SOME CUBIC MODULAR IDENTITIES
OF RAMANUJAN
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ABSTRACT. There is a beautiful cubic analogue of Jacobi’s fundamental theta function
identity: 051 = 02 + 0;1. It is

i 2 2 ’ > 2 2 ’
Z qn +nm+4+m — Z wn—mqn +nm+m +

n,m=—oo n,m=—oo
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Here w = exp(27i/3). In this note we provide an elementary proof of this identity and of
a related identity due to Ramanujan. We also indicate how to discover and prove such
identities symbolically.

1. Introduction. In [5] the behaviour of the hypergeometric function gFl(%, % 1;+)

was studied and exploited. Central to that paper was the cubic identity, implicit in

[6]:
(1.1)
(e

- (Z wn_mqn2+nm+m2>3 + (Z q("+%)2+("+%)(m+%)+(m+%)2)37

where w := ¢>™/3_ and all sums range over Z?2. Identity (1.1) was established in [5] by

modular function techniques. It is our purpose here to establish (1.1) by elementary
means. For this purpose it is convenient to recall the definition of the Dedekind eta
function

(1.2) n(q) == a2 [[(1—q").
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and the Jacobian theta functions

oo

(1.3) ba(q) = D ",

n=—oQ

(1.4) b3(q) = > "

and o
(1.5) ba(q) = > (=1)"g".

Jacobi’s quartic identity, #5 = 63 + 03, plays a key role in theta function and elliptic
function theory [2], [4]. The cubic identity (1.1) has very similar consequences which
are detailed in [5]. Let us denote

(1.6) a(q) := Z q" +nm+m 7
(1.7) blg) = Y whTmgn Tt
(1.8) c(q) = Z q('"'+%)2+(ﬂ'+%)(m+§)+(m+%)2‘

We will prove that a® = b® + ¢*. Note that in (1.3) and (1.8) we take principal roots.
2. Results.
Lemma 2.1. For|q| <1

(i) (a) alq) = b3(0)05(2’) + 02(q)0 (g °);
a(qt) = (93(Q>93( )+ 04(q)04(q*));
(i) blg) = % (@*) = a(a);
(iii)  (q) = 3a(q¥) — la(q)
Proof. (i) In (1.6) write n* + nm +m? = (n+ 2)? + 3(2)%. Now

a(q) = Z gMTEIHE)T 4 Z gt E) ()7,

m even m odd

This identity is (i) (a). Identity (i) (b) follows from 65(q¢*) + 62(¢*) = 63(q) and

03(q*) — 02(q*) = 04(q).
(ii) We observe that b(q) is real and that

b(‘]) = Z Ccos [2%(77 — m)] (]"7'2+'nm+m2

_ § Z qn2+nm+m2 N lz q'n,2+'n,'m,+m2.
2 2

3ln—m
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Now we write the first sum by

Z Z q(3p+mr)“+(3p+m)?n+m _ a(q3),
m p

as is apparent on substituting m — p for m. Identity (ii) follows.
(iii) Since (ii) holds, it suffices to show that

(2.1) c(¢®) = é(a(Q) = b(q))-

Now the right-hand side of (2.1) is

1 2 2 2 2
- n“+nm+m- __ n“+nm+m
DI = >

3tn—m n—m=1(mod 3)

oo

— Z q(m+3p—|—1)2+(m—|—3p+1)m—|—m2

m,p=—00

On replacing m by m — p (bijectively) we have

l(a(q) —b(q)) = Zq3p2+3p+3pm+3m2+3m+1ﬁ
3 ;

p?m

which, by (1.8), equals ¢(¢). Thus, (2.1) has been proved. 0O
As is well known, [4, p.64], the theta functions possess simple product expansions.
This is not true of a. It is true of b and ¢ as our main preliminary result shows:

Proposition 2.2.

. (1-—
(i b(q) H 1_‘*;3,7,
(i) c<q>=3" ) 3t ] 1‘q3”>3.

n>1

Proof. (i) We need the following result due to Euler (which is a corollary of the ¢-
binomial theorem [1, p.19], [4, p.309]). We use

(22) (—7:0)0 = [ (1 +2q™) Z
n=0

where as usual (a)
1

= HZ:l(l - aqk_

= (a; @)oo = [[nzo(1 = aq™), (a)n = (@ ¢)n = (a; @)oo/ (4G™; @) o

). Observe that

(—2%;0%) o0 = (=5 @)oo (—Tw; @)oo (7w ) o,
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so that (2.2) gives
> 3k 3(,;) (n20)+(n21)+(n22)$n0+n1+n2

A ni+2ny 4
—_— = w
= (@) no,mzﬂ;zo (@)no (@)rs (@)

Equating coefficients of powers of x yields

I nl_nzq("z°)+("21)+("22)—3(’5)
(% %) 2, v (Do (Dny (Dny

no+ni+4+n,=3k
We replace n; by m; + k for ¢ = 0,1,2. Then
2

n; = k
E ) == E 2
‘ (2>—2' mz+3<2>
=0 2=0

since » fzo m; = 0. Hence

1
- = wml —ma
(@35 ¢% )i 2

mo+mi+ma=0

gz (matmi+tms)

() mo+ (D ma 46 (D mot i
Letting k tend to infinity gives

gz (mo+mi+tms)

1 my—mg
(@ %) 2 “ (q)3

mo+mi1+m2=0 e

Hence
(q)3 1 2 2 2
ﬁ - Z wm1—m2q§(m0+m1+mz)
(q 14 )oo mo+mi+ma=0
_ Z wml—mzqm?+m1mz+m§
my,ms2
as claimed.

(ii) This may be established in a similar fashion. Alternatively, we may argue as
follows. The previous identity combines with Lemma 2.1 (ii) to produce

; n°(q) _ 3a(q’) - a(q)
(23) n(q®) 2 '

The theta transformation formulae [4, p.38]
Vibs(e7™) = 03(e7/T), Viby(eT™) = O2(e7™/)

may be applied to a as given by Lemma 2.1 (i) (a). The corresponding transformation
of 7,

V(e ) = (e,
and Lemma 2.1 (i) (b) yields

n*(a®) _ a(g¥) —a(q)
1(q) 2

Now Lemma 2.1 (iii) completes the proof. O
We are now ready to establish identity (1.1) which, as we have seen, is equivalent
to

(2.4) 3
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Theorem 2.3.
a®(q) = b*(q) + (q).

Proof. Let us set a* := a(q®), b* := b(¢®), ¢* := c(¢®). Now Lemma 2.1 shows
a* —c* =b. Hence

b(q)b(wq)b(w?q) = (a* — ¢*)(a* — wc*)(a* — w?c*),

since a*(w'q) = a* and c¢*(w'q) = wic*. Thus
2
0 — = H b(wiq) = b*°,
=0

where the last identity is an easy consequence of Proposition 2.2 (i). On replacing ¢°
by ¢ we are done. [
For completeness we record the following corollary established in [5].

Corollary 2.4.

(2.5) 2 F1(5. 31 232‘;)) = a(q).
The crucial step in establishing (2.5) involves determining what happens as ¢ — ¢3

on both sides of (2.5). Armed with Theorem 2.3 and Lemma 2.1, this reduces to
establishing that F(s) := o Fy (%, 2;1;5%) satisfies

3939
P(2)- <1+23) F(9).
a* 3 a
Since Z—Z = %, this becomes a cubic transformation for F', and can be veri-

fied in various ways (including symbolically). Details of the derivation of this cubic
transformation may be found in [6].

Next we observe that the classical cubic modular equation for 7 is easily accessible
from Theorem 2.3. This modular equation is Entry 1(iv) of Chapter 20 in Ramanujan’s
second notebook [3, p.345].

Corollary 2.5.

] -]

(2.6) {1 +9

Proof. Let t := a/b and note as above that

w1\ 3 £\ 3 3
(E) = (5) = ()
c* c* t—1
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Thus
%\ 3 4
c t—1
b 9(t3 — 1)
while
: c\ 3
2.8 (_) =3 —-1.
(28) '
Now use Proposition 2.2 to write
40,3
(2.9) S =3l 4(‘1 ).
| b nt(e)

Finally (2.7)-(2.9) combine to yield

(t—1)' =9 (CC*>3 _ {9713((19)]4'

bb*

Hence

o35 s ren ]

We observe that in terms of the eta-multiplier, N3 := n?(¢*)/n%(q), (2.6) becomes

2

[(1 +2TNS)F — 1] :

NS(qs) = 34N
31V3

The parallel quintic and septic identities, due to Ramanujan, are solvable and are given
in [4, p.312].

We now prove the corresponding quadratic modular equation given by Ramanujan.
It is the first equation on page 259 of the second notebook [12].

Theorem 2.6. For |q| <1

(i) alq)a(e®) = b(q)b(q®) + c(9)e(q?)
or equivalently

i) (1—w)* = (1-u®)(1-0"),

where u = c(q)/a(q) and v := c(¢*)/a(q?).
Proof. (i) Let

We will show that

(2.10) L(q) = L(—q).
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It will follow that

(2.11) |
L(g) = X9 ‘|‘2L(—(J) _ a(q) +2a(—q,)a(qz>
_ blg) +2b(—Q) b(g?) — c(q) +2C(—q) (q?).
However, since 0(q)f2(q?) is an odd function we have
o) +a(=0) _ Os(0)0s(¢") +0(0)0a(@’) _ 0

2 2

by Lemma (2.1) (i) (b). Lemma 2.1 (ii) and (iii) now show that

b(q) + b(—q)
2

— b(q4) and c(q) +2C(_Q) — C(q4>).

Hence (2.11) becomes L(q) = L(q®). Inductively, L(q) = L(¢*") and hence L(q) =
L(0) = 0 as claimed.
To establish (2.10) we define

_ b —bl=q) . cla)—c(=q)
) =g T = a0y
and note that (2.10) is equivalent to
(2.13) a(¢*) = z()b(q*) + y(a)e(d?).

Now

a(q) — a(—q) = [03(q)03(¢®) + 02(0)02(¢*)] — [04(q)04(q®) — 02(q)02(¢*)]
= 302(q)02(q")

on applying the cubic modular equation for 6%/6% [4, p.110]. Thus Lemma 2.1 (ii)
yields the first equation in the following.

W) o (44
(2.14) 2¢(q) =3 b)) " 1= nl;[l Tra

To prove the second equation we need Jacobi’s triple product identity [4, (3.1.1) p.62]:

(2.15) o=y = [Ja - =2 - 27,

n=-—oo n=1
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Now,
o= 3 -
=Y O D (A 3 (g
S0 20 3 (1

Using (2.15) we find, after some manipulation, that

(2.16) 04(q) — 04(¢°) = —2¢ Z JrrgdmHon
_— H g8m)(1 — g8 (1 — ¢'8"1%)
_ n(q3)772( °)
n(a®)n(e?)
Now, replace ¢ by e~™, apply the transformation ¢t — % and use the transformation

formulae:
n(e™™/*) = V2t n(e ),
0 ( —7r/t) \/_02( —7rt).
We find after some simplification, that
n(a")n* (¢%)
n(¢®)n(q*)

Since 05(q) = 2n%(¢*)/n(q*) [4, p.64] we obtain the second equation in (2.14) after
dividing both sides by #2(q). In consequence, Proposition 2.2 (i) gives

2¢(q)b(q*) = - ﬁ (11333) H (;ZG’J |

n=1

302(¢") — 62(q) = 2

But [[,2, (1 —¢")/(1+¢") = ba(q) [4, p.64]. Thus

(2.17) 2(q)b(¢%) = —04(¢%)° /64"

Similarly, we find that

%’ o o0 2n
(2.18) 2y(q) = fala) _ _ 5 ] Ut
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The proof of the first equation in (2.18) is analogous to that of the first equation in

(2.14) and uses Lemma 2.1 (iii). The proof of the second equation is analogous to that
of (2.16). Let

o0

Z g, so that 02(q) = q7 03 (q).

n=—oo

Replacing n by 3m + k (k= 0,%1) in the summation yields

O5(q) = ¢ 05(¢°)+2 > ™
So, by (2.15), we have
03(07) —a 03(%) =2 > £
-9 H(l _ q6n)(1 + q6n.—2)(1 _ q6n—4)
n=1
oC 1 = %) (1 2n
o ] e
n=1 (1 +q ”)
0 1 2n 1 12n\2
:H(+(]6n)3 21_[( q6n)
n=1 (1+q ) n=1 (1_q )

and

After multiplying both sides by ¢—2/% we obtain the second equation in (2.18). Using
Proposition 2.2 (ii) we have

o= 01 (155) /1155

n=1

whence

(2.19) 2y(q)c(q®) = 304(¢°)* /0a(d”
Thus (2.10) is equivalent to

363(¢°) 1 63(q)

(2.20) a(q) = 305(0)  204(g)"
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Here we have simplified (2.13), the equation equivalent to (2.10), using (2.17) and
(2.19). We need the Lambert series for a(q):

3n+1 3n+2
q q
(2.21) ()—1+62{1_q3n+1—1_q3n+2}

This identity is due to Lorenz [11, p.111]. The referee has informed us Ramanujan
had a proof of this result; see his Saturday night letter from Fitzroy house [13, pp.93-
96]. The referee also states that it can be proved by combining together some results
found in Ramanujan’s notebooks. It also follows from Kolitsch [10, Lemma 2|. We
now sketch how (2.21) follows from Lemma 2.1 (i)(a), [4, Ex.5(ii) p.287] and the cubic
modular equation [4, (4.2.7) p.110]. From [4, Ex.5(ii) p.287] we have

(2.22)
(1-4q") (1—g*
()03Q)_1+2Z 3n + Z 1_q12n

By replacing ¢ by —q we find after some simplification that

(2.23)
1— — (14+¢")q" = 1+
N (1 —-q4”)q4”
' 4; Ry
o =gt = (=) (14 3¢ + ¢*)
- 22;(1—¢W +22; (1—q'2m)
;From Lemma 2.1 (i)(a) and [4, (4.2.7) p.110] we have
(2.24) a(q) = 03(¢)03(¢°) + 02(a)02(¢°)

= 263(9)03(¢*) — 64(q)ba(°)-

After rewriting (2.24) using (2.22) and (2.23) we find after much simplification that
2.25) alg) =146 29
( (4 2 = g

=146 Z f: qn(3m+1) - qn(3m+2),

n=1m=0
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and (2.21) follows by reversing the order of summation.
The following result is Entry 4(iv) in Chapter 19 of Ramanujan’s second notebook
[3, p.227]. Ewell [7], [4, p.151] has also given a proof using the quintuple product

identity.
3n+1

bile) _ | & i q s
94(q3) oy 1 + q3n+1 1 + q3n+2 .

Hence we have

03 (q)
04(q3)

This can also be deduced from Fine [8, (32.64) p.84]. Dually, on replacing ¢ by —g¢,
using the theta transform and replacing ¢ by —¢q again

03(q°)
04(q)

This can also be deduced from Fine [8, (32.39) p.80]. Now (2.26) and (2.27) combine
to establish (2.20) and so (2.10).
(ii) Write (i) as

(2.26) = 2a(q®) — a(q).

(2.27)

1 2
= zala) + ga(ff)-

b(q) b(q?
1—uv= —(Q) (q2)
a(q) a(q®)
and cube both sides. Then Theorem 2.3 produces
b°(a)b°(4*)
1—uw)® = —222 2 = (1 —u3)(1 =), O
( ) a’(q)a*(q?) ( ( )

Note that (ii) is Ramanujan’s preferred form. We also note that

22(q) = —b(¢*)/b(¢*) and 2y(q) = ¢(¢®)/e(q?),
so that

_1(g) 1¥(g)
(228) M= 552 T 2he)

3. The modular machine. It is possible to both find and prove the two key identities
of this note, (1.1) and Theorem 2.6 (i), entirely mechanically. This works as follows.
From (2.21) we see that a(q) (in the variable 7, ¢ = ¢*™7) is an Eisenstein series
of weight one and character x(d) = (%) (the Legendre symbol modulo 3) for the
congruence subgroup I'g(3). See [9, p.4]. It is well known that if f(7) is a modular
form on I'g(N) then f(M7) is a modular form on I'o(NM). From Lemma 2.1 (ii), (iii)
it follows that a(q®), b(¢*), c(q®), a(q®), b(¢®), c(q®) are all entire modular forms of

weight one (and trivial character) on some congruence subgroup G where

'3)NTy(54) cGcCT
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(we are working in the variable ¢* to give ¢ a Taylor series expansion at ioc). Here as

usual
:{(,O; /§>|O‘6_16’)/:1q a,ﬁ,7,5€Z},

I‘(N)::{(a ’B)Ef|a56§1 and f=v=0 modN},

v 6
To(N) ::{(?y‘ g) el[y=0 modN}.

The indices satisfy

T T(N)] = N° (1 - ]%>
p|N
and

[C:To(N)]=NJJ(1+ 11—)).
p|N

It follows that
PG < [D:T(3)] - [T : To(54)
< 24-108.
(This standard theory is in [14].)
Now suppose

(3.1) P := P(a,b,c, A, B,C)

is a homogeneous polynomial of degree N in the 6 variables a := a(q), b := b(q),
c:=c(q), A:=a(q?), B:=b(q*), C:=c(q?). Then P(q) is an entire modular form of
weight NV on G and hence can have exactly N [I' : G] /12 zeros in a fundamental region
(counted in the local variables at the cusps). In particular P can have a zero of order
at most
NI[T: G|
12

at 7 = 100. In other words if the g-expansion of P vanishes through the first 216 N + 1
terms then P = 0.

It is now a straightforward matter to generate a basis for all homogeneous identities
of type (3.1) for a fixed N. One expands the six functions a.b,c, A, B,C as g¢-series
to some fixed order that is greater than the number of monomials in the expansion of
(x1 + 29+ x3 + T4 + x5 + 76 )¥. One then solves the linear problem of finding a basis
of identities to this fixed order. This must now be a superset of the desired identities.
One then verifies that the ¢g-expansion of each basis element vanishes through 216 N 41
terms; which proves that the alleged identity is a true identity (and not just an identity

< 216N
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to a fixed number of terms). Since this is all done in exact integer arithmetic in a
symbolic manipulation package this constitutes both a derivation and a proof.

We illustrate with N =

3. What follows is a basis for all homogeneous cubic

relations in a := a(q), b := b(q), c:= c(q), A :=a(q?), B :=b(q?), C := c(q?).

(1*)  A(c? —aC —2AQ)

(2)  B(c® —aC—2A0)

(3*)  ¢(bB — Aa+ cC)

(4) B (bB — Aa + cC)

(5) C (bB — Aa + cC)

(6) A (cA—ac+2C?)

(7) B (cA —ac+2C?)

(8) C(cA—ac—I—2Cz)

(9) —b(cA—ac+2C?)

(10) B (bA — 2 B? + ab)

(11*) C (bA —2B? + ab)

(12*) —A(—aB—b2 + 2 AB)
(13) B (—aB —b* +2 AB)
(14) C (—aB —b* + 2 AB)
(15) B (Aa — 2bB —a® + 2 A?)
(16) C (Aa —2bB —a® + 2 A?)

(177)
(18)
(19%)
(20%)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)

—C3-B3+4+ 43
4C% - 3acC +

2B> —3bAB +1*

— bcA — bC? 4+ cB?

beC — aB? + bA?

bc® — bAC — 2 B2C

b?c — acB + 4 BC?

ab? —aAB — 2bB? + 2 A%’B
beC + a?b — 3aB? + 2 AB?
2bBC —3aAC + ac® — 2 A%C
2bcB — 3acA + a’c + 4 AC?
abA — bcC + aB? — 2 AB?
beB — acA + aC? + 2 AC?
bAB —acC — 2 B> + a%?A
—bAB — acC +2C? + aA?
—3bAB —3acC +4C°+2B> +4°

We find 32 of them, presented in factored form. Since there is a basis of 6 quadratic

relations many of them factor.

Relations are starred if they correspond to identities

obtained earlier in this paper, or if they are needed in the proof of the results given
below. The verification of the identities requires computing Taylor series of length 650.
The entire calculation takes just a few minutes in MAPLE on a SUN4. Note that basis
element (17*) is our cubic modular equation while basis element (3*) is our quadratic
identity. More thought would allow checking to a lower degree in the g-expansion,
however since the computations are easy we have opted for the most straightforward
estimates. Similar remarks apply for other forms and other N. Note that (1*) and

(12*) combine to verify (2.28)

a=
while (20%*) is

A=
and (19%) is

A=

12

B2
b

2 B?
3

102

CZ

¢’

102
3B’
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JFrom (11*) and (12*) we may solve for A, B. After some work we find we get

)

b(qz) =B =Re (53 + ib%c%>% = \/@COS <% arctan (E) %)

b
_ b(a—l—A)‘
2

In particular the mean iteration [4]

W

3 3\ 5 2
G(QZ) =A=Re (65 + ic§> = a cos <§ arctan (%)

. 1 2 .
A® B(l,z) = 1/2F1(§, 5;1;1 —z°).
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