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The Integer Chebyshev Problems
Find a polynomial with integer coeffi-

cients of minimum supnorm on an in-

terval.

Problem 1.1 For any interval [«, 3]

find
Qe, f] 1= lim Qyla, G
where
Qnle, 0]
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One can show that

Q[Oé,ﬁ] .= ]\}lnoo QN[Oé,ﬁ]

exists. This quantity is called the inte-
ger Chebyshev constant for the interval

or the integer transfinite diameter.

On [-2,2] (or any interval with inte-
ger endpoints of length 4) this problem
IS solvable because the usual Cheby-
shev polynomials normalized to have
lead coefficient 1 have integer coeffi-

cients and supnorm 2.

So Q[-2,2] = 1.



There are no other intervals were the

explicit value is known.

Since
Qla, b] < Qpla, b]

for any particular n upper bounds can
be derived computationally from the

computation of any specific Qpla,b].



po(z) ==z, pi(z):=1-uz,

po(x) :=2x—1, p3(x) = 52°—5x+1,

pa(z) ;= 1323 — 192° + 8z — 1,

ps(x) = 1323 — 2022 4 92 — 1,
pe(z) := 29z* — 582> + 4022 — 11z + 1,
p7(z) = 31z% — 6123 4+ 412°% — 11z + 1,
pg(z) = 31z% — 6323 4+ 4422 — 12z + 1,
po(z) := 9412°—-37642"+63492°—-5873z°

4+3243z% — 108923 4+ 21622 — 23z + 1.



Proposition 1.1 Let

. 67 67 24 9 3 :
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then
1/210 1
P =
(IP210ll10,17) 53543
and hence
Q[0,1] < .
2.3543. ..

Refinements on the method

1
Q[0,1] < |
2.3612...



Of course when the coefficients of the
polynomials above are not required to
be integers this reduces to the usual
problem of constructing Chebyshev poly-
nomials and the the limit (provided ajy =
1) gives the usual transfinite diameter.
From the unrestricted case we have the

obvious inequality
b—a

Y

Qpla,b] > 21/7

However inspection of the above exam-
ple shows that the integer Chebyshev
polynomial doesn’t look anything like

a usual Chebyshev polynomial.



In particular it has many multiple roots
and indeed this must be the case since

we have the following lemma.

Lemma 1.3 Suppose pn, € Z, (the
polynomials of degree n with integer
coefficients) and suppose qi.(z) := apzk+
---4ag € Z;, has all its roots in [a,b]. If

pn and q. do not have common factors,
then

(Ipnlliag) ™™ > lag~2/*,



From this lemma and the above men-
tioned bound we see that all of p; through
pg Must occur as high order factors of
integer Chebyshev polynomials on [0, 1]

for sufficiently large n.

Thereis a sequence of polynomials that
Montgomery calls the Gorshkov—Wirsing
polynomials that arise from iterating

the rational function




These are defined inductively by
go(x) :=2z—1, qi(z):=5x*—5z+1

and

2 2 4
dn+1 -— 49p T dndp—1 — dp—1-

It transpires that

2
u(n) — An—1 — d4n
2%%_1 — dn

Each ¢, is a polynomial of degree 2F
with all simple zeros in (0,1) and if by
Is the lead coefficient of g then

k
limb/?" = 2.3768417062. .. .



Wirsing proves these polynomials irre-
ducible. If follows now from Lemma
1.3 that

1

Q[o, 1] > .
2.3768417062...

Montgomery conjectured that if s is
the least limit point of |a;|~1/* (as in in
Lemma 1.3) over polynomials with all
their roots in [0,1], then [0,1] = s.
Chudnovsky further conjectured that
the minimal s arises from the Gorshkov—
Wirsing polynomials and so s would equal
(2.3768417062...) 1,



We show that

1

2[0,1] 2
2.3768417062...

e

This shows that either Montgomery'’s
conjecture is false or the the Gorshkov—
Wirsing polynomials do not give rise to

the minimal s. This leads us to ask

Conjecture 1.4 The minimal s aris-
ing in Lemma 1.3 does not give the
right value for ©2[0, 1].



Habsieger and Salvy show that Integer
Chebyshev polynomials on [0, 1] need
not have all real roots. The first non

totally real factor occurs for n = 70.

This is a non-trivial computation and

IS quite likely NP hard.



Monic Integer Chebyshev Problem.

Minimize the supremum norm by monic

polynomials with integer coefficients.

Let M, (Z) denote the monic polyno-
mials of degree n with integer coeffi-

cients.
A monic integer Chebyshev polynomial
My € Mn(Z) satisfies

M — inf P. :
[Mallp =, inf IIPallE



The monic integer Chebyshev constant
is then defined by

0 1/n
Q*(B) := lim ||Ma}"™.

The monic integer Chebyshev problem
IS quite different from the classical in-
teger Chebyshev problem where the poly-

nomials are not required to be monic.

Conjecture Suppose [ap/br,aq1/b1] is
an interval whose endpoints are con-
secutive Farey fractions. This is char-
acterized by (a1bo> —aoby) = 1. Then

*[az/b2,a1/b1] = max(1/by,1/b).



Our first result shows that the monic
integer Chebyshev constant coincides
with the regular Chebyshev constant
(capacity) for sufficiently large sets.

Theorem If E is R-symmetric and
cap(E) > 1, then

Q*(F) = cap(FE).

An argument going back to Kakeya gives

Theorem Let E C C be a compact
R-symmetric set. If cap(E) < 1 then
Q*(F) < 1.



Perhaps, the most distinctive feature
of Q*(F) is that it may be different
from zero even for a single point. For
example suppose that m,n € Z, where
n > 2 and ged(m,n) = 1. Then

({5 =

On the other hand, ifa € R is irrational,
then

" ({a}) = 0.



This result has several interesting con-
sequences. Consider

En:={z:2"=1/2}, neN.

It is easy that cap(En) = tc(En) = 0
for any n € N. However, as n — oo

Q*(E,) =271 5 1.

Thus no uniform upper estimate of Q*(FE)
in terms of cap(F) is possible, in con-
trast with results of of Hilbert and Fekete

Q(E) < y/cap(E)



Note that
Q*({1/v2}) = Q*({-1/v2}) =0
while

Q*({1/vV2Yu{-1/V2}) =1/V2

This shows that another well known
property of capacity is not valid for
Q*(FE). Namely, capacity (Chebyshev con-
stant) for the union of two sets of zero

capacity is still zero.






and

' ([-1,1)) = /2 ([0,1) = 5.

Also, if E C [(1—v2)/2,(1 4 v2)/2]
and {1/2} € E, then

1-v2 14+V2]) 1
2 7 2 D_

Q*(E) =QF :
(= | !
It is worth remembering that finding
the value of ([0, 1]) is a notoriously

difficult problem, where we do not even

have a current conjecture.



Finite Sets of Points

Theorem For any k rational points
a;
b_z_a
there is a monic integer polynomial f(x)

(a;,0;) =1, 1=1,...,k

of some degree n with

- 1
i\ == i=1,..k
b;) — bP

Corollary If E = {%g—z} with the

a;/b; rationals written in their lowest
terms and b; > 2, then

1
Q*(F) = max_ —.
i=1,..,k b;



Two consecutive Fareys: Ifn>2

2 2 (a1bo —anby) =1,
bo b1

and
al =A; modbd;, 1=172,

then
A1 —a?
b1

flx) =2a" 4 ( ) (box —ap)" L+

A . n
( 2 aQ) (a1 —byz)"?
bo

has

flai/b;) = A;/b)!, 1=1,2



Theorem Suppose thatS = {aq,...,ax}
Is a set of k numbers, with the a; tran-
scendental or algebraic of degree more
than k. Suppose that Iif o; iIs complex

then its complex conjugate is also in S.

Then for any 1 > e > 0 and n > k2
there is a monic integer polynomial F

of degree n with |F(o;)| <e, 1 =1,..., k.



Intervals of Consecutive Farey Nos

Conjecture Suppose [as/bp,a1/b1] is
an interval whose endpoints are con-
secutive Farey fractions. This is char-

acterized by (a1bo> — asb1) = 1. Then

*[az/bo,a1/b1] = max(1/by,1/bo).

Since
Q*[an /b, a1/b1] > max(1/by,1/bs)

the conjecture holds on intervals of the
form [0, 1/n].



We give enough solutions to fill in all
Farey intervals with denominator less
than 15. (The conjecture is verified
to 23.) On the remaining intervals
r WOrks or the symmetry  — m + x
works. The computations for the ta-
ble are done with LLL. For certain n,
we find a p of degree n that satisfies
p(az/bz) = 1/b5 and p(ay/b1) = 1/b7.
One now constructs a basis

B := (p(x), (biz — a1)(baz — a2),

x(b1z —a1)(box —an), ...,

2" 3 (b1x — a1)(boz — a2))



and we reduce the basis with respect
to the norm
(/ac;l/g;l p(z)? d:c)l/Q.

We then search the reduced basis for
solutions of the conjecture. T hese cal-
culations were done in Maple using an
LLL implementation that can accom-
modate reduction with respect to any
positive definite quadratic form. (This
was implemented by Kevin Hare and we

would like to thank him for his code.)



T7(1/3,2/5) =22 -3z + 1
T(1/4,2/7) =z —4z+1

T(2/5,3/7) = 2% — 71623 4 89022 —
369z + 51

T(1/3,3/8) =2° — 62+ 2
T(3/8,2/5) =2° -3z +1
T(1/5,2/9) = —23—2022+9z2 —1

T(2/7,3/10) = —2%41151931 2°—1691236 «
003150 23 —291587 22442802 x — 2513



T(1/6,2/11) = —23—-30z%+ 11z —1
T(1/4,3/11) =z’ -4z +1

T(3/11,2/7) = 2242359829 £°—3291253 z4-
1836029 £z3—-512089 22+71410 £—3983

T(1/7,2/13) = —23 — 4222 + 13z — 1
T(2/9,3/13) = —23 - 2022+ 9z — 1
T(1/5,3/14) =22 -5z +1

T(3/14,2/9) = —23+ 10622 — 46z +5



