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We prove the “right” Bernstein-type inequality for
exponential sums

Schmidt proved that there is a constant c(n) so
that

1 Naxsb—s < ()6 fll a0

for every p € F,, and 6 € (O, %(b — a)).

this to allow o =

Lorentz replaced ¢(n) by c¢(a)n® 8™ (Xu improved
1
2

Lorentz speculated that ¢(n) should be cn.

We proved a weaker version of this with cn?® in-
stead of cn.



Our main result is

! 2n — 1
sup FWl |
0£feE, || flljap) — min{y —a,b—y}
In this Bernstein-type inequality even the point-
wise factor is sharp up to a multiplicative absolute
constant; so

L aed IT(0)]

: <
e —1 mm{y —a,b— y} 0#£f€E, ||f||[a,b]

The critical inequality is

£'(0)]

sup =2n—1
0 fe By, I/ ll1-1.1
where
Egn = {f : f(t) = ag + Z(aje’\jt - bje_)‘jt) }
j=1

Denote by P,, the set of all polynomials of degree
at most n with real coefficients.



Proposition (Bernstein’s Inequality). The in-
equality

n

Ny IP][=1,1]5

holds for every p € P,,.

p'(2)] < —-l<az<1

This implies by simple substitution and scaling

2n
mm{y — a, b T y}

|f/(y)| < ”fH[a,,b]a Yy € (CL, b)

holds for the particular exponential sums
f(t) =ap+ Zajeﬁ, a; € R.
j=1

This is a very special case (A\; = j) of our Theo-
rem.

The following slight improvement of Bernstein’s
inequality may be found in Natanson.



Proposition. The inequality

P (0)] < (2n = 1) |Ipll{-1,1

holds for every p € Pay,.
This gives

Proposition. The inequality

2n —

p'(z)| <

||p|| v e (=1,1)

holds for every p € Pa,.
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2. NOTATION AND DEFINITIONS

The notations

[f]la := sup [f(z)]

rEA

1/p
1l cn = ( / |f|p)

are used throughout. Also

and

l l
E} = {f  f(t) = Zij (t)ehit, Z (k;+1) = n}

7=1

where P denotes the set of all polynomials of de-
gree at most k& with real coefficients.
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3. NEwW RESULTS

Theorem A. We have

|£'(0)]

sup = 2n — 1.
0 fec By, I ll-11)
Theorem B. The inequality
! 2n — 1
sp LWL n

0£fcE, || flljap) — min{y —a,b—y}

holds for every n € N and y € (a,b).

Theorem C. The inequality

L -1l )
. < sup
e —1min{y —a,b—y} = ozrer, ||fll[a.b

holds for every n € N and y € (a,b).




Theorem D. The inequality

1/p
2 (n+1
| flljats—8 < 2%/P ( 5 > 11z, [a,b]

holds for all f € E,,, p € (0,2], and 6 € (O, %(b - a)).

4. CHEBYSHEV AND DESCARTES SYSTEMS

Definition. The system (fo,..., fn) is said to be
a Descartes system (or order complete Chebyshev
system) on an interval I if each f; € C(I) and

D(fio fir fz'm)>0

Lo L1 Lm,

forany0<ig<i3 <<ty <nandzyg <z <
oo < Ty, from 1.

This is a property of the basis. It implies that
any finite dimensional subspace generated by some
basis elements is a Chebyshev space on I.



Lemma. The system
(ekot,eklt,...), A < A1 < - -

is a Descartes system on (—oo,00). In particular,
it is also a Chebyshev system on (—oo, 00).

Proof. See, for example, Karlin and Studden. [
The following lemma is crucial

Lemma. Suppose 0 < \g < A1 < ---. Then
(sinh Agt, sinh \1t,...)

is a Descartes system on (0,00).
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5. THE PINKUS-SMITH COMPARISON THEOREM

Proposition. Suppose (fo,... , fn) is a Descartes
system on [a,b]. Suppose

k k
p=foat Y aifn,  q=fat > bify,
1=1 1=1

where 0 < A\ <+ < Ag, 0< 7y <+ < g,
0<vu<\<a i=12...m
and
a< N<v, t=m+1m+2, ...,k
with strict inequality for at least one index . If
p(x;) = q(x;) =0, i=1,2,... .k
where x; € [a,b] are distinct, then

Ip(z)| < |q(x)]

for all x € [a,b] with strict inequality for x # x;.
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6. CHEBYSHEV POLYNOMIALS

Suppose

Hn = Span{f07f17 s 7fn}

is a Chebyshev space on [a,b] and A is a compact
subset of [a, b].

We define the generalized Chebyshev polynomial

Tn = Tn{f07 fl, .. ,fn, A}

for H,, on A by the following three properties:

T, € Span{fo,fly- . 7fn}

there is an alternation set (r1 < z2 < -+ < )

To(zi)| = [[Tulla,  4=0,1,...,n

with sign(7),(z;y1)) = —sign(T,,(x;)), i=0,1,...

and

|T||]a =1 with T, (maxA) > 0.

,n—1
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The Chebyshev polynomials T, for H,, on A en-
code much of the information of how the space H,,
behaves with respect to the uniform norm on A.
Many extremal problems are solved by the Cheby-
shev polynomials.

When (fo, f1,...) is a Markov system on [a, b] we
can introduce the sequence (7T,) of associated
Chebyshev polynomials

Tn = Tn{f07f17° .. 7fn7 [CL, b]}

for H,, on [a,b]. Then (Ty,T1,...) is a Markov
system on [a, b] again with the same span.

oo
n=0

Proposition. Suppose H,, := span{fo,... ., fn}
is a Chebyshev space on [a, b] with associated Cheby-
shev polynomial

Tn = Tn{an f17 R 7fn7 [CL, b]}
and each f; is differentiable at b. Then

max{[p' ()] : p € Hoy [pllasy < 1. p(6) = Tu(b))
18 attained by T, .
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Proposition (Lexicographic Property). Let
(fo, f1,...) be a Descartes system on [a,b]. Sup-
pose Ag < A1 < -+ < Ay and vo < v1 < -+ < Yn
are nonnegative integers satisfying

)\ig’yi, i:O,l,...,n.

Let
Tn = Tn{f)\mf)\m' .- 7f)\n; [0’7[)]}

and

Sn = Tn{f'yoaf’yoa <. 7f’yn; [CL, b]}

denote the associated Chebyshev polynomials. Let
o <ag < <a, and 1 <Pa< <Py,
denote the zeros of Ty, and S,,, respectively. Then
o, < B, 1=1,2,....n

with strict inequality if A\; # ~v; for at least one
index 1. (In other words, the zeros of T, lie to the

left of the zeros of Sy,.)
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7. A COMPARISON THEOREM

The heart of the proof of Theorem is part e| of
the following comparison theorem, which can be
proved by a very subtle zero counting argument.

Theorem. Let
O< A<M << Ay, 0<yv<m< <Y
Suppose \; < ~; for each v. Let

H,, := span{sinh A\gt,sinh \{%,... ,sinh A\, t}
and

G, := span{sinh yot, sinh y1¢,... ,sinh v,t}.

Denote the associated Chebyshev polynomaials for
H, and G, on [0,1] by

T := Tp{sinh \ot,sinh \1¢,... ,sinh A\,,¢; [0, 1]}
and

Ty~ = Ty{sinhyot,sinh vyt ... ,sinh~,?; [0, 1]}
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respectively. The following statements hold.

a] Let
<oy <...<a, and (1< Pr<---<pf,

denote the zeros of T, n and T, ., respectively.
Then
aigﬁi, z':1,2,...,n

(in other words, the zeros of T), x lie to the left of
the zeros of Ty, ).

b] The value
max{|p'(0)| : p € Hy, |Ipllo,yy < 1}

is attained vniquely by £15, ».

c] We have
Toux(1) =T, (1) =1,

d] We have
75, 2 (0)] = |15, (0)].
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8 PROOF OF THEOREM A

Theorem A. We have

(U]
0#£fEE2n 1Al =1,

= 2n — 1.

Proof of Theorem A. First we prove that
SO < @n = D)1 f =11

for every f € Esy. So let

f E Spa;n{]., eﬂ:Alt’ e:l:>\2t eiknt}

PECEEIRI
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with some non-zero real numbers A, Ao, ..., Ay,
where, without loss of generality, we may assume
that

O0< AL <A <o < App

Let

Observe that
g € span{sinh A\;¢,sinh A\ot, ... ,sinh A\, t}.
It is also straightforward that
JO)=F©0)  and gl < I fl-va.
For a given € > 0, let
H, . := span{sinh et, sinh 2¢t, . . . ,sinh net}
and
Ko o= sup |1/ (0)] : h € . [[Hlloy = 1}

By the comparison theorem it is sufficient to prove
that inf{K,, . : € > 0} < 2n — 1. Observe that
every h € H, . is of the form

h(t) = e ™" P(e), P € P,,.
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Therefore, using Bernstein, we obtain for every
h € H, . that

[17(0)] = |eP'(1) — neP(1)]

e(2n — 1)
— 1 —e—€ ||PH[8_67€€] T ne ||P||[e_€,e€]
e(2n —1

It follows that

2n — 1
Knpe< (6( n ) —|—ne> e,

1l —e¢

So inf{K,, . : ¢ >0} < 2n — 1 as required.

Now we prove that

0]

> 2n — 1.
0#£f€EE2n 1Al =11

Let € > 0 be fixed. We define

et 1
net = —netT n— —




19

where T5,, denotes the Chebyshev polynomial of
degree 2n defined by

Ton_1(x) = cos(2narccos x), z € [—1,1].
It is simple to check that Qa2 € Egn,

1Q2n elli—1,1) < ™

and
@5, (0)] > 21 — 1 — ne.

The result follows by letting € > 0 tend to 0. [
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The real Muntz’s Theorem.

Muntz’s Theorem. For \; > 1

span{1l, 2™, z*? }

9 o oo

is dense in C|0, 1] in the uniform norm if and only

if
=1
2y, =

i=1 """

Full Muntz in C[0,1]. (B&E). Suppose (A;)32,

1s a sequence of distinct, positive real numbers.
Then

span{1,z™, 2?2 ...}

9 o o

is dense in C[0,1] if and only if

8

=1

e The L, Ly and L., cases also hold.
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More Inequalities in Miintz Spaces.

Newman’s Inequality. Let{\;}2, be a sequence
of distinct nonnegative real numbers. Then

Jap/(z ||[01 <92A

I2llto,

for every p in the linear span of

{0,z .. ™)

o This also holds wn wn L, where we must replace
the constant 9 by 13 .
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For p > 1 and P € span{z?, 2™, ..., 2™} with
exponents \; greater than —1/p .

Sharp Markov Inequality. (B&E)

|z P (x)]|z, 10,17 <

13 (ZW ¥ 1/p>) 1Pz o

=0

Nikolskii-type Inequality. (B&E)

||@/1/pp(y)||Loo[o,1] <

n 1/p
13 (Z(Aj + 1/1?)) | Pl [0,1]

7=0

e Note the implication for Mintz’s Theorem with
exponents tending to —1/p.

e The constant should be 47
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Newman on [a,b],a > 0. (B&E). Let ()2,
be a sequence of monnegative real numbers. As-
sume that there exists a 6 > 0 so that

Ai > 01

for each i. Then there exists a constant c(a,b,0)
depending only on a, b, and 6 so that

|P’||jap) < c(a,b,6) (Z)\ ) | P||(a,0]

for P in the span of {x?0, a1, ... a*} .
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Muntz’s Theorem Generalized. For an arbi-

trary compact set A C [0, 00) with positive Lebesgue
Measure,

span{x® ™M, ...} A > 1

is dense in CA] if and only if

=1

o Let ,
p(x) = Z a;
=0

where 0 = \g < A\{ < Ay < --- The most useful
form of our Remez inequality states:
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Bounded Remez Inequality. (B&E).

For every sequence (X\;):2, satisfying

il/)\z < 0
1=1

there is a constant ¢ depending only on {\;}52,
and s (and not on n, p, or A) so that

P10, < cllpll.a

for every Muntz polynomial p, as above, associ-
ated with (X\;)2y, and for every set A C |o,1] of
Lebesgue measure at least s > 0.



