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Polynomials and Rational Functions.

The polynomials of degree at most n with complex
coefficients:

Pe = {p :p(2) = Zaizi, a; € (C}.
i=0

With real coefficients:

P, = {p :p(2) = Zaizi, a; € ]R}

1=0

Rational functions of type (n, m) with complex co-
efficients:

an,n = {pm/qn s Pm € P,cn,qn € /P?i}

With real coefficients:

Rm,n ‘= {pm/Qn ! Pm € Pman S Pn}
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Classical Polynomial Inequalities.

Remez Inequality. The inequality

Ipll—10) S T (2 +5)/(2 = 5))

holds for every p € P, and s satisfying

m({x €[-1,1]: |p(x)| < 1}) > 2 —s.

Here T, is the Chebyshev polynomial:

T, (x) := cos(n arccos ).

Bernstein’s Inequality. Forp € P;

P (2)] < ——

ﬁ”pﬂ[—l 1

—1<x<l.

Markov’s Inequality. For p € P¢

19 I~ 1.0 < n?|lplli-



e The L, analogue of Markov’s Inequality states
that

1 1
| @@pa e [

—1 —1

for every Q € P, and 0 < p < oo, where ¢ is an
absolute constant.

e We will prove this more generally with a constant
12.

e The best possible Markov factor in L, is still an
open problem even for p =2 or p = 1.

Miintz Systems (Dirichlet Sums).

The system
{z?° 2™, ...} on [0,1]

is called a Muntz systems.
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Orthonormal Miuntz-Legendre Polys.

We can explicitly orthonormalize

span{z™°, ... 2"}

Define L7}, the n-th orthonormal Muntz-Legendre
polynomial by

/ "HlHXHl wtdt
271"& t—)\k t—)\n

n
= Z ClomnT*, z € (0, 00)
k=0

with . B
H?:_o ()‘k +Aj + 1)

Ckn = n

and B
LY = (14 X\, + \)Y2L,.

Then we get an orthonormal system. So

1
/ L () e (@) = 6y mm = 0,1, ...
0



e One can base a very simple proof of Muntz’s
Theorem on this.

Muntz’s Theorem. For \; >1

span{1, 2™, 2?2 ...}

is dense in C|0, 1] in the uniform norm if and only

if
=1
ZA_:

i=1 "¢

Conjecture (Full Miintz in L,). Letp € [1, o0].
Suppose {\; }32, is a sequence of distinct real num-
bers greater than —1/p. Then

span{z™, z* ...}

is dense in L,[0,1] if and only if

oo

i +1/p
2t el
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Full Miintz in C[0,1]. (B&E). Suppose {\;}:2,

1s a sequence of distinct, positive real numbers.
Then

span{l,z™,z*2, ...}

is dense in C|0,1] if and only if

;)\ZZ+1:OO

e The L, and L+ cases also hold.



Miuntz-Chebyshev polynomials.

In principal it is possible to construct an analogue
of the Chebyshev Polynomial for a Mintz System

span{z™, ... ™}

This will be an equioscillating “polynomial” and
will be extremal for a number of problems

One needs these in the proof of the Full Miintz
Theorem.

In particular one needs the characterization of dense-
ness of an infinite Markov system in terms of dense-
ness of the zeros of the associated Chebyshev poly-
nomials.



Inequalities in Miintz Spaces.

We first present a simplified version of Newman’s
beautiful proof of a Markov-type inequality for
Miintz polynomials. This modification allows us
to prove the L, analogues of Newman’s Inequal-

ity.

Newman’s Inequality. Let {\;}2, be a sequence
of distinct nonnegative real numbers. Then

o/ (z ||[01 <92A

I21l7o.

for every p in the linear span of

{zro M . 2t

In L, we must replace the constant 9 by 13 .
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For p > 1 and P € span{z?°, 2™, ... 2™} with
exponents \; greater than —1/p .

Sharp Markov Inequality. (B&E)

|2 P (x)]|z,[0,1) <

13 (Z(Aj + 1/19)) 1P|z, 0,1

§=0
Nikolskii-type Inequality. (B&E)

||@/1/pp(y)||Loo[o,1] <

n 1/p
13 (Z(/\j + 1/}?)) 1P|z, 0,1]

§=0

e Note the implication for Mintz’s Theorem with
exponents tending to —1/p.
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Proof of modified Newman. It is equivalent to prove
that

for every p in F,,(A) the linear span of
{em ot =Mt T At

WLOG we assume that > 7 A; = 1.

The key is to examine

1 e~ =t
T i T aBm

where

and
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Now if P € E,,(A) is of the form
P(t) = che_’\jt, c; € R.
j=0

Then

Therefore
|P'(a)] < 3|P(a)] +/ |P(t+ a)U"(t)|dt.
0

and

1P’ [[0,00) < 31| P[0,00) + 6| Pl[0,00)- O

e The constant should be 47
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Variant of Newman. (B&E).
If {\;}32, is a sequence with A\p = 0 and
Aig1 — A > 1
then

19" llf0,1 < 18 (Z Aj) Pll0,1]
j=1

for every p in the linear span of

{xro g™, . M),

e The gap condition is needed to make this work.

e An irritating feature of these inequalities is that
the proofs don’t translate off the interval [0, 1].
Though the inequalities do.
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Newman on [a,b],a > 0. (B&E). Let {\;}52,
be a sequence of monnegative real numbers. As-
sume that there exists a 6 > 0 so that

Ai > 01

for each i. Then there exists a constant c(a,b,?)
depending only on a, b, and 6 so that

| P’||jap) < c(a,b,6) (Z)\ ) | P||(a,0]

for P in the span of {x?0, a1, ... a*} .
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Lorentz’s Problem for Miintz Polys.

Conjecture.

PO,

sup
P ||p||[0,2]

where the sup is over all Muntz polynomials

p(z) = ag —I—Zaj:c%’, a; €R, A >0
j=1

independent of the exponents.

e These following results improve inequalities of
Lorentz and Schmidt and others going back 25
years.

e Lorentz now conjectures the above with a C' xn
bound?
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Theorem. For every 0 < a < b

| 9’ (a) | 2n?
sup =
p |IPlljap)  a(logb—loga)

The sup 1s over all Muntz polynomials

p(iE) = ag + ZCLJ‘QEM, a; € R, )\j > 0.
j=1

Theorem. for 6 € (0,(b—a)/2)
19 lfats.0—67 < 40 +2)° 67 |pllfa.py

where

p(t) = ag + Zajekjt, aj,\; € R.
i=1



17

A Remez Inequality for Miintz Spaces.

e This Remez-type inequality allows us to resolve
two reasonably long standing conjectures.

e The first, due to D. J. Newman and dating from
1978, asserts that if

il/)\z < OO
1=1

then the set of products

{p1p2 : p1,p2 € span{z™ z* ... }}

is not dense in C|0, 1].

e The second is a complete extension of Muntz’s
classical theorem on the denseness of Miintz spaces
in C[0, 1] to denseness in C[A], where A C [0, 00)
is an arbitrary compact set with positive Lebesgue
measure.
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Muntz’s Theorem Generalized. For an arbi-

trary compact set A C [0, 00) with positive Lebesgue
measure,

span{xz?®, ™M, ...} A >1

is dense in C[A] if and only if

=1

o Let ,
p(x) = Z a;
=0

where 0 = \g < A\{ < Ay < --- The most useful
form of our Remez inequality states:
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Bounded Remez Inequality. (B&E).

For every sequence {\;}52, satisfying

il/)\z < 0
1=1

there is a constant ¢ depending only on {\;}52,
and s (and not on n, p, or A) so that

12llf0,e1 < cllplla

for every Mintz polynomial p, as above, associ-
ated with {\;}52,, and for every set A C |o,1] of
Lebesgue measure at least s > 0.
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Arc Length of the Lemniscate {|p(z)| = 1}.

eIn 1958 Erdos, Herzog and Piranian conjectured
that the lemniscate

By = Eo(p) = {2 € C: |p(2)| = 1}

where p is a monic polynomial of degree n, so
p(z) =11 (2 — ay) a; € C.

is of maximum length for p(z) := 2" — 1. (Which

is of length 2n + 0(1).)

e Best partial to date, due to Pommerenke, shows
that the maximum length is at most 74n?.

e It carries a cash prize from Erdos of $250.

Theorem (P.B.). Let ay,...,a, € C. Then
E, ={2ze€C:|IIl_i(z —a;)| =1}

has length at most 8wen (< 69n).

e This at least gives the right order of growth.
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e The proof relies on two classical theorems. One
by Cartan and one by Poincaré.

Cartan’s Lemma. I[f

then the imequality

p(z)| > 1

holds outside at most n circular discs, the sum of
whose radii 1s at most 2e.
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Poincaré’s Formula. Let I be a rectifiable curve
contained in S (the Riemann sphere). Let v(I',x)
denote the number of times that a great circle con-
sisting of points equidistant from the antipodes tx
intersects I'. Then the length of I, Ls(I'), s given

by
1

Ls(T') = - /U(F,az)daz
4 Js
where dx is area measure on S.
Corollary. Suppose T is an algebraic curve in R?

of degree at most N and D 1s a disc of radius R.
Then the length of ' N D s at most 2n RN .
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Sharp Extensions of Bernstein’s Inequality
to Rational Spaces.

Let

Pn(2)

Ul;ll(z — aj)

:pn € P, 2

where the A indicates that the poles are to avoid

A.

e If the a; tend to infinity we recover the ordinary
polynomials. So the following results are sharp
extensions of the usual Bernstein inequality.

e These are also sharp extensions of results of Rus-
sak and others.
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Bernstein-Szeg6 Type Inequality. (B&E).
For{ap}i_, c C\ [-1,1], let

o-ge ()

ap — T

where the root \/a? — 1 is determined by

ck::ak—\/a%—l, |Ck|<l.

Then

(1= 2%)f"(2)* + Bu(2)* f(2)* < Bu(2)*[| -1y

and
1

V1 — z2

for every f € Pp(ay,as,...,a,).

[f(z)] < B ()| fll=1.1
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Theorem. Let {ai,a2, -+ ,a,} CC\9D. Then

[ Czo)l/l[ fllap <

( \
a;|* — 1 1 — |a;|?
D D Dl L
j=1 |a’J ZO| =1 |CLJ Zo|
\ faj[>1 aj|<1 )

for every f € PS(ay, a2, ,an;0D) .

Theorem. Let {a1,a2, -+ ,a,} C C\R. Then

[ (@o) /[ fllr <

( \

~  2[Im(q;)] <~ 2[Im(q)|

max < ; 2o — a2 ; Z0 — a2
| Im(a;)>0 Im(a;)<0 )
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Inequalities for p’ /p,.

These are metric inequalities of the form

S(GECS ) R

where 7, is a rational function of type (n,n) and
is a constant independent of n. Here m is Lebesgue
measure.

Theorem (Loomis). Ifp, € P, hasn real roots
then

m({rer B zal) =2 foraso




27

Lemma. Ifp, € P, is positive on [a,b] then there
exists qn, Sn € Pn nonnegative on |a,b] with all
real roots (in |a,b]) so that p,(x) = g, (x) + s, ().

Theorem. Let p, € P, then
/
2
m({xER: n(x)za}>§—n a > 0.
pn($> x

Theorem. Ifr, = p,./q, € R, nn then

w(fren B0 ) et g

e It would be interesting to know the right con-
stant above. It might well be 27 This is closely
related to the incomplete rational problem con-
cerning the interval of denseness of

{exp(—nz)pn()/qn ()} .
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