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Abstract

We construct a family of infinite Markov systems on [—1,1] with
the property that the rational functions from these systems are not
dense in C[—1,1]. This gives counterexamples to a long standing

conjecture of D.J. Newman.
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1 Introduction
The classical Muntz Theorem says that the system of functions
{1,2M 2%}, A\ — oo
is complete, meaning linear combinations are dense, in C[0, 1] if and only if

>

i=1

= OQ.

Ai

In the early seventies D.J. Newman conjectured that the completeness
question for rational functions from the above system had a completely differ-
ent answer. More precisely, for any real sequence {);} the rational functions

of the form
a, + > aijf'
bO + z bjfl’/\j
are always dense. This surprising and pretty result was proved by Somorjai

[14] in the case that the sequence tends to infinity and in full generality by

Bak and Newman [2]. This is all discussed in [9] where Newman writes

“Apparently rational functions always want to be dense. There

is something magical about performing that one division.”

He goes on to conjecture that for any infinite Markov system (defined be-
low) the rational functions from the system will be dense in the continuous
functions. Though in fairness to Newman he calls this “a wild conjecture
in search of a counterexample”. Apart from the above example, Newman’s

conjecture holds for various other Markov systems, including

{ 1 1 1 }
4o r+ay r4+az’



for arbitrary {a;}. These and related results may be found in [5], [6]. The
point of this paper is to construct Markov systems for which the conjecture
fails. These examples are “reasonably natural” and suggest that the class of
Markov systems for which the conjecture holds may unfortunately be quite
limited.

The definitions we need are the following. An infinite Markov system on
[a,b] is a sequence of functions {¢g, ¢1,...} in Cla,b] with the property that

every “polynomial” of the form

appo + arpr + - - + anp, (a; € R)

has at most n zeros on [a,b]. This is equivalent to demanding that each
initial segment {©g, ¥1,...,¢n} is a Chebyshev system. Chebyshev systems
sit at the heart of approximation questions because they are the only systems
that allow for both the existence and uniqueness of best approximants. By
a rational function from such a system we mean any function of the form

appo + a1pr + -+ Appy
bowo + bt + -+ +ban

that is a ratio of “polynomials.” Material on Markov systems, Chebyshev

aj,b]— eR

systems, and related matters may be found in [10].

2 Construction

We construct an infinite Markov system as follows. Consider non-negative
even integers
O=pg <A <1 <Ao< g < oo <Ay < g < v
which are lacunary in the sense that, for some ¢ > 1,
i i1

— > and
Ai 1 i

>q forall .
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Let ¢ € C[—1,1] be defined by

woi=1, op(x) =2

and

2 x>0
Pary1(2) ==
—axM; 2 <0

Proposition 1. {yg, ¢1,...} is a Markov system on [—1,1].

Proof. If
pla) = appr(e)
k=0
then
p(z) = agr! + ayx™ 4 axr +azz? 4.+ for x € [0,1]
while
p(x) = apr?® — a1x™ + apa™ — azx™ 4 -+ for x € [=1,0].

Observe that if the sequence

{a07a17a27"'7an}

has k sign changes (indices for which a;a;41 < 0) then the sequence

{a07 —an, +a‘27 R (_1>nan}

has n — k sign changes. So by Descarte’s rule of signs [10, p. 15] p(z) has
at most n — k zeros in (0,1] and at most k zeros in [—1,0) (recall that all
the exponents are even so we may apply the rule on [—1,0)). There is a zero

at zero only if ag = 0, and p is really a “polynomial” of “degree” at most
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n — 1. Thus we have proved that p(z) has at most n zeros on [—1,1] and

have verified that we have a Markov system. [ |

We make two simple observations. First, we may make each ¢; € C¥[—1,1]
just by choosing A; > k. Secondly, while we need lacunarity for the counterex-
ample we only need an increasing sequence of exponents for the construction
in the previous proposition.

We now formulate the main result.

Theorem 2. Let {¢,} be as above. Then the rational functions of the form

2 a;p;
> bjp;

Cl]',bj eR

are not dense in C[—1,1].

The proof of this theorem is based on the following two lemmas. In the
remainder of the paper all the summations are to infinity and all norms are

the uniform (supremum) norm on the indicated intervals.

Lemma 3. (cf. [3], [11]) There ezists a constant K > 0 depending only on

the lacunarity constant q such that

1D e + 37 Bia" oz < K| D g™ + 37 Bt |l
for all choices of a;, 3; € R.

Lemma 4. There exists a constant ¢ > 0 depending only on q such that

1Yz 4+ it

for all o, 3; € R.

oy < el Doazat =30 Bt oy

Proof. By the lacunarity condition of the exponents the system {a% x#s}

is a basic sequence in C[0,1] (cf. [7]). In particular this implies (cf. [12,
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pp. 53-54]) the existence of a constant d > 0 such that

. g d . .
1> a2t =37 B2t > 3 max{|| S|, 1Y Bt ||[0,1}} .

Hence

1Y e =3 Biatiloy > d (|| > + | Zﬁﬂf“"ﬂ)
d|| Yzt + 3 a0t

Vv

and the inequality in Lemma 4 follows.

The result of Gaurii and Macaev [7] can be also found in [13, pp. 141-148],

[1], and [4]. Lemma 3 is explicit in [3] but follows from [4] and a version may

be found in [11].

Proof of Theorem 2. Consider f € C[—1,1] defined by

1 if ze[-1,-1/2]
fle)=¢ 0 if 2€][0,1]
—2x if xe[-1/2,0].

We show that f is not uniformly approximable.
Suppose that

<e<l.
[_lal]

2 aj; f|
2 bjp;

This implies

' Z()c’jl')‘j + Z/le"“j <
€
YO ¥ L phts
Lagrt + 3 Bt
and
J 7J — <e
Y alati =3 Bk [1/2,1]
/I - I
for some «;, o, 35, 5;.



Without loss of generality we may normalize to assume that

1> a4+ plati||o = 1.

This assumption implies, together with (1), that

12 gy + 37 B0 o < &

and by Lemma 4 it also implies that

1Y e =37 Biati|ljoy < ce.

Also (3) and Lemma 4 give

1> e =37 Bjat lloay = —

By Lemma 3 there exists a point z( € [1/2,1] with

|Zar0 Zﬂ' 0’| _[,.

o (6) and (5) now imply the right hand side of

QI—‘

ZonIO ZB:EO
Yy = 3 B’

while (2) implies the left hand side. Hence

l—e< - < Kc%e

1
” Ke? +1

and we are done.
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