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ABSTRACT

The Markov-type inequality

i \Ax)\pdx

is proved for all real algebraic polynomials/of degree at most n having at most k, with 0 ^ k < n, zeros
(counting multiplicities) in the open unit disk of the complex plane, and for all p > 0, where
c(p) = cp+1(l +/T2) with some absolute constant c> 0. This inequality has been conjectured since 1983
when the L^ case of the above result was proved. It improves and generalizes many earlier results.
Up to the multiplicative constant c(p) > 0 the above inequality is sharp. A sharp Bernstein-type analogue
for real trigonometric polynomials is also established, which is interesting on its own, and plays a key role
in the proof of the Markov-type inequality.

1. Introduction, notation

Bernstein's inequality [16, pp. 39-41] asserts that

max \f'(t)\^n max \J{t)\ (0.1)

for every fe$~n, where 2Tn denotes the set of all trigonometric polynomials of degree
at most n with real coefficients. The corresponding algebraic result [16, pp. 39-41],
known as Markov's inequality, states that

max \f'(x)\^n2 max \f{x)\ (0.2)

for a l l / e ^ , where 0>n denotes the set of all algebraic polynomials of degree at most
n with real coefficients. The Chebyshev polynomials Qne3Tn and Tne2Pn defined by

Qn(t):= cos (nt+a) foraeR, (0.3)

Tn(x) := cos (n arccos x) for - 1 ^ x ^ 1 (04)
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show that (0.1) and (0.2) are sharp. The substitution JC = cos / in (0.1), together with
(0.2), yields

| /O0|<min(n2, " A max \J(x)\ w i t h - l ^ j ^ l (0.5)

for every/e^. The sharp Lp version of Bernstein's inequality was first established by
A. Zygmund [25, II (3.17) p. 11] for/? ^ 1. It states that

P
J - n

(0-6)

for e v e r y / e ^ and 1 ̂  p < oo. For 0 < p < 1, first G. Klein [14] and later P. Osval'd
[21] proved (0.6) with a multiplicative constant c(p). In [20] Nevai proved that
c(p) = %/p is a possible choice. Subsequently, Mate and Nevai [19] showed the
validity of (0.6) with a multiplicative absolute constant, and then V. V. Arestov [1]
proved (0.6) (with the best constant 1) for every 0<p< 1. Recently M. von
Golitschek and G. G. Lorentz [13] found a very elegant proof of Arestov's Theorem.
Markov's inequality in Lp gives

f1 f1

\f(x)\p dx ^ cp+1n2v \Ax)\pdx (0.7)
J-i J-i

for e v e r y / e ^ , where c> 0 is an absolute constant. This can be proved from the
above Lv Bernstein-type inequalities by the substitution x = cos / and by using
Nikolskii-type inequalities (cf. [19, 17]). Finding the best constant in (0.7) is still an
open problem. Markov and Bernstein type inequalities in weighted spaces and in Lp

norms play a key role in proving inverse theorems of approximation and of course
have their own intrinsic interest.

Denote by ^(n,k) the set of all pe^n having at most k zeros (counting
multiplicities) in the open unit disk {zeC:\z\< 1}. Markov and Bernstein type
inequalities for constrained polynomials have been studied in many research papers
where the classes 0>(n, k) for 0 < k ^ n are of special interest. One might correctly
suspect that the restrictions on the zeros of a polynomial imply an improvement in
inequalities (0.5), (0.6) and (0.7). In 1940 Erdos [12] proved that there is an absolute
constant c> 0 such that

max \flx)\ w i t h - 1 ^ ^ 1 (0.8)

for every fe&{n,0) having only real zeros. By taking the polynomials pne&*(n,0)
defined by pn(x) := (1 +x)n~1(l —x), it is easy to see that the constant |e in (0.8) is
asymptotically sharp. In 1963 G. G. Lorentz [15] showed that there is an absolute
constant c> 0 such that

\f(y)\ ^cminL / " } max [/[*)| w i t h - 1 ^ ^ 1 (0.9)
I V I 1 y )) -l^xm
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for every/e^ of the form

Ax) = £daj(\+xy(l-x)n-} with all a^ 0 or all at^ 0. (0.10)

By an observation of G. G. Lorentz [22], every fe&>(n,0) is of the form (0.10),
and therefore (0.9) holds for every/G^(/J,0). Inequality (0.9) is sharp up to the
multiplicative absolute constant c> 0; namely it is shown in [8] that there is an
absolute constant c > 0 such that

max \J[x)\ { V(1/)J
- 1 < X

for every neN and .ye[— 1,1]. In 1972 Scheick [22] found the best possible constant
in Lorentz's Markov-type inequality. Extending Erdos's Markov-type inequality, he
proved that

max \f'(x)\^frn max \J{x)\ (0.12)

for every fe &n of the form (0.10), and hence for every fe 0>{n, 0). In 1980 Szabados and
Varma [24] showed that there is a constant c(k) > 0 depending only on k so that

max \f(x)\^c(k)n max \J{x)\ (0.13)

for every fe ^(n, k) with 0 < k ^ n, having only real zeros. Subsequently Mate [18]
proved that

max \f\x)\ ^6nexp(n\/k) max \J[x)\ (0.14)

for every fetPfak) with 1 < k ^ n, having n—kzeros in U\(—1,1). Szabados'
conjecture, proved by P. Borwein [2] in 1985, establishes the Markov-type inequality

max \f(x)\^9n(k+l) max \/[x)\ (0.15)

for every fs^in, k) with 0 < k ^ n, having n—k zeros in U\( — 1,1). Inequality (0.15)
was extended in [6] to al l /e^(«, k) with 0 ^ k < n. Another proof of (0.15) for all
/ e^ (« , k) with 0 < k ^ n, is obtained in [9] with the constant 11 instead of 9. The fact
that (0.15) is sharp up to the multiplicative absolute constant was shown by Szabados
[23, Example 1]. While (0.15) is essentially sharp, it is a good estimate only for \Ay)\
with [y| close to 1.

It was proved in [11] that there is an absolute constant c > 0 such that

\f\y)\ ^ v
v

v
( ; _ / )

/ max ^ \Ax)\ with - 1 < y < 1 (0.16)

for every fe^(n, k) with 0 ^ k ^ n. Subsequently it was shown in [9] that there is an
absolute constant c> 0 so that

\f\y)\ ^ Cy/M+l)) max ^ \/Lx)\ with - 1 < y < 1 (0.17)
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for every/e^(«,A:) with 0 ^ k ^ n. When y = 0, inequality (0.17) is sharp up to the
multiplicative constant c> 0; so it is verified in [6] that there is an absolute constant
c > 0 such that

s u p

for every 0 ^ k ^ n.
The unpleasant thing about the Bernstein-type inequalities (0.16) and (0.17) is the

fact that none of them matches the inequality (0.5) in the unrestricted case k = n (note
that ^(n,n) = &n). In [4] the authors established the 'right' Markov-Bernstein type
inequality in L^ for 0>(n, k) with 0 ^ k ^ n, which contains all of the earlier Lx

results as special cases up to a multiplicative constant c > 0. Namely, there is an
absolute constant c > 0 such that

^]1/2) max \f{x)\ with - 1 ^ y ^ 1 (0.19)
-y

for every fe^(n,k) with 0 < k < n.
The purpose of this paper is to establish the ' right' Markov and Bernstein type

inequalities for ^(n,k) with 0 ^ k ^ n in Lv for every 0 < / ? ^ o o . Up to a
multiplicative constant c (p) depending only on p , our results are sharp and contain
all the earlier results as special cases. Our proofs are based on a nice combination of
results and methods worked out in [9, 4, 5, 19, 10]; however we have to cope with a
lot of technical details.

2. Results and Proofs

Throughout this paper N will denote the set of nonnegative integers.

THEOREM 1. Let #:[0, oo) -• R be a convex and nondecreasing function and let
0 < p ^ 1. There is an absolute constant cx > 0 such that

f'(t)

for every fs 2Tn of the form
M-=h(cost)q(t), (1)

where he(Pn_k has no zeros in the open unit disk, and q^3Tk, n,keN for 0 ^ k ^ n.

Using x(x)'=x ^ 0 < / ? < 1, and /(.*):= xp if p > 1, immediately gives the
following corollary.

COROLLARY 2. There is a constant c2(p) > 0 such that

\M\vdt

for every fe3Tn of the form (1) and for every p > 0, where c2(p) := c£+1(l +/T2) with
some absolute constant c3 > 0.
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THEOREM 3. There is a constant c4(/?) > 0 such that

for every fe 0>n of the form
Ax) = h{x)q{x), (2)

where h€^n_k has no zeros in the open unit disk, q6 0>k, n,keN for 0 ^ k ^ n, and for
every p > 0, where c4(/>) := cf+1(l +p~2) with some absolute constant cb > 0.

The following examples show the sharpness of Corollary 2 and Theorem 3 up to
a multiplicative positive constant depending only on p.

EXAMPLE 4. There are hn k pe^n of the form

. , P , . P p (3)
such that

for all integers 0 ^ k ^ n and for all p > 0, where c6 > 0 is an absolute constant.

EXAMPLE 5. There are Hn k pe^n of the form

, , P , , P ^ (4)
such that

for all integers 0 ^ k ^ n and for all p > 0, where c7 > 0 is an absolute constant.

To prove Theorem 1 we need a series of lemmas.

LEMMA 1.1. There is an absolute constant c8 > 0 such that

( E R

)n of the form

g(t) = (1 -cos( f -$y ( " - f c ) ( l +cos ( r -a ) ) " ( l - cos ( r - a ) r - f c - m ^ (0 , (5)

w/iere a, /feIR, qe3T(l+l)k,n,k,m, leN with 0 ^k ^n, 0 ^m ^n — k, and for every
Z E C JWC/l f/lfl/

|Imz| ^ 32-x(/+ 1)-2

The proof of the above lemma rests on the following result.
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LEMMA 1.2. There is an absolute constant c9 > 0 such that

c9 max \P(x)\

for every P e ^ ( m ) n of the form

P(x) := (JC - a ^ ^ x - a2f
m(x - a3)

2(n-k-"l)Q(x), (6)

where a 1 , a 2 , a 3 e [ — 1 , 1 ] , £ ? e £ 5 | a + 1 ) f c , n , k , m , l e N with O ^ k ^ n , O ^ m ^ n — k , and
f o r every

[

We reduce the proof of Lemma 1.2 to the following two results proved in
[4, Lemma 13; 7, Lemma 1, Corollary 1], respectively.

LEMMA 1.3. There is an absolute constant c10 > 0 such that

\P(a)\^cw max \P(x)\
-1 =£* « 1

for every ?6^ ( ( + 1 ) I 1 of the form

P(x) := (x+ \fl{n-k)+2m{x-aif
(n-k-m)Q{x), (7)

where a4e[— 1,1], ( ?e^ ( m ) f c , n,k,m, le N with 0 < m ^ n — k, and for every

oce[\,\+(4(l+\fn(k+\))-1].

LEMMA 1.4. Assume that ?E^ ( ( + 1 ) n and that

\P(l)\= max \P(x)\. (8)
-1 < a: < 1

P has at most cu(l+ l)nr112 zeros (counting multiplicities) in [1 —r, \]for every
r > 0, where cn = 2 \ /2 w fl suitable choice.

Proof of Lemma 1.2. If |n ^ / ^ n, then the conclusion of the lemma is a well-
known consequence of the Chebyshev inequality [16, p. 43] for all -Pe^f(m)n.
Therefore, in what follows, let 0 < k < \n. Without loss of generality we may assume
that ! (« -£ ) ^ m ^ n-k, otherwise \{n-k) ^ n-k—m < n-k. Note that 0 ^ k < \n
and f(« — /:) ^ m imply that \n <m. A simple variational method yields that it is
sufficient to prove the lemma under the assumption that Qe^,^^ has all its zeros in
[—1,1]. We may also assume that

max \P(x)\ = \; (9)
- 1 ^x ^ 1

the general case can easily be reduced to this by a linear transformation (note that |P|
is increasing on [1, oo), since all the zeros of Q are in [— 1,1]). Therefore, by Lemma
1.4, we can deduce that

1,fl2} ^ 1 — c12 (10)

with cl2 := (4(/+ \)cn)-
2 = (8.21/2(/+ I))"2. For the sake of brevity let

dx :=min{a15fl2} and d2.= max{al,a2}. (11)

Let P be of the form (6) and

P(x) := (.Y-fl2)2'(n-fc)+2ra(x-fl3)2(n-fc-'n)eW. (12)
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Since (x — d2)/(x — d1) is increasing on [a2, oo), we obtain

max mx)| ^ max \P(x)\ ̂  m a x |P(x)|

for every ae[l,oo). From Lemma 1.3, by a linear transformation, we can easily
deduce that

max

where

1 ^ a ^ 1 +(1 -a2)(8(/+ 1)2«(^+ I))"1 ^ 1 +(1024(/+ 1)4«

Combining (13) and (14), we get the lemma.

Now we obtain Lemma 1.1 from Lemma 1.2 as follows.

Proof of Lemma 1.1. I f / e ^ + 1 ) n is of the form (5), then there is a
such that

g(0 g(-Q = (cos / - cos flw-u (cos t + cos a)2m(cos t - cos a)2*"-*-"1* q(t) q( -1)
= (cos / - cos P)2l(n-k)(cos t + cos a)2m(cos t - cos a)

2(n-fc-m) g(cos 0- (15)

For the sake of brevity let

P(x) := ( x - c o s ^ ^ ^ X ^ + cos^^^-cosa)^"-*-" 1 ^^) . (16)

Then Lemma 1.2 yields

= \g(iS)g(-iS)\ =

max |P(a)| ^ max |P(a)|
2 1 < a JS l+(1024(J+l)4n(fc+l))~'

^ c 1 0 max \P(x)\ = c10max\g(t)g(-t)\^c10msix\g(t)\2

whenever
2, (17)

and the lemma follows for all z e C with Re z = 0 and

|Imz| ^ 32~x(/+ l)~Mk+ 1))"1/2.

If Rez # 0, then we study g(f)—g(t — Rez); this is of the form (5) as well with
a := a + Re z, /? := ft + Re z, and <?(/) = #(/ — Re z) e ST(lJrX) k, and the case already proved
gives the lemma.

From Lemma 1.1, by Cauchy's Integral Formula, we immediately obtain the
following.

COROLLARY 1.5. There is an absolute constant cu > 0 such that

max|g'(')l < cl3(l+ mn(k+ 1))1/2 max \g(t)\

for every gs3T{l+l)n of the form (5).
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From Corollary 1.5, by a variational method, we easily obtain the next corollary.

COROLLARY 1.6. Let c13 be as in Corollary 1.5. Then

\g\Q\ ^ cw(l+ l)2(«(/: + 3))1/2max|g(T)| with tocU
xeU

for every ge$~(MYn of the form

g(t) = (1 - cos (t -#)'<"-*> h(cos t) q(t), (18)

where /?e IR, qe&[l+l)k.,n,k,leN with 0 ^ k ^ n, and where he^n_k has no zeros in the
open unit disk.

Proof Let toeU, n,k,leN with 0 ^ k ^ n, fieM, and qe^[l+1)k be fixed. By a
simple compactness argument there is a function

g*(t) := (1 -cos(t-p))l(n-k)h*(cost)q(t) (19)

with h*e^n_k. having no zeros in the open unit disk such that

,un 1̂ (01 _ \s*Vo)\ (m
/max |g( r ) | max |^(r ) | ' V ;

xeR

where the sup in (20) is taken for all g of the form (18). We show that /
has all but one of its zeros (counting multiplicities) at either — 1 or + 1. If/*(a) = 0
and aeC\IR, then for a sufficiently small e > 0,

has no zeros in the open unit disk, and

ge(t) := (1 - cos (/ - P))l{n-k) K (cos /) q(t) (22)

contradicts the maximality of g*.
Now assume that there are a,/?elR\[— 1,1] such that (x — <x)(x—/J) is a factor of

/(A). Then for a sufficiently small e > 0 it follows that

has no zeros in the open unit disk, and (22) would contradict the maximality of g*.
Also, deg/7* ^ n — k— 1, otherwise for sufficiently small e > 0 it would follow that

he(x):=h*(x)(\-e(x-costoY)e0>n_K. (24)

has no zeros in the open unit disk, and gc defined by (22) would contradict the
maximality of g*. So now we get the desired conclusion by Corollary 1.5.

LEMMA 1.7. There is an absolute constant cu > 0 such that

max |g(r)|p ^ cu(l+ I ) 2 '
-n ^ r ^ n

for every g£$~(l+l)n of the form (18) and for every 0 < p ^ 2.
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Proof. Let t0 e [ — n, n] be such that

|g(/0)|= max \g(x)\. (25)
-n < T < n

By Corollary 1.6 and the Mean Value Theorem we obtain that there is a £ between
/0 and / such that

\g(0\ > \g(tO)\

= max |£(T)|-|/-gc13(/+l)2(n(/; + 3))1/2 max \g(z)\
—n < r < n —n < x < n

^2~X max |g(r)|

whenever
. (26)

For the sake of brevity let

/:= [,0-(2c13r(/+ \y

Then (26) and 0 < p ^ 2 imply that

22-> max |
I —n ^ T < n

and the lemma is proved.

LEMMA 1.8. There are fn<ke2Tn of the form

(i) /„.*('):= (1 + cosO71-*^,^) withqnJce3Tk

such that

00
J -n

hold for all integers 0 ^ k ^n, where c15 > 0 is an absolute constant.

Proof. It follows from [5, Corollary 3.3] that there are Fnlc€^n of the form

. . , (27)
so that

( / ; » ) • < & = 1 , (28)

l^,fc(l)l2^^6«(^ + 3) (29)

hold for all integers 0 ^ k ^ n, where c16 > 0 is an absolute constant. Now let

A, *(0 := ( J (̂ n, * (cos 0)2 AJ Fn> fc (cos 0. (30)
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Obviously fnk e^n is of the form (i), and

/ n , t ( 0 ) 2 ^ = l , (31)

/;,,(0) = 0 (32)

for all integers 0 ̂  k ̂  n. To prove (iii), first note that Lemma 1.7 implies (with

f (/«. *('))2 dt = f (/„, fc(0)2 dt + [ (/„, t i(0)8

J-n J A J [-n, n]\A

^ m(A) max (/n, t(0)2

[-7i,n]\A

„, t(/))
2 A + [ (/n, t(/))

2 ̂  (33)
J[-n,n]\A

holds for any measurable set A <= [ — n, n]. Hence m{A) ̂  (2c14)~
1(«(A: + 3))~1/2 implies

that

r(/n.t(0)2^^2f WnM)fdt. (34)
J-n J[-7t,7:]\A

Since fnjc(t) = txFn k(cost), there is an absolute constant c17 > 0 so that with the
notation

Sntk^\-(cl1n(k + 3)yl (35)

we have

f (^n,,W)2(l -xT'2dx ^ 2 \&nk (Fn k(x)f(\ -xril2dx. (36)

Now

(Fn k(x))*dx

j (37)

with c15 := 4~V16 q7
1/2, and the lemma is proved.

Proof of Theorem 1. Let/be of the form (1), let / := [2/T1] +1 for 0 < p ^ 1, and
let

(38)
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Applying Lemma 1.7 to g, and then to / n k, we obtain

max|/(T)(/ni/t(T))
reR r

cu(l+ mn(
reR J-n

(lp-2)/2

^ (/+ \ycT(n(k+3)y<»* P iy(r)r (/-...(T))1 A , (39)

where (p ̂  2 and Lemma 1.8 (i) were also used. Applying Corollary 1.6 to g defined
by (38), we get

\gVT ^ cUl+ l)2p(«(fc + 3)r2max|£(TF (40)
T6R

for every teR. Putting t = 0 and using/^fc(0) = 0 and (39), we conclude that

Axr{fntk{x)fdx. (41)

Combining this with (/n,fc(0))2 ^ c15(«(A: + 3))1/2 (see Lemma 1.8 (iii)) and
/+ 1 ^2(1 +p~l), we deduce that

\fc\T\T

(42)

with an absolute constant c18 > 0. Applying (42) tof^—flj + t), we obtain

Since
f (fn,k(*-0)2dT=\ for ten (44)

J -n

and x- [0, oo) -• U is a convex and nondecreasing function, (44) and an application of
the Jensen inequality yield

u ^ ' _ ^ y \f{z)\p(f kix-t)fdx\
1))/ ) \J-n ' /

{r-t))2dr. (45)
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Integrating both sides of (45) with respect to t, and using

(fn,k(T-t)fdt=\, (46)

we get the desired inequality by the Fubini Theorem.

Proof of Corollary 2. This result follows from Theorem 1 with p := p and x(x) '•= x
if 0 < p < 1, and with p := 1 and x(x) '•= xp if p > 1.

To prove Theorem 3 we need some lemmas.

LEMMA 3.1 ([2], [6, Corollary 1.3], [9, Theorem 1], or [4, Theorem 3.4]). There is
an absolute constant c1Q > 0 such that

max \f'(x)\^c19n(k+\) max \f[x)\

for allfe^ having at most k (with 0 ^ k ^ n) zeros (counting multiplicities) in the open
unit disk.

LEMMA 3.2 [3, Theorem 3.3]. There is an absolute constant c20 > 0 such that

f1
max \f(x)\v ^ c20(l +p2)n(k+ 1) \f{x)\pdx

for allfe^ having at most k (with 0 ^ k ^ n) zeros (counting multiplicities) in the open
unit disk and for all p > 0.

LEMMA 3.3. There is an absolute constant c21 > 0 such that

\Ax)\pdx

for allfe8Pn having at most k (with 0 ^ k ^n) zeros (counting multiplicities) in the open
unit disk, and for all p> 0 and 0 < a < 1.

Proof. Let dn<k:= 1 -(n(k-\-1))"1. Using Lemma 3.2, we obtain

\Ax)\pdx+( (\-xr*dx max

(n(k+ \)T J \Ax)\pdx + 2(\ -a)-\\-Snky-ac20(\ +p*)n(k+ 1) P \fLx)\*dx

c21(\ -<x)-\\ +P
2)(n(k+ 1))« f \Ax)\pdx,

j - i

where c21 := 1 +2c20, and the lemma is proved.

Proof of Theorem 3. We distinguish two cases.
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Case l.p^ 1. Corollary 2 and the substitution x = cos t yield

P I / W O -xy-^dx ^ c2(p)(n(k + l))p/2 P \Ax)\p(l -x2y1/2dx (47)

for e v e r y / e ^ of the form (2). Now let Sn fc:= 1-(«(£ + I))"1. Then, by (47) and
Lemma 3.3, we get

\f(x)\'
J-Kk

dx

\f{x)\p{\-x2){*-imdx

(n(k+ l)Yp-1)/2c2(p)(n(k+ I))p/22c21(l +p*)(n(k+1))1/2 P \J[x)\pdx

f{x)\pdx, (48)

where c22(p) := 2c21(l +p2)c2(p) - 2c21(l +p2)cP+1(\ +p~2) for e v e r y / e ^ of the form
(2). Using Lemmas 3.1 and 3.2 we can easily deduce that

I n , , I/(X)|Pdx^2(1 ~̂ 'fc) iTx<x l f ( x r

max
1 Kx ^

2(n(k+\)r\cu
J-i

/rr^/Zr (dQ)
/ V / I 9 V /

where c23(/?) := 2cf9 c20(l +/?2), for e v e r y / e ^ of the form (2). Now (48) and (49) yield
the theorem.

Case 2: 0 <p < 1. Let w:=[/rx]. Since 0 <p < 1, we have \a + b\p ^ |a|p + |6|p

for any two real numbers a and b. Combining this with the product rule and
Corollary 2, we obtain

f |/(/) sin" t\*dt
J -n

^ -rC/lOsin-O dt+\ \ fit) u sin""11cos t\vdt
J-n & J-n

< ct(j>) ((» + «) (ik + u + l))p/2 f \M sin" /|p A + « f |>C0 sin""1 t\p dt (50)
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for every fe&~n of the form (1). Substituting x = cost, we get

\f(x)\(l-x2yu+1)p/2-l/2dx
- 1

\f[x)\p(\-x2)up/2-ll2dx

+ u \f{x)n\-x2yu-1)v/2-1/2dx (51)
- i

for every/e^ of the form (2). Observe that 0 < p < 1 and u = [/T1] imply that

ft«+l)/>-|^0, (52)
- i < fttt- l)/>-± < \up-\ ^ 0. (53)

Let Snjc := 1 -(«(A:+ I))"1. Using (51), (52), (53), and Lemma 3.3, we can deduce that

""* \f\xTdx

\f(x)\p{\-x2yu+i)i2-ii2dx
.k

(n(k+\)yu+1)p/2-1/2c2(p)((n + u)(k + u+ l))p/2 f |/(x)|p(l -x2)upl2~mdx

\f(x)\pdx

+ 4c2lp-\n(k+\)y{u+1)J»2-1/2)+{ll2-{u-1)pl2) P \f{x)\pdx

\M\vdx (54)

for every fe£Pn of the form (2), where c2i(p) := c2(p)(l +/T1)Mc21 + 4c21/r
1 ^ c2hp~2

with a suitable absolute constant c25 > 0. Further, using Lemmas 3.1 and 3.2 we get

\f'(x)\pdx ^ 2(1 — Sn k) max |/'(-^)|p
J[-l,l]\[-Sn kSn k] - l ^ i ^ l

y max \f[x)\p

where c26 := 4c20(l +c19) for every/e^ of the form (2). Now (54) and (55) give the
theorem.
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We prove only Example 5, the proof of Example 4 is quite similar.

Proof of Example 5. From [5, Corollary 3.3] it follows that there are Gn ke^n of
the form

(56)

such that

(57)

(58)

(59)

for all integers 0 ^ k ^ n, where c27 > 0 and c2S > 0 are absolute constants. Let
u := [2/T1] + 1, n := [n/u] and k := [k/u]. We distinguish two cases.

Case 1: « ^ 1. Let //„ fc p := (G^k)
u. Obviously Hn kpe3Pn and it is of the form

(4) for all integers 0 ^ k ^ n and for all/? > 0. Using Lemmas 3.2 and 3.1, and n ^ 1,
we obtain

r >
\Hn k p(x)\p dx ^ (c2o(l ~^P )n(k-\~ 1)) max \Hn k p{x)\p

J -1 - l « a « l ' '

max
-1 ^x<

(60)

with a suitable absolute constant c29 > 0. Further, up ^ 2, Lemma 3.2 and (57) imply
that

I; : max |Gyj,fc(x)|ttp-2

-1 < x < 1

f1

' - 1

(61)

with a suitable absolute constant c30 > 0 which, together with (60), gives the desired

result.

Case 2: n = 0. Then n<u<2p~1+\. Let //„ fc p(x) := 1+ x if n > 0, and
^n.fc.p:= 1 if « = 0. A simple calculation yields the desired inequality.
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