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We show that the supremum norm on the unit disk, {|g] <1}, of the nth partial
product of TT7., , 4 (1 —g*) is asymptotic to p”'?~Vfor p=2,3,5,7, 11,and 13
(but not for any p > 15). This, for these primes, is an asymptotically best possible
result since if «, .., 2, are integers none of which are divisible by p then
ITTi o (1 =g™) g o, Zp™7 71, € 1993 Academic Press, Inc.

1. INTRODUCTION

In 1959 Erdds and Szekeres [3] raised the problem of estimating

n

[T(-¢*

k=1

#(n):= min

Ap,y oy Ap€ N

flgl =1}

Here | f(g)ll 4 :=sup,.,|f(q)| denotes the supremum norm of f on A.
They conjectured that, for any &,

n(n) > n*
and showed that
J2n<nln) =",

This was improved by Atkinson [1] to

O(n'2log n)

n(ny=e
and by Odlyzko [6] to

()ln”llog nyddy

nin)=e
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We consider a related question. Namely we estimate
[T a- qz")!

k=1 1

n(n’p):z min l
Xpe o Ag €N flel=1}
Pl

so we are adding the condition that no exponent be divisible by p. We

show that, for p a prime,
PV <n(n, p)

while for p=2, 3,5, 7, 11, and 13
n(n, p)=0(p"""~ ).

The key to the upper bounds is an analysis of the function

F,olg)=J] (1=g™ )1 —g™ ... (1 =g =71,
k=1
which is the generating function for the number of even partitions of m
minus the number of odd partitions of m, where the parts are of size less
than pn and no part is divisible by p. Note that the function
)=11 (1—4"
1

ks
th

(@)i=T] (1=g™ (1 —g™ %) (1 =gt 7D

R e

F, .

k=1

has a similar interpretation.
We then prove the following theorems:

Forp=23,5 711,13

o), (e ())

So F, , asymptotically achieves the minimum for these p. Note thact F,
a product of n(p— 1) terms. While for p > 15 we have

THEOREM 1.

is

1

F,,,,,(q)}

THEOREM 2. For any fixed positive integer p 215
”F n(CI)|| {lgl=1} 2 (1219)“17 hyn >[)".

Sudler [7] and Wright [8, 9] analysed the rate of growth of

=
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and showed among other things that
(u(m))'" —1.219....

So for p < 15, the rate of growth for F, , is worse than that for the above
full product.
The lower bounds for 5(n, p) follow from the following proposition.

THEOREM 3. Let P(x) be any polynomial with integer coefficients and
with a zero of order n at 1. Suppose that {, is a primitive mth root of unity
and that P({,)#0. Then

max |P({,)]"" = |C,(1)]V2,
Sk

Here {, are the conjugate roots to {, and C,, is the mth cylotomic polyno-
mial. So C,,(x) :=T18") (x— ). Also, ¢(m) is the Euler ¢ function.

Proof. By assumption
P(x)=(x—-1)" Q(x),
where Q has integer coefficients. Thus
¢(m)

[T P

k=1

#(m)

[T (=807 Q) [ =1C, ("],

k=1

where I is a non-zero integer. It follows that

max | P({ )| = |C(DI" 1
This proof method was suggested by B. Richmond and L. Szekely.

INEQuUALITY 1. Let P(x} be a polynomial with integer coefficients and
with a zero of order n at 1. Suppose that {, is a primitive p*th root of unity
for some prime p and P({,)#0. Then

max | P((,)| " 2 p¥7" 70
bk

Proof. The value of C,(1) is given by

p if m=p* pprime
1 otherwise

C,,,(l)={

and the result follows. |
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2. EsTIMATES OF |} _, sin(k6 + v)|

We proceed to estimate various sin products. For this we use the Farey
decomposition. Namely for fixed n, if 8 € [0, 1) then for some ¢, |¢| <1,

g=lands=0or!
where or
2<q<n, 1<s5<q, (s,9)=1.

The estimates, as in [7], are different for small ¢ and large ¢ and break
into three parts which comprise the first few lemmas. The sin product we
wish to estimate is

n

[T Isin(k6 + y)I.

k=1

Lemma 1 provides an estimate for g > 50.

LEMMA 1. Suppose 8 =s/q+¢/gn+ 1), where 0<s<qg<n, —1<e<],
and (s,q)=1. Then for ¢ = 50 and any real 3, [1;_, Isin(k0+d)| < (0.6)".

Proof. Since [sin(a + f)] <|sin a| + | B

[T Isin(kéz +8) < [] min{ sin<§kn+5>‘+g,1}. (1)
k=1

k=1

Now observe that for 0<m<g—1

I,:= {(kn£+5) modn k=12, ...,n}m(ﬂ, M:I
q q q

has cardinality either | n/q | or | n/q |+ 1, because if
s s
(kln;+(5) mod n and (k27r;+5) mod n
both lie in (mn/q, (m + 1) n/q] then

l(kl—kz)n§+hn

< il for some &
q

and

Itky — k) + hg) < 1.
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Thus k, =k, mod g and the rest follows from the pigeon hole principle.
From (1) and the above we have

[T Isin(kén + )| < [] min{ sin (fkn-l-é) +E’ 1}
k=1 k=1 q q
g—1 kn) n)Ln,’qJ
< sin{ — | +— (2)
kI;[l < (q q

{Here we have estimated sin on ail the partition points of 1, by the value
at an endpoint except for those in the interval around =n/2, where we have
used 1. The extra term in some of the /,, is also estimated by 1.) For large

g (odd) one uses
2 (g 1)2 2
()5 <" (2
q q k=1 q

ql:[] ( sin (%n)( +‘Z> S(qklj:q (

k=1
2
()

= R

2 1
() )

q'!

and

T
~—=0.5778....
2e

The asymptotic is the same for even g. This, with some care over initial
estimates, gives the result. ||

The next three lemmas give estimates for 2 < ¢ < 50. Let

Rm&yy=£bmwm+ﬁWdt

and

1 M
Sule, f7) =57 E;

sin (an A£/1+ ﬂ) ‘ ' dr.

Lemma 2. For 1 27> 0 there exist a constant ¢, independent of o and f
and M so that

(B, ) — Sl B 7] <, (%)
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Proof.

i, B,7) = Sule, Bop) < sup  |lsin(ar m+ B)|7 — |sin(ar, 7+ B)I7|

I -nls1iM

a\’
<ec, [—].
© (M) !

LEMMA 3. For 502922, (s,q)=1, and any real {

1 4 s\ | 11000y 1000 0.71, g=2
(— Y |sin (C +—>l ) << 0.635, qg=73
751 1 0.6, g=4

Proof. Extensive but straightforward numerical calculation. [

LemMma 4. Suppose 0 =s/q +¢e/fgn+ 1), where ¢ 22, 0<s<g<n,
(s, 9)=1, and —1<e< 1. Then independently of & and 3,

n 1in 06’ q = 4
[sin(kfn + &)| < < 0.635, =3

q
k=t 0.71, g=2.

Proof. We may, by Lemma 1, assume that ¢<50. By the extended
arithmetic-geometric mean inequality

Y Isin(kén +d)l7

k=1
. (ksn kerm ))'
sin +9
g{n+1)

x
k k "
{—E+6+ i } =luvhu---ul

3]-—

( [1 Isin(kér + 5)1)”"

k=1

|~

Now we divide the sum into g parts by

q gn+1)§,_ P
where
I:= {(kqs -|q—js) LS (/Z:j)lzn}un vl
and

; ka+ i Lin—j)q]
Ijmodn——{Js—n+(5+—————-( q+1)8n} .

T gn+1) Jico
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o
2 2 o (Tl
rlz( Z [ J (un lj)/qJ UZU i (%*“%) >
<, | (1 5t ee] a)

A

1 & ent jsm )( i
- +—+d | dt,
q ; J ( q q

where the penultimate inequality 1s essentially Lemma2. Thus for
some p'e [0, 1] from the above we have, by replacing the integral by its

maximum,

(21522
q q

sin (p +J n)
q

Now with y=1/1000 and Lemma 3, we obtain the result. |

n yin 9
<H |sin(k67r+<3)|) sl y
k=1 /=1
1 ¢
_q Z

=1

3. SOME ADDITIONAL LEMMAS

As before let
I, (1—4%)

F, .(q) == .
A VT
Note that
o TI2, sin(kn)
n 2(P Lyn - .
Vs @l i1 “ [T% - sin(kpOn) || 1o, 17

LEMMA 5. If p is a positive integer then

an. n(fI)H Lgl=1} zp".
Proof. This is immediate from evaluation at a primitive pth root of
unity. |
This is a special (easy) case of Inequality | when p is prime.
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LEMMA 6 (Sudler [7]).

n J tin

I (1—qk>f

k=1

lim =1.2197...

n—= x

=

Lemma 7. For fixed p>2,3 . |F, (g} _ 1" 2 1.2197...
Note that p"'7~ "'« 1.2197 for p> 15 so Theorem 1 cannot hold for

p=15.
Proof.

ITIEZ =40 sy
F e 2 : :
] s AT R

k=1

so with Lemma 6

pitp— 1)
_(1:2197..)

1E, ()] '{’]ﬂ,ﬂ’;}’;"~W=(1-2197---)~ |
LEMMA 8. Let o and B be integers
n 1in
IT (1 =g™+ 2 (1.2197..).
k=1 {lel=1}

Proof. As for Lemma7. |}

4. THE ANALYSIS OF F, , AWAY FROM pTH RoOTS OF UNITY

p.n

Let

n p—1 :
B, (0):=27"""T1 [] (sinkﬂn%—j—%ﬁ).

k=1 j=1

Then
1Ep al @ (g1 =1y = 185 a0} o, p1-

LEMMA 9. Fix p (not necessarily prime). For 8 = s/q + g/q(n + 1),
(s,q)=1, lg|< 1.

1.2, q

1B, (01" <{ 127, g

1.42, q

=24
3

2
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SO
p<t6 and g=4
|B, (0)" Drgptem g L p< Il and g=3
p<6 and g=2.
Proof.
p-—1 1itp tin
|BP<H(0)I“(,’/”“‘<\2< H |S",(0)|) ’
Jj=1
where

S, (0)=]] sin (k()n +j%)

k=1

Now apply Lemma 4 to S, ;(6). |

We are reduced to analyzing B, (0) for 0 =s/g+¢/(n+1)gforg=1,2,
and 3.

LEmMMa 10. Let y>0. Let 8 =s/g+¢/(n+1)q, O<s<pg—1 and
(s,q)= 1. Then if q < Q for some fixed Q

(a) !BP‘H(ONIN“P*HH

¥ 1y
dt)
q 9 P49

wfifesot))
sin| —{ t+i1s+— .
q P

. [emnt ism  jsm
sm|—+-—+—

1 r
52( max Y

te(—1.1] q(p'—l) ;

For ¢=2,
142, p=3
\ 137, p=4
B 0 Lip—1n ’
(®)  18,.(0)] S4ias pes
1.2, 50=2p=6

Proof. Part (a) is estimating exactly as in the proof Lemma 4 (except
now ¢ :=(jOn)/p and we have p— 1 terms in the sum).

For p <50, part (b) is now just Lemma9 and an extensive numerical
check involving finding the max over t in (a) with y=1/1000 for the ¢
values not covered by the lemma. J
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We are reduced to considering the case g :=1, which breaks into two
subcases corresponding to whether s=0 or s #0.

LEMMA 11 (s=0). If 8| <1/(n+1) then |B, (6)|'"” "V <1.2197...
Proof. For some g, |e} <1, 8=¢/(n+1) and

—2p-1in 7[j8
1B,..(0) =2 1 S"‘( +1+p(n+1))‘

k=1 j=1
nop ! kem n
<2lp na
0T ([sm G5 +259)
" ken n pt
<2(p‘]|n :
(U ( S +n+l>>

» n ke bid r-l
<2 (H ( 1)§(‘+(n+1);smkm/(n+1);>> '

Now observe (as in [7]) that the max of | B, ,(6)] for |6]| < 1/(n+ 1) occurs
for < |¢| €1 since otherwise all terms in the product are increasing. Thus,

for some ¢,
()| (1))
n+ 1 k )

|B, (6)|"P =1 <1.2197... 1

n

| p,,(9>|<2‘"*”"(ﬂ

k=1

So with Lemma 6

It remains to analyze B, () in neighbourhoods of the integers (this
corresponds to analyzing F 15 neighbourhoods of the non-trivial pth
roots of unity).

5. F, , AT NON-TRIVIAL pTH ROOTs
We need the following known lemma.

LEmMMA 12

r_! m
LA
(a) mz=1C0t(P)

r_! 1 _p=t
(b) 2 sin’(mn/p) 3

m=1
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-1

2_
(©) 5 m (p"'=1)p

2, sin*(mn/p) 6
7ot 2cos(nmip)
Jo, sindamfp)y

Now let

y .
z), 1= eZnhl,p + 2ie

be a small perturbation of a pth root of unity. Then

Fpu(za) =277 exp (,-(n e 1)h+"2(p)(2p— 1)8»

n—1 p-1

x [T T1 sin(z:—h+(pk+m)s>.

k=0 m=1
Let 4 be an integer and

n—1 p—1

G,(¢) :=log( I1 TII sin (n—”?ﬁ+(pk+m)s)).

k=0 m=1

Then

n—1 p—1
G,(0)= Y 'Y (pk-+m)cot (“—"-’ﬁ)
k=0 m=1 P

a—1 p—1 -1
" — 2
CHO= L L PR i
a—1 p—1 2 cos(rmmh/p)
" — 3 VI IR
0= L L P S
We now deduce
Lemma 13. For G =G,
G'(0)=nS,
G"(0)= = {n(2n+1)(n—1) p*(p* — 1) =T,
IG”/(O)I — 0(”3)

and for any ¢ > 0 there exists ¢, >0 so that,

Cc
6"l <ol 1x))  for 1xl <,
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where

and

p—1 m2

L= X Gaam "

m=1

It follows now that

has a max at (approximately) the solution of
2G'(0)= —=zG"(0)

or

¥
4
z“ l'uq

Furthermore, F, ,(z,) has a unique max or min in the interval || <
1/(n+1) p because F, , is a trig polynomial with the number of roots equal
to its degree so in each interval between zeros there is exactly one critical
point. This gives us

2nih/p + 2ie
3

LEMMA 14. Suppose now that p is prime. If z=e where

(h,p)=1, h<p, and |¢| <1/(n+ 1) p, then

E < (140 (7).

We only argued for A= 1, but (A4, p)=1 is entirely analogous (sums (a),
(b), and (d) of Lemma 12 do not change with m — mh). We have now
deduced Theorem ! for p prime, p<15. Theorem2 follows from
Lemmas 7, 9, and 14. The max now occurs in a neighbourhood of 0 not at
a primitive pth root of unity. One might observe that we have actually
shown that

IE, A =y = (1.219..)7 !

for 15 < p <50 (and for each additional p one can establish this by numeri-
cally checking (b) of Lemma 10 for this p).
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