5]

N — oo

exists. This is the integer Chebyshev con-
stant for the interval or the integer trans-
finite diameter.



3. From the non-integer case

b — «

Cla, 8] > ;

and
C|0,4] = 1.

In no other case is C|a, ] known.

4. Hilbert, Fekete (refinements by Kashin)

0 — «
4

1/2
< Clo, f] < (ﬁ;a) .

5. Sanoy, Aparisio (1939, 1979)

1 1

< C0,1] <L :
2.3768 — 0.1} < 2.3307




6. (Gelfond)

1
= < clo,1].
(&
Proof.
1
pal3 4 > / P (2)da
1 1

> > .
— LCM(1,...,2n+1) = e2n(1+9)

7. We (T. Erdélyi and P.B.) show

1 1
<C[0,1] < ——ru.
2.3768— € 2.360

8. The upper bound comes first from
LLL lattice basis reduction. Followed by
refinement using the simplex method. To
use LLL one converts to the disc and pro-
ceeds incrementally.



9. If p(x) =

x67

(z — 1)67
(22 — 1)*
(52 — 5z +1)”
(132° — 192% 4 8z — 1)
(132° — 20z° + 9z — 1)
(292* — 5927 + 402* — 11z + 1)°
(31z* — 612° 4 412* — 11z + 1)
(31z* — 632° 4 442* — 122 + 1)
(9412° — 37642 + 63492° — 5873z
+32432* — 1089z” + 2162 — 232 + 1)
Then

1p(2)|lj0.1) = (2.3543...) 77



10. The lower bound comes from

Lemma. Suppose
() = amax™ + ... + ag, Ay € 2

has all its roots in (0,1). (That is: ¢, €
TR(0,1)). Then, provided (Gm,pn) =1

1

"

1Pl >

e So finding such ¢, with small lead coet-
ficients either gives factors of each Cheby-
shev polynomial or gives a lower bound.

e All the factors in the minimal example

satisty am{ < 2.6 so they are all factors

of all large integer Chebyshev polynomials
n [0, 1].
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11. We can slightly strengthen the Apari-
sio/Sanoy lower bound by proving that for
large n an integer Chebyshev polynomial
has as a factor on [0, 1]

:1:"/4(1 — aj)n/4.
12. The Small Interval Problem.
al] Forn <m/2e
Cnl0,1/m]=1/m

and the nth integer Chebyshev polyno-
mial on [0,1/m] is just z™.

b] However in the limit

1/(m+2) < C[0,1/m] < 1/(m + 1)

c] What is C[0,1/m] ?
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B. The Schur, Siegel, Smyth Trace

Problem.

1. Conjecture. Suppose
pn(z) =anz" + ...+ ap,a; € Z

has all real, positive roots and is irreducible.

Then
Ap—1 2 2n — 1.

2. Partials. Except for finitely many
(explicit) exceptions

an_1 > e'/’n Schur (1918)
an—1 > (1.733..)n Siegel (1943)
an—1 > (1.771..)n Smyth (1983).
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3. The Relationship to the Small In-
terval Problem.

Lemma. If
Cl0,1/m] <1/(m +0)
then, for totally positive polynomaials
Ap_1 > ON
(with finitely many explicit exceptions).
Corollary. 6 > 1.744

Proof. By example on C[0,1/100].
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C. Prouhet-Tarry-Escott Problem.

1. Conjecture.

For any N there exists p € Z|z] (a poly-
nomial with integer coefficients) so that

p(z) = (x — 1)Nq(z) = Sapa”
and

S(p) := X|ax| = 2N.

Almost equivalently (though not quite ob-
viously)

Pl L2q)21=13 = V2N.
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2. The Basis for the Conjecture.

T4, Az P PN = O((aj—l)N).

For N =2,...,10 with

[041,... ,OfN] and [ﬂl,... ,ﬁN]

0,3] = [1,2]

1,2,6] = [0, 4, 5]

0,4,7,11] = [1,2,9, 10]

1,2,10,14, 18] = [0,4, 8, 16, 17]
0,4,9,17,22,26] = [1,2,12, 14, 24, 25]
0,18, 27,58, 64,89, 101]

= [1,13, 38,44, 75, 84, 102]
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[0,4,9,23,27,41, 46, 50]
= [1,2,11, 20,30, 39, 48, 49]

[0, 24, 30, 83, 86, 133, 157, 181, 197]
=[1,17,41,65,112,115, 168, 174, 198]

[0, 3083, 3301, 11893, 23314, 24186, 35607,
44199, 44417, 47500] =

12, 2865, 3519, 11869, 23738, 23762, 35631,
43981, 44635, 47488

e The size 10 example illustrates the prob-
lems inherent with searching for a solu-
tion.
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3. Partial History.

e Luler

e Prouhet (1851)

e Tarry (1910) - Small Examples
e Escott (1910) - Small Examples
e Letac (1941) - Size 9 and 10

e Gloden (1946) - Size 9 and 10

e Smyth (Math Comp. 1991) - Size 10
generalized.
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4. Diophantine Form

Find distinct integers [aq, ... ,ay] and [B1,... , ON]
so that

Oél—l——I—OJNZﬁl—I——I—,Bn
.o =084.. 3

aof T dany t=8) "+ By

5. Open Questions.

e The problem is completely open for NV >
11.

e We computed extensively on N =11 to

show no (symmetric) solutions of degree
< 745.
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D. The Weak Prouhet-Tarry-Escott

Problem.

1. Problem. For fixed N find p € Z|z]
p(z) = (z — DVg(z) = Sapa”

that minimizes

or

$%(p) = (Bla;*)"/?

2. Solving S(p) = |S%(p)|* = 2N is the
Prouhet-Tarry-Escott-Problem and is the
big prize.
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3. Showing that there exist

{pn}={(z - 1)"q(2)}
so that
S(pn) = o(Nlog N)
1s also a big prize.

e This shows that the “Easier Waring Prob-
lem” is easier than the “Waring Problem”
(At the moment.)

e That is: it requires essentially fewer pow-
ers to write every integer as sums and dif-
ferences of Nth powers than just as sums
of Nth powers. (Fuchs and Wright, Quart.
J. Math. 1936).
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4. It 1s known that
N2
S((w—1)Vq(e)) < -

1s possible.
Any improvement would be a major step.

5. If we demand that p has a zero of
order NV but not V 4+ 1 at 1 then

S(p) = 0((log N)N?)

is possible (Hua).

Any improvement would be interesting.
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E. Problem of Erdos and Szekeres
(1958).

1. Problem. Minimize over {aq,...,an}
N
S (H(l - :1:0”))
k=1

Call this minimum S%.
2. Conjecture. ST > N for any k.

3. From the P-T-E problem
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4. Examples.

N ”f”l {a17'°° ,OJN}

1 2 {1}

2 4 {1,2}

3 6 {1, 2,3}

4 8 {1,2,3,4}

5 10 {1,2,3,5,7}

6 12 {1,1,2,3,4,5}

7 16 {1,2 3,4,5,7,11}

8 16 {1,2,3,5,7,8,11,13}

9 20 {1,2,3,4,5,7,9,11,13}

10 24 {1,2,3,4,5,7,9,11,13,17}
11 28 {1,2 3,5,7,8,9,11,13,17,19}
12 36 {1,...,9,11,13,17}

13 48 {1,...,9,11,13,17,19}
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5. Conjecture. Exceptfor N =1,2,3,4,5,6
and 8
Sy > 2N + 2.
6. Problem. Show that
S(T—2*)(1—2%?)...(1—2%)) # 14
(or even make this algorithmic).
7. Partials.
ST < NOW ) (Atkinson, Dobrowolski)

ST & NO(log NN'/?) (Odlyzko)

(could equally well use || ||z2(p)-)
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8. Proposition. Let (; be the sequence
formed by taking the set {2" — 2™ :n >
m > 0} in increasing order. Then for all
N

[T -2%)| < 323)V /&,

Lemma. Letl < () < Gy < ... and let

Wa(z)= ] @-2%9%)

1<1<3<n

then
[Wa(2)|| <nz.
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Proof. We can explicitly evaluate the Van-
dermonde determinant

1<1<3<n
1 2P ~(n—1)61
1 Zﬂn Z(n_l)ﬁn

and by Hadamard’s inequality, since each
entry of the matrix has modulus at most
one 1n the unit disk,

| Dal < 0™/,
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Thus
H (1 _ Zﬁj_/@z)
1<i<3<n
— H (Z/Bj _ Zﬁz)
1<1<3<n
Snn/Q
[]

So this constructs an infinite product with
all partial products growing at most like

O(NeV ).
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9. Theorem. (P.B. JNT). If (p,«o;) =
1, p prime then

N
[Tt — 0| 2y
i=1
and this is best possible forp = 2,3,5,7,11,13
by

o0

H (1 —2")

n=1
(p,n)zl

10. Problem. For each n write
(1—-2)1—2*)(1—2")(1 -2°)...
(1 — 2"t (1 — 2%"1?) = Bz

then a; > 0 if and only if 3 divides :.

This would give an exact bound in the

above theorem for p := 3. A similar result
should hold for p := 5.



