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LITTLEWOOD TYPE PROBLEMS

We are primarily concerned with polynomials with coef-
ficients in the set {+1,—1}. Since many of these prob-
lems were raised by Littlewood we denote the set of
such polynomials by £,, and refer to them as Littlewood
polynomials. Specifically

n

L,:=Kp:plx)= Zajxj, a; € {-1,1}

j=0

The following conjecture is due to Littlewood probably
from some time in the fifties. It has been much studied
and has associated with it a considerable literature

Conjecture. It is possible to find p, € L, so that

Civn+1<|py(2)| < Covn+1

for all complex z of modulus 1. Here the constants Cy
and Cy are independent of n.

Such polynomials are often called “locally flat”. Be-
cause the Ly norm of a polynomial from L, is exactly
vn + 1 the constants must satisfy C7 <1 and Cy > 1.
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It is still the case that no sequence is known that satisfies
the lower bound.

A sequence of Littlewood polynomials that satisfies just
the upper bound is given by the Rudin-Shapiro polyno-
mials:

and
Pnt1(2) == pn(2) + Z2nQn(z)7

Qn—l—l(z) = pn(z) — Z2“Qn(z)

These have all coefficients £1 and are of degree 2™ — 1.
From

|pn-|—1|2 + |Qn-|-1|2 = 2(|pn|2 + |Qn|2)

we have for all z of modulus 1

Pa(2)] < 2V2" = v/24/deg(py)

and

g (2)] < 2v2" = v/24/deg(qy)

This conjecture is complemented by a conjecture of Erdés.



Conjecture. The constant Cs in Littlewood’s conjec-
ture is bounded away from 1 (independently of n).

This is also still open. Though a remarkable result of
Kahane’s shows that if the polynomials are allowed to
have complex coefficients of modulus 1 then “locally
flat” polynomials exist and indeed that it is possible
to make C'; and C5 asymptotically arbitrarily close to
1.

Another striking result due to Beck proves that “locally
flat” polynomials exist from the class of polynomials of
degree n whose coefficients are 400th roots of unity.

Because of the monotonicity of the L, norms it is rele-
vant to rephrase Erdos’ conjecture in other norms. New-
man and Byrnes speculate that

pll3 > (6 — 6)n*/5

for p € L£,, and n sufficiently large. This, of course,
would imply Erdds’ conjecture above. Here

lally = ( / T la@)p d9/<27r>) Up

is the normalized p norm on the boundary of the unit
disc.



It is possible to find a sequence of p,, € L£,, so that

lpall2 = (7/6)n°.
This sequence is constructed out of the Fekete polyno-
mials
) =3 (5]
k=0 \P

where (2—9> is the Legendre symbol. One now takes the

Fekete polynomials and cyclically permutes the coeffi-
cients by about p/4 to get the above example due to
Turyn.

Problem. Show for some absolute constant 6 > 0 and
for all p, € L,

Iplla > (1 +6)vn

or even the much weaker

Iplla > vV + 6.

A very interesting question is how to compute the min-
imal L4 Littlewood polynomials (say up to degree 200).



A Barker polynomial

n

p(z) = Z apz”

k=0

with each ay € {—1,41} so that

p(2)p(z) = Z cpz”

k=—n

satisfies co = n + 1 and
c;] <1, i=1,2,3....

Here

n—j
cj = g Ak —k and cC_j = Cj.
k=0

If p(z) is a Barker polynomial of degree n then

p|la < ((n+1)% + 2n))1/4

The nonexistence of Barker polynomials of degree n is
now shown by showing

Ipnlla > (n+ 1)Y2 4+ (n+1)71/2)2.
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This is even weaker than the weak form of the preceding
problem.

It is conjectured that no Barker polynomials exist for
n > 12.

We can compute the expected L, norm of Littlewood
polynomials (B and Lockhart).

For random ¢,, € L,

E(llgnllp)

(D) s (1(1+ p/2) 7

and for derivatives

E(l¢5],)

n(2r+1)/2

= (2r 4+ 1)72(0(L + p/2)) 7.



ExpriciT MERIT CALCULATIONS

Our main purpose is to give explicit formulas for the
L4 norms (on the boundary of the unit disc) and hence,
also the merit factors of various polynomials that are
closely related to the Fekete polynomials.

As usual the L, norm on the boundary of the unit disc
is defined by

1 2w »
o= (55 [ o) as)

The L4 norm of a polynomial is particularly easy to
work with because it can be computed as the square
root of the Ly norm of p(z)p(z) and hence, computes
exactly as the fourth root of the sum of the squares of
the coefficients of p(z)p(z). In contrast, the supremum
norm or other L, norms, where p is not an even integer,
are computationally difficult.

1/«

Let g be a prime number and let (E) be the Legendre
symbol.
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The Fekete polynomials are defined by

g—1
£0)-
—1 \4

and the closely related polynomials

i =115 ()

The half-Fekete polynomials are defined by

—

EE SR

k=1 q
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If we cyclically permute the coefficients of f, by about
q/4 places we get an example of Turyn’s which we de-

note by
z) 1= qi <k—+ [q/4]> 2"
q

k=0

where [-| denotes the nearest integer, and we denote the
general shifted Fekete polynomials by

- 1<k+t> .
k=0

Note that R has one coefficient that is zero (from the
permutation of the constant term in f). For example

fiii=—a% 42— —2" -2+ P+t -2+

and

Ry = 0 T 1.
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The explicit formulas involve the class number of the
imaginary quadratic field of Q(v/—d) which is denoted
by h(—d). For any odd prime d it can be computed as

(d=1)/2
p-d)=da 3 (5) (08 = rau-)

k=1

1 if d=1,7 (mod 8),
Ag =4 —1/3 if d=3 (mod 8),
—1 if d=5 (mod 8).
For primes d = 3 (mod 4) it can also be computed as

h(—d) = —fc'lc(il) _ —é Y (S) k

(this sum is 0 for d =1 (mod 4)).

There are two natural measures of smallness for the L4
norm of a polynomial p. One is the ratio of the L4 norm
to the Ly norm, ||p||4/||p||2- The other (equivalent) mea-
sure is the merit factor, defined by

Ipl2

MF — )
P) = o = ol
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Littlewood polynomials are the set

n

L, :=<p:plr)= Zajxj, a; € {—1,1}

i=0

The Ly norm of any element of £,,_1 is 4/n and this is,
of course, a lower bound for the L, norm.

The expected L4 norm of an element of £,, is is 21/4,/n.
The expected merit factor is thus 1.

The {R,} above are a sequence with asymptotic merit
factor 6. Golay gives a heuristic argument for this ob-

servation of Turyn’s and this is proved rigorously by
T. Hgholdt and H. Jensen

The Fekete polynomials themselves have asymptotic merit
factor 3/2 and different amounts of cyclic permutations
can give rise to any asymptotic merit factor between

3/2 and 6.
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Golay speculates that 6 may be the largest possible as-
ymptotic merit factor. He writes “the eventuality must
be considered that no systematic synthesis will ever be
found which will yield higher merit factors.”

Newman and Byrnes, apparently independently, make
a similar conjecture. As do Hgholdt and Jensen.

Computations by a number of people on polynomials

up to degree 200 are equivocal. See the web page of
A. Reinholz at http://borneo.gmd.de/~andy/ACR.html.

The Fekete polynomial f, has modulus ,/q at each gth
root of unity (as does f;) and one might hope that they
also satisfy the upper bound in Littlewood’s conjecture
but Montgomery shows that this is not the case.

Littlewood’s conjecture is that it is possible to find p,, €
L, _1 so that

Ci1vn < |pn(2)] < Cov/n

for all z of modulus 1 and for two constants C4,C5 in-
dependent of n.
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2. RESuULTS

Theorem 1. For q an odd prime, the Fekete polyno-

mial,
q—1 L
f) =X (5)
=1 1
satisfies
5q° 4
||fq||j1l = EN 3q + 3 — Yq
where
._{0 if ¢g=1 (mod 4),
Y7 12(h(=¢))? if g=3 (mod 4).

Theorem 2. For q an odd prime, the modified Fekete
polynomaal,

F,(2):=1+ qi <E> 2F

=1 4
satisfies
5> 5
||Fqu: ?‘1‘9_ 3 — Yq
where
._{O if ¢=1 (mod 4),
YT 120(—q)(W(—g) + 1) if g=3 (mod 4).
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Theorem 3. For q an odd prime the half-Fekete poly-

nomials
(qili/? I
Gy(z) == (—) 2",
k=1 q
satisfy
4 q2 q 1 )
e e )
where

0 if ¢g=1 (mod4),
Yo =% 2 if ¢g=7 (mod8),
6 if g=3 (mod8).

The exact same formulae above hold for the polynomials

(fq(2) + f4(=2))/2 and (fq(2) — fo(=2))/2.
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Theorem 4. For q an odd prime, the Turyn type poly-

nomaials <k+T[q/4]> }

qg—1
Ry(z) :=
k=0

where [-] denotes the nearest integer, satisfy
7q° 1

HRqu:?_q_g_W’q

and
hM—q)(h(—q) —4) 1f g=1,5 (mod 8),

1= { 12(h(=q))? i g=3 (mod8),
0 if ¢=7 (mod 8).
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Theorem 5. For g an odd prime, the shifted Fekete

polynomsials
iy
po-E (5
k=0
satisfy
I1£5ll2 =

2

! <n+t)
n

n=1

1 8
3(5(] +3q+4)+8t* —4qt— 8t—q— (1 — = <—>>

and
[f2=H13 = 1 felld
if1<t<(g—1)/2.

Montgomery shows that the maximum modulus of f,(z)
at the 2¢th root of unity is at least %\/ﬁlog logq.

Corollary 6. For g an odd prime, we have

qg—1

D1 fal—e I = S (Tg — 8)(g — 1) — 247

§=0

where v, s the same as in Theorem 1.
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Theorem 7. For q an odd prime, the shifted Fekete

polynomsials
C (k + t) I
k=0

_ 5q>
121 = 1797113 = “o +8t2 —4gt+O(g(log g)?)

3
if 1<t <(g—1)/2.

satisfy

Theorem 7 follows from Theorem 5 on observing that
k—1 qg—1

(595 ()50 ()

This is coupled with the known estimate
k—1

> (%)

n=1 q

and the observation that

122 n
g (%)

equals the class number, h(—q), for primes ¢ = 3 (mod 4)
and is zero for primes ¢ =1 (mod 4). The asymptotics

of Turyn et al mentioned previously are the above the-

orem in the case where t is a constant multiple of q.

< g2 logg
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Theorem 8. Let

n_

{—2 if mn=0,1 (mod 4),
1 if n=2,3 (mod4).

The above example of Littlewoods depends on the as-
ymptotic series for

because, in the above notation,

sin?(j%m/n)

1Lz = n* + 22

sin?(jm/n)
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Let ¢ be a prime and x be a non-principal character
mod q. Let

for 1 <t < g be the character polynomial associated to
x (cyclically permuted ¢ places).

Theorem 9. For any non-principal and non-real char-
acter x modulo q and 1 <t < g, we have

4
Ifi(2)|i = 2¢* + O(¢*? log® q)

3
where the implicit constant is independent of t and q.
Here || - |4 denotes the Ly norm on the unit circle.

It follows from this that all cyclically permuted charac-
ter polynomials associated with non-principal and non-
real characters have merit factors that approach 3.

We also compute the averages of the L4 norms:

Theorem 10. Let q be a prime number. We have

> i = (2g—3)(g—1)
x (mod q)
where the summation is over all characters modulo q.
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PROOF OF THEOREM 5

Let ¢ be a prime number and, as before, let

qg—1
n n
he =Y ()
n=1 q
be the Fekete polynomial. Define

._{1 if ¢g=1 (mod 4),
“T i if g=3 (mod 4).

Then we have the following well-known result
i k
fo(W") = €qv/q a :
for k=0,1,---,q9— 1, where w := e27/4,

Lemma 1. For any 1 <t < q, we have

(1) a5 ()
S\ w1 Vi a /)

()
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Lemma 2. If1 <k <gq, then

qg—1
Z nm:%(q2—6q—1—|—6k—|—3qk—3k2).

n,m=1
k+n+m=0 (mod q)

Lemma 3. If1 <k <gq, then

qg—1 w(a—b)k 1 ) ,
) (ot 1 = 120 D(@ H60+5-12k—6gk-+64%)
a,b=1

a#b

As before let fl(z) be the shifted Fekete polynomial ob-
tained by shifting the coefficients to the left by ¢ where
1 <t<gq. So fi(z) = fq(z). Then we have

fo®) = w™* fo(w")

for any 0 < kK < g — 1. We are going to evaluate the
following summation

g—1

D IfE=wM)n

k=0
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We use the basic approach of T. Hgholdt and H. Jensen
which is by interpolation at the 2gth roots of unity. Us-
ing the Lagrange interpolation formula at the gth roots
of unity, we have

. 1901, .
HOEESY W fl(w?).

qj:Oz—wJ
It follows that
Kok 16 1|28 W 4
to_, ky4 _ 20 (i
kZ:O|fq( w )| q4 ol b wk—l—wﬂ q(w )
16 =2
a\ r b c\ r d a+t+c
= D Jiw) W) W) Fiw e
q a,b,c,d=0
g—1

v Z 1 wk 1 wk
kzowk+wawk +wbwk+wcwk+wd°

We then group the terms in the above summation over
a,b,c and d by the following cases:

(1) a=cand a+#b+#d,

(2) a=b=c#d,

(3) a=b+#c=d,

(4) a=b=c=d,

(5) a#b#c#d,
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and we obtain the following formula

g—1

S IfH—wh) = (A + B+C + D)
k=0 q
where
g—1
A= L@+ Y i)
a=0
B

_ wa_|_wb

T Y RPN + ) ()

a#b
L PN a2 [ J@ @)+ fw0) fi(w)w e
¢= 4 a,b,c:02|fq(w ) ( (Wb — w?)(w€ — w?)
aF£b#c
@ FHW) U Fiwe)w + FHw)? FE(WP) fh(we)wb e
4 Rl (Wb — w?) (W€ — w?)
a#b#c
2
p—_2
4
L a1 e R 0 i i
(oA

a#b
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Here A, B,C and D are the sum of terms according to
the above cases (1), (2), (3) and (4) respectively and
the sum of terms corresponding to the case (5) is zero.

We now evaluate A, B, C and D separately. The details
are formidable.

To prove Theorem 4 we need .

Lemma 4. Let q be a prime and q > 3. Then we have

sh(—q)—1 if ¢=1 (mod 4),
(E) =4 Y if ¢=3 (mod 8),
h(=q) if ¢=7 (mod 8).



Be-91

Bo-A.

BL-A.

BM-A.

CGP-98.

Go-T77.

Go-83.

Hg-88.
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