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§1. INTRODUCTION

Let 0 < Ay < A1 < -++ — 0. The classical Mintz—Szasz Theorem states that

the Miintz polynomials of the form }.}'_, axz** with real coefficients are dense in
L?[0,1] if and only if
> A =+ (1.1)
k=1
If the constant function 1 is also in the system, that is, Ay = 0, then the denseness
of the Miintz polynomials in C[0, 1] in the uniform norm is also characterized by

(1.1). It is our intention to examine various facets of the Miintz space

M = span{z*, z* 2?2 .}
and for its subspaces

M,, = span{z*, z*, ...z},

where the span is taken over all real numbers (§4 and §5, where real properties are
studied ) or complex numbers (§2 and §3). It has been observed [25, Mathematical
Review 88e:33008] and [13], but does not appear to be particularly well-known,
that the orthogonal polynomials associated with a Miintz system (with respect

to Lebesgue measure) on [0,1] can be explicitly written down. These orthogonal
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polynomials are called Miintz—Legendre polynomials. This is the key tool for the

analysis we undertake. We prove for example the L? Markov inequality

llzp’(z)]l2
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for all Miintz polynomials p from M,,. Compare this with the L*° result in [17]

zp' ()| so
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Both of these are sharp up to the constants. In order to prove this result and various
of its relatives we first derive some explicit formulae and recursions for the sequence
of Miintz—Legendre polynomials. Since this orthogonalization is not well-known,
and for the sake of completeness we briefly reprove some of the basic formulae, some
of which may be found in [13, 25]. This is contained in Section 2. Section 3 offers
some inequalities for Miintz polynomials, mainly, the above mentioned L? Markov
inequality. In Section 4, we study the interlacing and lexicographical properties of
the zeros of Miintz—Legendre polynomials . Also in this section, universal estimates
of the smallest and largest zeros of Miintz—Legendre polynomials are obtained via
the zeros of Laguerre polynomials. Finally in the last section, we study the proper-
ties of the Christoffel functions, whose pointwise or uniform convergence on closed
subintervals of [0, 1) turns out to give a characterization of the nondenseness of the
Miintz space on [0, 1].

Proofs of the Miintz—Szdsz Theorem can be found in [6], [8], and [10], and various
new developments are in [1], [2], [3], [4], [5]. [7]. [8], [11], [17], [18], [21], [22], [23],
[26], [28]. A very special class of Miintz systems, the incomplete polynomials of
the form z™p(x) with ordinary polynomials p has been studied intensively (cf. [12,
20]).

§2. BASIC PROPERTIES OF MUNTZ LEGENDRE POLYNOMIALS

Throughout this paper, we adopt the following definition for z*:
z* =erMos7 r e (0,00), A€ C (2.1)

and the value at z = 0 is defined to be the limit of 2* as  — 0 from (0, 00)
whenever the limit exists. Given a complex sequence A = {A\g, A1, A2, ...}, a linear

A
sy

combination of the Miintz system {z, x*n} is called a Mtintz polynomial,

or a A—polynomial. Denote the set of all such polynomials by M, (A), that is,

M, (A) = span{z?°, 2™, ...z}, (2.2)
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where the linear span is over the real numbers (§4 and §5) or over the complex
numbers (this section and §3), according to context. The union of all M, is denoted
by M(A), that is,

M(A) = U2 Mo (A). (2.3)

For the L? theory of a Miintz system, we consider
A={Ao, A1, g, )y R(Ap) > —1/2, and A # X (k#j), (2.4)

where $()) is the real part of X\. This ensures that every A—polynomial is in L%[0, 1].
We can then define the orthogonal A—polynomials with respect to the Lebesgue
measure, the Miintz—Legendre polynomials. Although we almost always assume

(2.4), the following definition does not require the distictness of A.

Definition 2.1. Let A = {)g, A1, Aq,...} be a complex sequence. We define the
n th Miintz Legendre polynomial on (0,1] to be [cf. 25]

" N+ 1 ztdt

1
LMo, M, ... At ) = —  on=0,1.2,..., 2.5
(oMo Aui) QM/FH e T RESRPLL)

where the simple contour I' surrounds all the zeros of the denominator in the

integrand, and )\ denotes the conjugate of \.

The orthogonality of the above functions with respect to the Lebesgue measure
will be proved in Corollary 2.3. Here we first record an immediate consequence of

the definition and the residue theorem.

Corollary 2.2. Let A = {Ag, A1, Ao, ... } satisfy (2.4). Then for everyn =0,1,2,...,

- 1550 e + A+ 1)
L(A(]: SR A'n* 33) = ck,n.:r)\kv Ckn = ]n_ (26)
,;) ' Hj:O,j;élc()‘k —Aj)
with L( Ao, ..., A\n; ) defined by (2.5).

So, L(Ag, . ... An) is indeed a A—polynomial provided that Ag, A1,.... A, are dis-
tinct. Its value at © = 0 is defined if for all & either R(Ax) > 0 or A\, = 0. For
example, if A\g =0 and R(A;) > 0 (1 <k <n), then L(Ag,...,A\n:0) = cpp. and it
is 0 if R(Ag) > 0 also holds.

Remark. From either Definition 2.1 or Corollary 2.2, it is obvious that in L(Ag, ..., A,),

the order of Ag,..., \,,_1 does not make any difference, as long as A,, is kept last.

For example, L(Ag,A1,A2) = L(A1,Ag, A2), but both are usually different from
L(Ag, A2, A1). For a fixed (ordered) sequence A, we will use L, (A), or simply L,, to



4 PETER BORWEIN, TAMAS ERDELYI, AND JOHN ZHANG

denote the n—th Miintz—Legendre polynomial L(Ag,...,A,), whenever there is no
ambiguity.

In (2.6), repeated indices (for example, Ay = A1) cause a problem. But in the
original definition, A\, = A; is allowed. We can view this also as a limiting case
(A — Aj). We state a very special case when all indices are the same, which turns
out to be closely related to the Laguerre polynomials. Notice also that the result

is actually no longer a A-polynomial, with log z coming into the picture.

Corollary 2.3. Let L(Ag, ..., An;x) be defined by (2.5). If \g = -+ = A\ = A,
then
L(Xo... . Aniz) =2 Ly (—(1+ A+ X)log z) (2.7)

where L, 1s the n—th Laguerre polynomial orthogonal with respect to the weight e™*

on (0,00) and with L£,(0) = 1.
Proof. Since A = A for k=0,1,...,n, (2.5) yields,

1 tt4+A+1)"
LMo, Ase ey A ) J/ A+ )"
N

T2 Jp (t— At
where the contour I' can be taken to be any circle centered at A. By the residue
theorem,
L(A Ap; ) = wl[ﬂ@+X+nﬂ
Os+vvs\ny - n! dim t=A\

I
8
>
(]
=)=

<Z> (1+ X+ N log" .

These are just the Laguerre polynomials {£,} in (—logz) which are orthogonal
with respect to the weight function e~* on (0, 00) with the normalization £,,(0) =1
(cf. [24, p. 100]), and we obtain (2.7). O

The name Miintz—Legendre polynomial is justified by the following theorem,

where the orthogonality of {L,,} with respect to the Lebesgue measure is proved.

Theorem 2.4. Let A = {Ag, A1, A2, ...} satisfy R(Ag) > —1/2 for k=10,1,2,... .
Assume that L,, n =0,1,2,..., are defined by (2.5). Then

1
/ L (2) B (@) = 6/ (14 An + ) (2.8)
0

holds for every m,n =0,1,2,... .

Remark. In the orthogonality (2.8), repeated indices are allowed.
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Proof. We provide a proof here for the sake of completeness. It suffices to consider
0 < m < n. Also, we just need to prove (2.8) for distinct indices, since from the
definition in (2.5), L(Ao,....An; ) is uniformly continuous in Ag,..., A, for z in
closed subintervals of (0, 1], and the non—distinct case is a limiting argument. Since
R(A\r) > —1/2, we can pick a contour I' in the integral (2.5) such that T' lies
completely to the right of the vertical line #(¢) = —1/2, and I" surrounds all zeros
of the denominator. When ¢ € T, we have R(t + \,,) > —1, and fol ot Andy =
1/(1+t+ M), for every m > 0. Hence,

. n—1

n\T)T ™ ar = = .
0 ricg P A (= At Am+ 1)

Notice that for m < n, the new term t+ \,, +1 in the denominator can be cancelled,
and for m = n the new pole —(\,, +1) is in the outside of I', because R(—\,, —1) <
—1/2. Changing the contour from I to |t| = R with R > max{|A\¢|+1,...,|\n|+1},

we have for 0 < m < n that

1 n—1 3
—— 1 D V| ¢
/ L, (z)z*mdr =— t Akt d _
0 271 [t|=R E—0 t— )\k (t - )\n)(t + An + 1)
(Sm,n =, _S\n, + )‘k
W s Y

Letting R — oo, we see that the integral on the right-hand side is actually 0, which

gives
1 n—1 N
— On.m An — Ak
/ L,(x)zAnde = —— H - L
0 ATL+ATL+1]€:0A’H,+AI€+1
Now with (2.6), we have for 0 < m < n that
1 1 m _
/ L, (z)Ly(z)dz = / L,(x) Z ChmT N dx
70 70 k=0

1 N —
= G / Lo (2)z*de = 6pmm/(An + An + 1),
0

where the last step comes from the formula for ¢ ,, in (2.6) O

An alternative and probably easier proof of orthogonality follows from (2.10)
below, integration by parts and induction. Later we will see that L, (1) = 1. This
can be viewed as the normalization for Miintz—Legendre polynomial L,,. Clearly, if
we let

LY = (14 M+ \)Y2L,, (2.9)
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then we get an orthonormal system, that is,

1
/ L) (z)Lx (z)dr = 6, m,n=0,1,2,....
0

These L), n=0,1,2,..., will be called orthonormal Mintz—Legendre polynomzals.

There is also a Rodrigues formula for the Miintz-Legendre polynomials [13]. Let

p(z) =Y 2™/ T (=),
k=0 7=0,7#k

then
Ln(CE) = DAO T Dkn—lpn(x)ﬂ

where the differential operators Dy are defined by Dyf = ;U_;‘d%mH;‘f. Notice

also that p, and its first n — 1 derivatives vanish at « =1 (cf. [13]). This formula
follows easily from Corollary 2.2.

Now we state the differential recurrence formulae for {L,,}.

Theorem 2.5. Assume that A is a complex sequence satisfying R(Ax) > —1/2 for
all k. Then

oL (v) —zL!,_(z) = A\oLp(z) + (1 4+ A1) Lpea(2), n=1,2,3,..., (2.10)
where L,, n = 0,1,2,..., are the associated Miintz Legendre polynomzials defined
by (2.5).

Proof. From (2.5), we get

d
dx

Hk 0 t-I—Ak-I-l)

t+ A_q + Dzt~ 14
27rz _n)(+'1+)x

(5 L

Multiplying both sides by x)‘"""_\"—l"'l, we obtain

5 t A 1 - , 5
A A1+l ( _)‘"L / Hk 0 + Ap + >(t+ A1+ 1)xt+>‘"—1dt,
27rz t — )

and again by the definition of L,,_; (cf. (2.5)),

_ - !
g;.)\n+>\n—1+1 (a;._)\nLn(x))/ — (.CE)\H_l-l—]Ln_]_(x)) .

Simplifying by the product rule and dividing both sides by .7:5‘”—17 we get (2.10). O
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Corollary 2.6. Let a compler sequence A satisfy (2.4), and let the associated
Miintz—Legendre polynomials L,, and the orthonormal Mintz—Legendre polynomials

L} be defined by (2.5) and (2.9), respectively. Then

n—1

wL, () = AnLn(x) + Y (A + A + 1) Li(z). (2.11)
k=0

n—1
2L (2) = ALa (@) + VA + An+ 1Y VA + A + 1L (2)
k=0

(2.12)

and .
wLi(z) = (A — DL (x) + Y (Ak + A + 1)L (2) (2.13)

k=0

for every x € (0,00) and everyn =0,1,2,... .

Proof. The first equality (2.11) follows from Theorem 2.4 by writing =L/ (x) —
xLl(z) as a telescoping sum. From (2.11) and the relation L} = (A + A +1)1/2L,
(cf. (2.9)), we get (2.12). Differentiating (2.11), we obtain (2.13). O

The values and derivative values of the Miintz Legendre polynomials at 1 can all

be calculated. They are useful in locating the zeros of Miintz Legendre polynomials
(cf. §4).

Corollary 2.7. Let L, be the n—th Mintz—Legendre polynomial defined by (2.5)
(or by (2.6) from A satisfying (2.4)), then

n—1
Lo(1)=1, L,(1)=X+ > (M+A+1), n=012..., (2.14)
k=0
and
n—1
Ly(1) =M= DL, 1)+ > A+ A+ 1)L(1) n=012.... (2.15)
k=0

Proof. Tt suffices to show that L, (1) = 1, for the rest follows from Corollary 2.6.
Notice that from (2.5),

t-|—>\k-|—1 d
L 27!'7,/1_[ — A

Since I' surrounds all zeros of the denominator, and the degree of the denominator
is 1 higher than that of the numerator, let I' be the circle |t| = R and let R — oc.
;From this we get L,(1) =1. O

The recurrence formula can also be expressed in an integral form.
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Corollary 2.8. Let a complex sequence A satisfy (2.4), and let L,,, n =0,1,2,...,
be the Miintz—Legendre polynomials defined by (2.5). Then,

B 1
Ln(z) = Ly_q1(x) = (A 4 Mg + 1)zt / e L, 1 (t)dt,  x € (0,1]. (2.16)

x

Proof. Rewriting the recurrence formula (2.10) as

:L.LTL(‘CE) - ATI,LTI,(QE) = mLfn—l(a:) + (]— + X71.—1)1171,—1(56)7

and multiplying both sides by z=*»~!, we obtain
(z72 Lo(2)) =272 L (2) + (14 Ap_1)z ™ Ly ().

On taking the definite integral of the above on [z, 1], and using the fact that L(1) =

1 for all £ > 0, we conclude
1
| — gL (z) =1 — 2~ L_1(z) / (=AY Loy (8) dt

1
+ (Xn—l + ]-) / t_)\”_an_l(t)dt,

which implies (2.16). O

Another observation is that if 0 < A,, — oo very fast, then £ = 1 is the unique
maximal point of the Miintz—Legendre polynomial on [0, 1]. A reasonable conjecture

seems to be that the maximum of |L,| always attains at one of the endpoints of
[0,1] when A,, > 0.

Corollary 2.9. If A = {Xg, A1, A2, ...} is a nonnegative sequence such that

n—1
An 2> (1+2X), n=1,23,..., (2.17)
k=0
then
|Ln(2)| < Lo(1)=1, z€[0,1), n=2,3.4,.... (2.18)

Remark. If A\, = p*, then (2.17) holds if and only if p > 2 + /3.

Proof. We assume Ao = 0. (The proof for Ay > 0 is essentially the same.) In this
case, Lo(z) = 1, and (2.18) fails for n = 0. From (2.17), Ay > 1, and A\p, > 2+ A\
for £ > 2. By (2.6),

HT'L—_ol|1+/\j| U IR P
|Ln(0)| = |CO,n| = ]_ni, = LIS Ak

A.
j=1 J
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Hence,

L,(0)] <1, and L,(0) < 1 for every n > 2. Now we use induction to
show that |L,(z)] < 1 on (0,1) for every n > 1. Indeed, for n = 1, because
|L1(0)] < 1 = Ly(1), and Ly(z) = ¢y + c1.12™ is monotone on [0,1], we have
|Li(z)| < 1 on (0,1). Assume that n > 2, and |Ly(z)] < 1 for 1 < k < n — 1. Let
x be a local maximal point of |L,| in (0,1), then L/ (z) = 0. Hence Corollary 2.6

yields
n—1
AnLn(@) + D> (1 +20) Li(x) = 0.
k=0
Therefore
1 n—1 n—1
| L (z)| = ™ ;(1 + 20) Li(7)| < kZ::o(l +2X) /A, < 1. O

We finish this section by introducing the reproducing kernels. They are similar
to the Dirichlet kernels in the trigonometric theory, or to the reproducing kernels

for ordinary polynomials (cf. [24, p. 40 ]).

Corollary 2.10. Let A = {Ag, A1, A2,...} be as in (2.4), and let L,, and L, be
defined by (2.5) and (2.9). Then for every A—polynomial p(z) = Y |_, apz™ in
M, (A), we have

p(w) = /0 Ko (2, )p(t)dt, (2.19)
where
Kolet) = 3 12(0) T (220)
k=0

15 the n—th reproducing kernel.

Proof. This is a well-known consequence of orthogonality. Since L}, n =10,1,2,...,

form an orthogonal system,
1
/IQ@JﬂHWﬁZLﬂm 0<k<n
0

Note that {Lf, ..., L} } is a basis of M,,(A), and the above is equivalent to (2.19). O

Later in §3 and §5, we will see the importance of K,, in solving an extremal prob-

lem for A—polynomials, and in the characterization of denseness of Miintz systems.



10 PETER BORWEIN, TAMAS ERDELYI, AND JOHN ZHANG

§3. INEQUALITIES FOR MUNTZ SYSTEMS

Let A = { Ao, A1, A2, ... } satisfy (2.4) and let the Miintz spaces M (A) and M,,(A)
be defined by (2.2) and (2.3). With the help of Miintz-Legendre polynomials, we
establish some inequalities for A—polynomials.

We now record an estimate of a A—polynomial p and its derivative at a point
y € (0,1] in terms of its L? norm (||p|l2 = (fol Ip(t)[2dt)}/?). First we state a more

general theorem in terms of linear functionals.

Theorem 3.1. Suppose that A satisfies (2.4) and that LY, n =0,1,2,..., are the

orthonormal Miintz Legendre polynomials. Then

[#(p)] < lZId)(Lz’i)Iz] 171l (3.1)

for every linear functional ¢ defined on the Miintz space M, (A), and for every p €

M, (A). If ® # 0, then the equality holds if and only if p(x) = constd ;. _, $(Ly)Li(x).

Proof. This is also a well-known consequence of the orthogonality of L}, n =
0,1,2,... (cf. [24, p. 39], where ¢(p) = p(z) is considered.) To show (3.1) we write

p(z) =) exLi(e)

with >7'_, |ex|* = ||pll3- Hence, by the linearity of ¢, we have

n

o) = 3 (L),

k=0

The theorem now follows from the Cauchy Schwartz inequality. O

If the linear functional is ¢(p) = p{*)(y) for some fixed y € (0, 1] and fixed integer

v, then the above becomes

Corollary 3.2. Suppose that A satisfies (2.4) and that L}, n =0,1,2,..., are the

orthonormal Miintz—Legendre polynomzials. Then

n 1/2
P (y)] < [Z |L;;<”)<y>|2] [P (3.2)

k=0
for every A—polynomial p € M, (A), v =0,1,2,..., and y € (0,1]. Equality holds if
and only if p(z) = consty ;_, LZ(V)(y)Lz (z).

Remark. An equivalent expression of (3.2) is

n 1/2
[Z ILZ(”)(y)IZI = max{ [p")(y)| : p € Ma(A), |Ip]2 = 1}. (3.3)
k=0
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By letting n — oo, this leads to

o 1/2
[Z |Lz(")<y>|2] = sup{ [p") ()| : p € M(A), ||pl2 = 1} (3.4)

which may be finite or infinite. We will return to this in §5.

More explicit estimates than those in Corollary 3.2 can be obtained by combining
Corollary 3.2 and Corollary 2.7. For simplicity, we only consider the cases v = 0
and 1, that is, we only state the estimates for |p(y)| and |p’(y)| in terms of ||p||2 and

the index set A. These are of the flavour of Nikolskii and Berstein type inequalities.

Corollary 3.3. Under the conditions of Corollary 3.2, we have

n 1/2
v 2p(y)| < !Zl+2%(/\k) 17][2 (3.5)
k=0
and
n k—1 2 172
°20 ()] < | D (14 2R(w) Ak + Y (1+2R(N))) Ipll2 (3.6)
k=0 7=0

hold for every p € M, (A) and y € (0,1].

Proof. When y = 1, the above is a simple combination of Corollaries 2.7 and 3.3.

For 0 < y < 1, the scaling x — yx reduces the problem to the case y =1. O

We now focus on one of the principal results, the L? Markov inequalities for

Miintz polynomials, whose L version is in [17].
Theorem 3.4. Assume that A = {A\g, A1, A2, ...} is given as in (2.4). Then,

1/2
n

sup 1@z ZM |2+Z (L+2R(N) Y (1+2R(M) (3.7)

pEM,, (A) ||p||2 k=j+1

If, in addition, A consists of nonnegative real numbers, then

||zp' (= ||2 1 o »
A su LS SEA L —|—2>\ 3.8
¢12 Z P Tl 2Z (3:8)

PEM,, (A) j=

where n ts an arbitrary nonnegative integer.

Remark. It is easy to see that the imaginary part of A;’s does not affect the Markov

factor as much as their real parts. For example, if A; = ij, then the Markov bound
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on the right-hand side of (3.7) is [ 7_ o(G2+n — )M = O(n®/?), while \; = j
results in O(n?).

Proof. Let p € M, (A) be arbitrary, and ||p|ls = 1. Then p(z) = >} _, axLj(z),
and ||p||3 = Y1, lax|* = 1. Thus,

n

zp'(z) = Z a,xLf ().

k=0

If we use the recurrence formula (2.12) for the terms zL} () in the above and

rearrange the sum, we get

p/(m)zz ajAj%—"l—{-)\j—l-Xj Z ak\/1+Ak+5\k L;(.T)
Jj=0

k=7+1
Hence,
/ |zp’ (z |2d1'—2|a3/\ +/1+ 2+ A, Z a1+ A+ M|

k=7+1

Applying the Cauchy—Schwartz inequality for each term in the sum, and recalling
that Y, _, |ax|* = 1, we obtain

1 n
/|J;p (@) da:<z 2 4 (14 A, +/\)kz+11+/\k+)\k) <3 22(1+2|Aj|)
7 1=

The above proves (3.7) and the right half of (3.8). To prove the sharpness for the
case A, > 0 (k > 0), we need to find a A-polynomial p # 0 in M,,(A), such that

2
1 n
eI > (Z Ak> . (3.9)

k=0

Corollary 3.2 suggests that a possible candidate is Y, _ L*'( )L} (x), and indeed,

this works. However, a slight alternation makes the estimation easier. We consider

S o b bet
k=0 7=0

Since the system {Lj}32, is orthonormal, we have

2 3
n

1 n k
/O|p(:17)|2d:1::z/\k S < DoN] (3.10)
k=0 7=0

=0

2
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Now
n k
=3 VA DN | 2Ly (= Zb L (
k=0 7=0

where by the recurrence formula (2.12)
k n k
= AV Z)\ 414 20, Z VA +20) D X > VA D e ) A >0
k=m+1 7=0 k=m  j=0

Hence

n k

/ |zp! (¢ |da:—2|bm|2>2/\ Z/\kz/\j
n 5
= D> Ay > > Am Ak AjAw Ajr > % (Z /\k) .

0<m<n 0<j<k 0<m< <y’ <k<k'<n k=0
m<k,k'<n 0<j5' <k’

This, together with (3.10), proves (3.9), and hence the left hand side of the in-
equality (3.8). O

We believe that the general LP analogue of Theorem 3.4 is true. When the
index sequence {Ag, A1, Az, ...} is lacunary, the proof can be obtained from (5.10)

in Lemma 5.6.

§4. ON ZEROS OF MUNTZ-LEGENDRE POLYNOMIALS

In this section we always assume that Ag, A1, ..., A, are real numbers (not nec-
essarily distinct) greater than —1/2. We make several observations on the zeros
of Miintz—Legendre polynomials, some of them are interesting for their own right.

The main result is a lexicographic property of the zeros given by Theorem 4.7.

Proposition 4.1. For a function f € C(0,1), let ST(f) and Z(f) denote the
number of sign changes and the number of zeros, respectively, of f in (0,1) (in the

count we count the zeros where there is no sign change, twice). Let ® and ¥ be in
C(0,1). If
n< S (a®+pY¥)< Z(a® +p¥)<n+1

for every real o and 3, then the zeros of ® and ¥ strictly interlace.

A proof may be found in [19, Theorem 1.1 and Corollary 2].
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Proposition 4.2. Assume that
{A05 A17 ceey An} = {X07 5‘17 cevy S\m}7

where the numbers :\0,:\1,...,/~\m are distinct, and let m;, j = 0,1,....,m, be the
number of indices i = 0,1,...,n for which \i = X;. Then Ln(Xo, M, ...y An) @5 in the
Chebyshev space

This follows from the definition (cf. (2.5)) and the Residue Theorem.

Proposition 4.3. {Li(Ag, A1,...,A\p)} iy i a basis of the Chebyshev space H,
defined in Proposition 4.2.

This follows from orthogonality (cf. Theorem 2.4).

Proposion 4.4. L, = L,(Ao, A1,..., An) has exactly n distict zeros in (0,1), and
L,, changes sign at each of these zeros.

Proof. Assume to the contrary that the number of sign changes of L,, in (0,1) is
less than n. By Proposion 4.3, there is a function p € span{Lk}Z’;(}, which changes
sign exactly at those points in (0,1) where L,, changes sign. Then fol L.,p #0

which contradicts Theorem 2.4.

Proposion 4.5. Let1 <k <n be fivzed and A\, < A}. Then the zeros of
D = Ly(Xo, ooy Ai—1 Ak Ak 1y -os A

and
U = Lpn( A0y eoes A1y Afyy Ak 1s ooy An)

in (0,1) strictly interlace. O

Proof. Note that Theorem 2.4 implies

1
/ (a® + fT)p =0
0

for every p € H,,_1, where H,,_; is defined in Proposition 4.2. As in the proof of
Propostion 4.4, a® + ¥ has at least n sign changes in (0,1), whenever a and f
are real with a? + 32 > 0. Proposition 4.2 implies that a® + ¥ cannot have more
than n + 1 zeros in (0,1) whenever o and 3 are real with o + 32 > 0. Now the

proof can be finished by Proposition 4.1. [
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Propostion 4.6. Let Ao, ..., \p—1, Agt1, s An be fized distict numbers with some
fized integers 0 < k < n. Suppose {Api}52; C (—=1/2,00) is a sequence with

lim;_, o Ay s = 0. Then the largest zero of
Ly i = Ln(Agsos Ae—1, Akyis Alig1s s An)

in (0,1) tends to 1.

Proof. Assume, without loss of generality, that A, ; is greater than each of the
numbers A;, j =0,,1,...,n, j # k. We distinguish two cases.
Case 1: k =n. Let

9i(%) = Ani (Ln,nvi(g:) _ Cgf;nxxn,i) |

where .
n,n n—1 \
Hj:o ()‘n,i - /\j)

is the coefficient of z** in Ly, n,;. Now Corollary 2.2 implies that the functions g;

converge uniformly on [6,1], ¢ € (0,1), to a function
0#g€ H,_q =span{zi g™, . g1},

By using L,, ,,;(1) = 1 (cf. Corollary 2.7), and the explicit formula for cgi)n, it
follows that g(1) < 0 and

AL i(€) = An i L mi(z) = eDatt) 4 Ay el ot

converge to g(x), as i — oo, for every = € (0,1).

Now assume that the statement of the proposition is false. Then there is an
e € (0,1) and a subsequence {A,;; }52, of {\,:}32; so that the Miintz-Legendre
polynomials L, ,;, have no zeros in [1 — ¢, 1]. From this we can deduce that g
is nondecreasing on [1 — ¢, 1|, which together with 0 # ¢g € H,,_; and ¢(1) < 0,
implies that g(1 —€) < 0. Therefore, L,, , ;(1 —€) < 0 if 7 is large enough. Since
L, 5.i(1) =1 (cf. Corollary 2.7), each L,, ,, ; has a zero in (1 —¢,1) if ¢ > 4y, which
contradicts our assumption.

Case 2: 0 <k <n-—1. Let

9i(T) = Ak (Ln’k,i(x) — ng,)nmAkL) :

where i
C(z) . Hj:() ()\kz + Aj + 1)
b [Dco(es = Aj)
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is the coefficient of z**i in Ly . (From Corollary 2.2, we can deduce that the

functions g; converge uniformly on [4,1], 6 € (0,1), to a function

0# g€ H,_1 =span{z?, .. gM=1 gr+1  gin]

By using L,, 1, (1) =1 (cf. Corollary 2.7) and the explicit formula for cgf)n, it follows

that g(1) <0 and
Ly i(z) = (Ln,k,i(m) B cg‘)ﬂka,i) T el e

converge to g(z), as i — oo, for every = € (0,1). Now the proof can be finished as
in Case 1. O

Theorem 4.7. Let \; < p;, j = 0,1, ..., n, with strict inequality for at least one
mdex j. Let
T <x9<..<m, and ] <xy<..<x)
be the zeros of
Ln(A(]aAlﬁ"'?An) and Ln(ﬂ'O.ﬁﬂlv"'mun)?

respectively, in (0,1). Then

T; < T, j=12..n.

Proof. First assume that A\; # A\; and p; # p; when ever ¢ # j. Without loss of
generality, we may assume that there is an index k, 0 < k < n, so that \; = pu;
if j # k, and A\ < pp. Now Propositions 4.5 and 4.6 yield the conclusion of the
theorem. Finally, a limiting argument and Propostion 4.5 can be used to drop the

assumption that A\; # \; and p; # p; whenever ¢ ## j. O

Proposition 4.8. Let A\, # \,. Then the zeros of
¢ = Ln(A07 ceey Ak—l s Aky Al<:+17 ey )\n—l 5 A’n)

and
U = Lpy( Aoy ooy Ab—1s Ars Ak 15 -0y An15 Ak)
in (0,1) strictly interlace.

Proof. Propostion 4.1 and arguments similar to those in the proof of Proposition

4.5 gives the conclusion. The observations
(1) =T¥(1)=1 and P'(1)—d(1) =X\ — A #0

(cf. Corollary 2.7) garantee that a® + ¥ # 0 whenever o and  are real with
a2+ 52>0. O
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Propostion 4.9. Let ® and ¥ be as in Propostion 4.8. Let

T <2y < ...<m, and ] <xzy<..<uT

mn

be the zeros of ® and ¥ in (0,1). Then A\, < A, implies that

T <y, j=12,...n.

Proof. By Proposition 4.8, it is sufficient to prove that z, < z). Let H,, be the
Chebyshev space defined in Propostion 4.2. Corollary 2.7 implies

B(1)=T(1) =1 and T(1)—d'(1) = Ap — Ag > 0.

JFrom this, and Propostion 4.8, we can deduce that z) would imply that 0 #

U — & € H, has at least n+ 1 distinct zeros in (0, 1], which is a contradiction. O

Propostion 4.10. Let \g < A,,. Let
T <2y < ...<, and o] <xy<..<@)

be the zeros of

Ln()\(),Al,...,An) and Ln(An,An_b...,Ao),

n

respectively, in (0,1). Then {x;}7_; and {x}}7_, strictly interlace and

Ty < T}, j=1,2,...,n.

Proof. This follows from Propositions 4.8 and 4.9 and the Remark given after Corol-
lary 2.2. O

Proposition 4.11. The zeros of
¢ = Ln—l(AOa Al, ceny An—l) and W= Ln(Ao, )\1, ceny An)

in (0,1) strictly interlace.

Proof. Propostion 4.1 and arguments similar to those given in the proof of Propo-

sition 4.5 yield the theorem.
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Corollary 4.12. Assume that x1 < --- < x, are the zeros of L(Xg,...,A\n) in
(0,1). Then,

exp _4n—|—2 <z <--<zxT, <exp _j12 R
1+ 2A, (142 \*)(4n+2) )

where A, = min{Ag,..., A\, }, A* = max{Ao,..., A\, } and j1 > 37/4 is the smallest
positive zero of the Bessel function Jo(z) = > pey(—2%)%/(k12F)2.

T

Proof. Let L£,, be the n—th Laguerre polynomial with respect to the weight ¢™* on
[0, 00), and let the zeros of £,, be 21 < --- < z,. Then we have (cf. [24, p. 127-131])

jr
4n + 2

<z < <zp <4n+2, (4.1)

where the upper estimate is asymptotically sharp, and the lower estimate is sharp
up to a constant(not exceeding 4*/97%). Since n is fixed, we let € > 0 be suffi-
ciently small that A, — ne > —1/2. Then all the zeros of L(),...,A,) lie to the
right of those of L(Ax, A\ —€,.... A — ne) by Theorem 4.7. ;From the contour
integral formula (2.5), L(As, Ax — €,..., A — ne) tends to L(A., Ax,..., Ax) uni-
formly on closed subintervals of (0,1] as € — 0. Recalling that (cf. Corollary 2.3)
L, Mey ooy M) = 2L, (= (14 2)\,) log ) , we conclude that z; > y1, where y; is
the smallest zero of L(A, Ax. ..., As). Since z, = —(14+2A,)log y1, we can combine
this with (4.1) to get

—2Zn 4n + 2

which is the left—hand side inequlity of this Corollary. It can be seen similarly that
all zeros of L(Ag, . .., A,) lie to the left of zeros of L(A\*,... , \*) = 2 L, (—(1 + 2)\*) log ),
which implies that z,, < exp (—j/(1+2X\*)(4n+2)). O

§5. CHRISTOFFEL FUNCTIONS

Christoffel functions have been intensively studied, and their utility in the theory
of orthogonal polynomials and approximation theory can be illustrated by their
relation with polynomial inequalities, interpolation theory, quadrature formulae,
zeros of orthogonal polynomials, etc (cf. [14]). In this section, we will study the
Miintz—Christoffel functions and some of their applications.

We assume that A = {Ag, A1, Ag, ...} satisfies

0= <A < A< =+ (51)
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The Christoffel function for the Miintz system M (A) with respect to the Lebesgue
weight is defined by either side of the following equality

]‘ 2
t dt 5.2
Y oneo [Lg ()2 peM(A)p(z) 1/ Ip(t)] (5:2)

which is a well known consequence of the orthogonality (cf. [24, p. 39]). If the

infimum is taken just over M, (A), then we have

1
= i )2 dt .
ST = pean i [, PO 53

and either side can be called the n-th Christoffel function. Recalling the repro-
ducing kernel (2.20), we see that 1/K(z,x), and 1/K,,(z,z) are what we have just
defined (cf. (3.3) and (3.4)). For convenience, we will defy the section title a little
by stating results in terms of the reciprocal of the Christoffel functions, namely, in
terms of K(z) = K(z,z) and K, (z) = K,(z, ).

The classical Miintz theorem characterizes the denseness of M(A) by the diver-
gence of the series Y .~ /\,;1. Now we can connect the Christoffel functions with
the denseness. All results here are stated for integer sequences {\;}, but they hold

for positive sequences.

Theorem 5.1. Let A = {0 = X\g < A1 < ...} be an integer sequence. Then the

following are equivalent:

(1) M(A) is not dense in C[0,1] in the uniform norm;

(2) T2, A7 < oo

(3) There is an x € [0.1), such that Y, |Li(z)|* < 4o0;

(4) Soreo|Li(x)]? converges uniformly on [0,1 — €] for every 0 < e < 1.

The right endpoint 1 is quite different, where we always have (cf. (2.9) and
(2.14)) K(1) = Y02 |Li(D)P = Ypeo(1 4+ 2X;) = +oo. The following lemma is
extracted from the proof of [7, Theorem 3], see also [Bor, Lemma 2]. It estimates
the function values and derivative values of A polynomials on [0,1 — €] by their

L?[0,1] norms. The proof of Theorem 5.1 will follow this.

Lemma5.2. LetA = {0 = Xy < A\; < ...} be an integer sequence with Y e Ap 1 <

+o0o. Then
1 1/2
) <c/ ‘2) 5.4
a1 <o ([ m@r) (5.4
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for every p € M(A), for everyv =0,1,2,..., and 0 < e < 1. And C = C(A,€,v)

15 a constant, depending only on A and .

Proof. Since {A;} is an integer sequence, and >, -, /\,:1 < 400, from the proof of
[7, Theorem 3|, for every € > 0, there is constant Cy = Cy(A, €) > 0 depending only
on A and € such that

1/2

1
lax| < Co(1 + €)™ (/ |p(a:)|2da:> , k=0,1,2,...
0

hold for every A—polynomial p(z) = >, _, arpr™, and for every n = 0,1,2,... . (We
remark that the above also holds if {\;} is not integer but has fixed gaps.) Note

in particular that Cy is independent of n and p. Hence

1/2

n n 1
P < S e < oS0+ ([ par) g
k=0 k=0 0
If z € [0,1 — ¢, then (1 + €)z < 1 — €%, and the above implies that

|ﬂ”unsc%u+fy§:u—f%wf(AHmwpﬂ>

k=0

1/2

Therefore, (5.4) holds with C(A.e,v) = Co(1+ €)Y 1oy (1 — €2)Fkv. O
An easy consequence of the above is a bounded Nikolskii type inequality:

Corollary 5.3. Under the condition of Lemma 5.2,

1
max @@Nsc/meun pe M(A),
z€[0,1—¢] 0

where C' = C(A,€) is depends only on A and €.

Proof. Consider the new sequence A* = {1,Ag + 1,A; + 1,...} and the Miintz
space M(A*) = span{l,z o+l g2+l 1 Apply Lemma 5.2 with v = 1 for the
A*—polynomials foz p(t)dt with p € M(A), and use the simple fact that | foz p(t)dt] <
1

Jy p(®)]dt. O

Proof of Theorem 5.1. The equivalence of (i) and (ii) is the classical Miintz—Szasz
Theorem. We will follow (ii) = (iv) = (iii) = (i).

(i) = (iv). Since Y pey i+ < 400, we have by Corollary 3.2 that

S (@) 2 = sup{ o (2))* 1 p € M(A),/ p(o)Pde =1} (5.5)
k=0 0
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for every = € [0,1]. Hence by Lemma 5.2, for every € > 0 there is a constant
C = C(A,¢€) such that

Z|L (z)]* < C, Z 1L (z)]? < C. (5.6)

Since

- S () = YL @), (5.7)
k=0 k=0

on applying the Cauchy—Schwartz inequality and (5.6), we see that (5.7) is uni-
formly bounded by C for z € [0.1 — €], and n > 0. Therefore Y ;_, |L*(z)|* is
equicontinuous for n = 0,1, ..., which implies the uniform convergence of K,, to K
on [0,1 — €] by the Arzela—Ascoli Theorem.

(iv) = (iii) is trivial; We now finish the proof by showing (iii) = (i).
Assume that K(zy) < 4oo for some zg € [0.1]. Then M(A) fails to be dense
in C[0,1]. Otherwise, let f € C]0,1] be such that |f(zo)|> > K(z¢) + 2 and
fol |f(x)|> = 1. Then by the density assumption, there is a p € M(A), such that
Ip(xo)|* > K(zg) + 1 and fol |p(z)]*dz = 1, which means that sup{ |p(zo)| : p €

A), fol lp(z)|*dz = 1} > K(zg) + 1, which contradicts (5.3). O

Actually when M(A) is not dense, the uniform convergence also holds for higher

derivatives, and in this case, we do not require Ay = 0.

Theorem 5.4. Let A = {0 < Ny < A1 < ...} be a sequence of integers with
S At < 4oo. Then

Z|LZ(U)($)|2 converges uniformly on [0,1 — € (5.8)

for everyv =0,1,2,... and every 0 < e < 1.

Proof. The method is exactly the same as in the proof of (ii) = (iv) of Theorem
5.1. Lemma 5.2 implies the uniform boundedness of the series in (5.8) and that of
Yo |Lz(y-|_1)|2 on [0,1 — €], and the uniform boundedness of - >>7 |L,’Z(V)(m)|2
on [0,1 — €] follows by Cauchy-Schwarz inequality. Now the Arzela—Ascoli Theorem

completes the proof. O

We obtain immediately from Theorem 5.4 that under the conditions of Theorem
5.4, the orthonormal Miuntz—Legendre polynomials tend to 0 uniformly on closed
subintervals of [0,1). Whereas for orthogonal polynomials p,,, n = 0,1,2,..., or-
thonormal with respect to a measure supported on [0, 1], only the relative growth
pnl?/ > i—o Ip|? tends to 0 uniformly on [0,1] (cf. [15, 16, 27]).
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Corollary 5.5. If 0 = A\ < A < -+ — o0, and the associated Mrintz system is
not dense in C[0,1]. Then

lim max |L()( ) =0
k—oo z€[0,1—¢]

holds for every 0 < e <1 and everyv =0,1,2,... .

When the index sequence is lacunary, that is,
inf{\gyr1/Ap: £ =0,1,2,...} > 1, (5.9)

we can say more about the boundness of the function K. To do this, we first give
a bounded Bernstein—type and a bounded Nikolskii—type inequality for a lacunary
system (cf. [4, Theorem 3.1]).

Lemma 5.6. Let A = {0 =X) < A\ < Ay < ---} be lacunary as in (5.9). Then

") < , .
V(@) < 7= max [p(t)] @ €[0,1).p € M(A), (5.10)

and
p@)l < — / lp(t)|dt = e€0,1),p e M(A) (5.11)

hold with the constant C' = C(A) depending only on the system.

Proof. The inequality (5.10) comes from [4, Theorem 3.1]. For (5.11), consider
the new lacunary sequence A* = {0,1 4+ X\g,1 + A1....}, and apply (5.10) for A*—
polynomials which are indefinite integrals of p € M(A). O

Theorem 5.7. Let A = {\g, A1, A2, ...} be lacunary. Then there is a constant
C = C(A), such that

K(z) =Y |Li(z)]* < (1_%)2 z €0,1).
k=0 ’

Proof. Since A is lacunary, applying Lemma 5.6, we get

p(o)f? < (1% (/ 1 |p<t>|dt)2 < (1_%/ (o)t

By (5.2) (5.3) or (3.2) (3.4), we have K(z) < C/(1 —z)%. O

As a last observation in this paper, we point out that if A\,, — oo, then there is
a sequence r, — 17, such that K(z,) > C1/(1 — z,). Indeed, let z,, =1 — 1/,
and consider p(z) = z*». Then by (5.2)7(5.3) or Corollary 3.2,

K(z,) > p(:L“n) /”p”2 = :l‘ (2A +1)
:(1—1/)\n "(2)\n,+1)chx\ﬂ,zcl/(l—xn).

where C; = inf{(1 — 1/X,)?* :n =1,2,3,...} > 0.



CU LN

o

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28

MUNTZ SYSTEMS AND MUNZ-LEGENDRE POLYNOMIALS 23

REFERENCES

. J. M. Anderson, Muntz—Szdsz type approzimation and the angular growth of L. wintegral
functions, Trans. Amer. Math. Soc. 169 (1972).

P. B. Borwein, Variations on Mintz theme, Canadian Math. Bull. (to appear).

P. B. Borwein and T. Erdélyi, Lacunary Mintz systems, manuscript (1991).

P. B. Borwein and T. Erdélyi, Notes on lacunary Mintz polynomials, manuscript (1991).

P. B. Borwein and E. B. Saff, On the denseness of weighted incomplete approrimations,
manuscript.

E. W. Cheney, Introduction to Approrimation Theory, McGraw—Hill,, New York, 1966.

J. A. Clarkson and P. Erdos, Approzimation by polynomials, Duke Math. J. 10 (1943), 5-11.
R. P. Feinerman and D. J. Newman, Polynomial approzimation, Williams and Wilkins, Bal-
timore, Md.,, 1976.

G. Freud, Orthogonal Polynomaials, Pergamon Press, Oxford, 1971.

M. von Golitschek, A short proof of Mintz Theorem, J. Approx. Theory 39 (1983), 394-395.
D. Leviatan, Improved estimates in Mintz Jackson theorems, manuscript (1990).

G. G. Lorentz, Approzimation by incomplete polynomials (problems and results), in Padé
and Rational Approzimation, Theory and Applications (E. B. Saff and R. S. Varga, eds.),
Academic Press, New York, 1977, pp. 289 302.

P. C. McCarthy, J. E. Sayre and B. L. R. Shawyer, Generalized Legendre polynomials, man-
uscript (1989).

P. Nevai, Géza Freud, orthogonal polynomials and Christoffel functions. A case study, J.
Approx. Theory 48 (1986), 3-167.

P. Nevai, V. Totik and J. Zhang, Orthogonal polynomials: their growth relative to their sums,
J. Approx. Theory (to appear).

P. Nevai and J. Zhang, Rate of relative growth of orthogonal polynomials, manuscript (1991).
D. J. Newman, Derivative bounds for Muintz polynomials, J. Approx. Theory 18 (1976),
360-362.

D. J. Newman, Approrimation with rational functions, vol. 41, Regional Conference Series
in Mathematics, Providence, Rhode Island, 1978.

A. Pinkus and Z. Ziegler, Interlacing properties of zeros of the error functions in best LP
approzimations, J. Approx. Theory 27 (1979), 1-18.

E. B. Saff and R. S. Varga, On incomplete polynomaials, in Numerische Methoden der Ap-
prozimationstheorie (L. Collatz, G. Meinardus, and Hweiner, eds.), Birkhduser Verlag, Basel,
1978, pp. 281-298.

L. Schwartz, Etude des Sommes d’Exponentielles, Hermann, Paris, 1959.

P. W. Smith, An improvement theorem for Decartes systems, Proc. Amer. Math. Soc. 70
(1978), 26-30.

G. Somorjai, A Mintz—type problem for rational approzimation, Acta Math. Hung. 27 (1976),
197-199.

G. Szegb, Orthogonal Polynomaials, Amer. Math. Soc. Coll. Publ., vol 23, fourth edition, 1975.
A. K. Taslakyan, Some properties of Legendre quasi—polynomials with respect to a Mintz
system, Mathematics 2 (1984), Erevan University, Erevan, 179-189. (Russian, Armenian
Summary)

T. T. Trent, A Mintz—Szdsz theorem for C(D), Proc. Amer. Math. Soc. 83 (1981), 296-298.
J. Zhang, Relative growth of linear iterations and orthogonal polynomials on several intervals,
manuscript (1991).

. S. P. Zhou, On Mintz rational approximation in Multivariables, manuscript (1990).

PETER BORWEIN: DEPARTMENT OF MATHEMATICS, DALHOUSIE UNIVERSITY, HALIFAX, NOVA

Scoria, CANADA B3H 3J5

TAMAS ERDELYI: DEPARTMENT OF MATHEMATICS, THE OHIO STATE UNIVERSITY, COLUM-

BUS, OHIO 43210, U. S. A.

JOHN ZHANG: DEPARTMENT OF MATHEMATICS, THE OHIO STATE UNIVERSITY, COLUMBUS,



24 PETER BORWEIN, TAMAS ERDELYL AND JOHN ZHANG
OHIO 43210, U. S. A.

E-MAIL pborwein@cs.dal.ca (Peter Borwein)

E-MAIL terdelyi@mps.ohio-state.edu (Tamds Erdélyi)

E-MAIL johnz@mps.ohio-state.edu (John Zhang)



