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In a note published in the Monthly some time ago, Z. A. Melzak [4]

proved that
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Great care must be taken with these formulae given that the general term

in the products behaves like ¢ *? and so convergence is quite problematic.
An unambiguous way to rewrite this result is as
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We generalize this surprising product by considering the function
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D(x):= lim [] (1+E) (1)
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and provide explicit evaluations for all rational numbers of the form p/q
with ¢ =1, 2, or 3. For example,
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and more generally for positive integral »n
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Here as usual (2n)!!=2n(2n—2)---4-2 and 2n— [)'=(2n—1) x

(2n—3)---3.1. Also we have introduced Glaisher’s and Catalan’s con-
stants 4, and G, respectively, and Clausen’s integral
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The constants A, and G are defined by the relations
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The key to these evaluations is to find a closed form expression for the
product in Eq. (1). This is the content of our main theorem.

THEOREM. For x>0
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Proof. Before we proceed, we introduce the generalized gamma
function [2] which is defined by the relation

————10g21r (3)

log Iy (x) :=£) log l"(t)a't-l—’2 373
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and which enjoys the properties

Fiix+)=xT,(x) (4)
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Note that Eq. (5) is the analogue of Gauss’ multiplication formula for the
gamma function. The derivation of Eq. (2) follows from the observation
that

-+ 1
dii:f ' log I'(x+1)dr=log(x +z)

(this and other well known formulae for I” may be found in [1]). On
integrating this equation we find that

Az

J log F(x+t)dt=(x+:)log(x+z)—x—:+r log I'(t) dt
- 0

(the value of the definite integral of the right hand member can be easily
shown to be {log 2n). We now allow z to be an integer variable and sum
from O to n. After some algebra we find an expression of the form

Di (x):= i k log (1 +£)
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Therefore the logarithm of the required finite product is

foo (T +x/(2k + 1))+t
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log D,(x):=log = Di,, , ,(x)—4Di,, (;)

which after some manipulation leads us to
D, (x)

3 [1(x/2+ 1/2)/T(x/2)] exp{ —2 {3 log(I"(1 + 1/2)/(1)) dt }
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We can readily integrate the logarithmic integrals using Eq. (3) and we find
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The entire term involving n approaches ¢%? in the limit as n tends to
infinity. This follows from the asymptotic forms of the gamma functions:
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This concludes the proof. |
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and

To see the evaluations of D(1/2) and D((3 £ 1)/2) of the introduction we
use the Theorem and Egs. (5) and (6). From Egs. (5) and (6) we deduce
that

log I', (-3—?>=glogA.—%+Tﬁlog3+%log2$ﬁaz<g)
log I, (%)zglogm—%—%logBig%Cb(g)
log I (%)z%logm—%ig

log I', (%)z%logA, g—gzlogz

These couple with Eq. (4) and the formula I'(x+ 1)=x/"(x) to allow us
to evaluate D(p/q), ¢g=2 or 3. Explicitly, at integer values we use the
following relations. The first two are well known properties of the gamma
function, the latter two are deduced from Eq. (4).

I'in+1)=n!
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It is interesting to note that Eq. (2) satisfies a functional equation of the
form

D(x)D(x+1)= [xj2+1) I (l) Pt 12 (1)

rx2+172) "\2

and a reflection formula
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D(x)D(1 — x)=

here as in [3]

~“tan 't

Tiy(x) :=f dr.

0

Using Eq.(7) we can analytically continue our infinite product for all
negative values. We find

= ) 2k 1\
Di=2m+ =2l (2 ha )
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which reveals a pole structure of order 2n at the negative even integers. We
can also deduce D(—2n—1)=0 which of course agrees with Eq. (1).

We conclude by remarking that Eq. (1) conspires only to give us the
constants n and ¢ when we evaluate the product at positive even integers.
Other evaluations lead to the introduction of other transcendental
constants.
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