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LACUNARY MUNTZ SYSTEMS

by PETER BORWEIN and TAMAS ERDELYI
(Received 12th April 1991)

The classical theorem of Miintz and Szasz says that the span of
xiixt 0= =%

is dense in C[0,1] in the uniform norm if and only if }'2, 1/A;=co. We prove that, if {4;} is lacunary, we can
replace the underlying interval [0,1] by any set of positive measure. The key to the proof is the establishment
of a bounded Remez-type inequality for lacunary Miintz systems. Namely if A = [0,1] and its Lebesgue
measure u(A) is at least ¢>0 then

lag|sc i @
i=0 4

where ¢ depends only on ¢ and A (not on n and A) and where A:=inf; 4, ,/4;> 1.

1991 Mathematics subject classification: 41A50.

1. Introduction

A very beautiful theorem of Miintz and Szasz says that
M:=spanil,x".x", ...} O0<li<fo= = (1.1)

is dense in C[0, 1] in the uniform norm if and only if

M8

1
e 12
7 0 (1.2)

i

This is very much a theorem about continuous functions on intervals. So it can be
proved that exactly the same theorem holds in C[A] provided

A < [0, )

is a closed set with non-empty interior. This result is due to Clarkson and Erdos [5].
When A has no interior it is by no means obvious what happens. Our intention is to
prove the following theorem.

361



362 PETER BORWEIN AND TAMAS ERDELYI

Theorem 1. Suppose A,=A (i=1,2,...), where A>1, and suppose A c [0, ) is any
set with positive Lebesgue measure. Then

M:=span{l,x*, x*,...}

fails to be dense in C[A] in the uniform norm.

Indeed, under the above assumptions, if ye 4 is a point of Lebesgue density 1 then
every function f from the uniform closure of M on A is of the form

f9= ¥ wike selBslad
i=0

where A,=0. This in turn rests on the following inequality.

Inequality 1 (Remez-type inequality). Suppose p>0 and A < [p,1) is a closed set of
measure ¢>0. Suppose A,=0 and 1,2 A' (i=1,2,...), where A>1. Then

=¢
[0, p]

n
3 g
=

n
Fan
i=0

A

where the constant ¢ depends only on p, ¢ and A (and not on n and A).

Here, and in what follows ||-||, denotes the uniform norm on 4.

In a seminal paper [5], Clarkson and Erdds prove Theorem 1 in the case where
A:=[1—¢,1]. The fact that Inequality 1 holds in this interval case is critical to our
argument. This follows from [5] and is proved in Section 3. (These interval results are
more generally applicable to any system where Y 2, 1/4;<0.)

Proofs of the Miintz—Szasz Theorem may be found in [4], [7] and [8] with various
generalizations and extensions in [2, 3, 10, 12, 13, and 16]. A discussion of Remez-type
inequalities for polynomials is given in [6].

Our proof relies on an examination of (generalized) Chebyshev polynomials from M.
In particular we must establish estimates for the size of their zeros. This is done in
Section 2. The very close relationship between the location of zeros of the associated
Chebyshev polynomials and the possibility of approximation is discussed in [1] and [2].

Section 3 contains a proof of the Remez-type inequality for span {1,x? sl A
the fourth section we offer a comparison theorem which allows us to extend our results
to Miintz spaces ;

M: =span{ljx" 5"}

where for some A>1,
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lligAi, i=1,2,....
Section 5 contains an example which shows that a bounded Remez-type inequality for
an infinite Miintz system cannot hold on arbitrary perfect sites of measure 0.
In the final section we characterize the Miintz systems which are dense in C[A4] in the

uniform norm for every countable closed A = [0,1]. (Y2, 1/4;=c0 is necessary and
sufficient, assuming 1,=0 and inf;(4;;;—4;)>0.)

2. Zeros of Chebyshev polynomials

The generalized Chebyshev polynomial from
M =spanix®, .. .27 U dsodie (2.1
with respect to a compact set 4 = [0, o0) is denoted by
T,(0:=Tu{[oy-» Au]: A} (%)

and is defined to be

i=0

T.(x):=c (x"' + "il a,-x’“)

where we chose {a;}7- to minimize

n—1
xg ¥ g™
i=0

A

and c is chosen so that

|IT.la=1 and lim T,(x)= + co.

X = o0

Then, T, achieves +max,.,|T,(x)| n+1 times in A with alternating sign and has
exactly n zeros in (0, c0). Suppose always 0< A, <A, <--.

Lemma 1. Let 0Sa<p and 1 =m=n. Then the positive real zeros of

Tn—m{[oa }'m+ l’lm+2’ e ,ln]: [“, ﬂ]}

and

Tn—m+1{[0’ lm’ lm+ hisaes )ln]: [(X, .B]}
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interlace. In particular, the smallest positive real zero of T,_,.. is smaller than the
smallest positive real zero of T,_,,.

Proof. Consider T,_,,.;—T,_n. The argument is a straightforward counting of
Zeros. B

Lemma 2. Suppose 4,<7y; i=1,...,n, with strict inequality at least once. Then the
smallest positive real zero of T,{[0,A,...,A,1:[0,B1} is smaller than the smallest positive
real zero of T,{[0,7y,...,7,]:[0, B1}.

Proof. See [3, Proposition 1].
Lemma 3. If 0=<m=n and
TmilO dns e s A3 [0, B}
has all its zeros in [a, ] then
T A4, . . A LI0 B
has at most m zeros in (0, ®).
Proof. This follows from Lemma 1. O

Lemma 4. Suppose Y 2 1/4;<co and inf(4;,,—4;)>0. Then there exists constant
¢>0 independent of n so that the smallest positive real zero of T,{[0,4y,...,4,]:[0, 11} is
greater than c.

Proof. If 2,=1, Y2, 1/4;<o and infi(4;,,—4;)>0, then we have the Markov-type
inequality

max[p()] (e (4) max |p(o)

0=sx=1-¢

for every pe M,, neN, and 0<e<1, where the constant 7(e, {4;}) depends only on ¢ and
the sequence {4;}. This was obtained in [1] based on the results of Clarkson and Erdos
[5]. Now the lemma follows from the equioscillation of T,, the Mean Value Theorem,
and the above Markov-type inequality. When 0<4, <1 the scaling x —x'/*! gives the
desired result from the already proved case. E]

Lemma 5. Suppose Y 2 1/4;< o0 and 4;_1/4; (i=2,3,...) is nondecreasing. Then there
exists a constant ¢ depending only on the sequence {A;} so that

Tn—m{[o! lm+1’j’m+2"'-aln]: [0’ 1]}

has all its positive |
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has all its positive real zeros in [1—cl,_ /A, 1]

Proof. Note that the assumptions of the lemma imply infy(4,,, —4;)>0. Let B, , be
the smallest non-negative real zero of

Sm,n:= n—m{[o’im+19lm+2’- . -sln]: [03 1]}
Then consider, for n>m>=0,

U gy, n(X) =Sy, o6°™")

where
I
5 s ral = ¥
- ,.;Iirgner 1 A An
Note that
Um,n o Tn—m{[o’ (5m,nim+ 1)9 (5m,n)“m+ 2)7 ey (5m,n/1n)}: [09 1]}
and

A1 =20 <ty if mtl=h=n

So by Lemma 2 the smallest positive real zero of U,, ,(x) (which is just B3/%") is greater
than the smallest positive real zero of

T"_’"{[O’ j'mf'j’m*'l"''!j’n—l]: [07 1]}

So in particular,

Bm,n>ﬁfnm—"i,n—l

Here, by Lemma 4,
1= e 20
since Bo,,—m is just the smallest root of

T, 004 . 4 01
So
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ﬁ >c¢;m,n'6m—1,n~1"'61.n—m+1
m,n

_c(ln—l/ln)'(ln—Z/ln—l)"‘u-n—m/ln—m*-l)
=l
=C31vn—m/ln‘

Also, by the Mean Value Theorem, for every ¢, >0 there exists a ¢,>0 so that

d=21—c,0
for 0<d < 1. Therefore
A
== 2n-m
Bun1 =2
as required. O

From Lemmas 3 and 5 we deduce:

Lemma 6. Suppose 1<A;<Ay,..., 321 1/A; <00, 4;_4/4; (i=2,3,...) is nondecreasing,
and 0<m<=n. Then there exists a constant ¢ depending only on the sequence {A;} so that

T,:=T,[0, A,...,A,1: [0, 17}

has at most m zeros in the interval

-

(e
01 Znm
tre
oA =
ji— ——r=in
e

and at least n—m zeros in

3. The Lacunary case
In most of this section let
M:=span{l,x* x**...}, A>1
and

M =spanil x',.. . %'}

Lemma 6 gives the

Lemma 7. T,:=

and at most m zero:

Let P, be the
measure at least
{xe[0,1]:|B,(x)|<
most n disjoint inte

Now partition [0, 1

where p denotes th

Lemma 8. Supp
Then there are posi
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Lemma 6 gives the following as a special case.

Lemma 7. T,:=T,{[0,4,...,4"]:[0,1]} has at least n—m zeros in

[1-71]

and at most m zeros in (0,1 —c/A™) where ¢ >0 depends only on A.

Let P, be the Chebyshev polynomial from M, on a fixed, compact A < [0, 1] of
measure at least ¢>0. Since P, is the Chebyshev polynomial from M, on A:=
{xe[0,1]: |P,,(x)|§1} as well, we may, without loss, assume that A4 is comprlsed of at
most n disjoint intervals. Choose é>1 so that

|
2 =t

Now partition [0, 1] into subintervals

: 1
1,:=[0,5,] with-atiadle s

; il
I,:=[B,8,] with l‘(lznA)=3“2,

: 1
In—1:=[ﬂn~2’ﬂn—1] with “(In—lnA).__F’

I =B 1] with ,u(I,,mA)>$,

where u denotes the Lebesgue measure.

Lemma 8. Suppose j, 2<j<n, is fixed and A I; contains an interval of length A;.
Then there are positive constants c, and c), depending only on A so that An1;_, contains
an interval of length A;_, where

e =
“17 8/[log A
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whenever 0<A;<c).

Proof. Let [a;,b;] be the intc;rval of length A; in An1I; and choose m;eR so that
A;=c/A™, where c is as in Lemma 7. Consider the Chebyshev polynomial T, from M,
on the interval [0,b;]. From Lemma 7, by the scaling x —b;x we can deduce that T, has
at least n—m zeros in [a;,b;] where m is the smallest nonnegative integer not less than
m;. In particular P, (the Chebyshev polynomial from M, on A) has at most m+2 zeros
in (0,a,], otherwise T,—P,eM, would have more than n zeros in (0,b;] (counting every
positive zero without sign change twice). It follows that A N I;_, is the union of at most
m+4 intervals and hence 4 nI;_; contains an interval of length at least

1 o 1 > (3

5 m+4)= 6fllogAj|
" )

logc—logA;
—————=J45
il

whenever 0<A;=c, with some positive constants c; and ¢} depending only on 4. B

Lemma 9. Let 6>1 and c;>0 be as in Lemma 8. Consider the (backwards) iteration

1

& -

i € =
'—F———ékllog A where A,

Then there is a constant c; s depending only on A and 0 so that

1 1
W<Ak<5
whenever c; ;<k=n.
Proof. Suppose
1 1
§>Ak>——k25k
Then
1 e @
A A = A
27K §+[log Ay| T 6F|log(k>8Y)]
- c;/o

k(| log 8| +2|logk[)o*~*
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1

S e
—(k_ 1)25k—1

provided k>c, ; with a constant c,; ; depending only on A and 8. The result now
follows. O

We will need the following inequality that may be found in [14, p. 54]. We include a
distinct new proof.

Inequality 1 in the Interval Case.

Suppose 1,=0, infy(4;,;—1;)>0 and

itMs

sl
A
8

Then, for every ¢€(0,1),

=c
[0,1]

n
¥ A
i=0

n
Y aah
i=0

[L=g,1]

where c, depends on the sequence {1;} and ¢ but not on n.

Proof. Let £€(0,1) be fixed. First let 1, >1. Assume indirectly that there are p,,e M
so that A,:=max,<.<|pm(x)| - o0, while ||p,|l;1_..1;=1. Let g,,:=A;'p,,. Then, with-
out loss, we may assume that

max |g,|= max |g,, m=1,2,....

0sx=1 0=x=1-=¢

As in [1, Lemma 2] (see also the proof of Lemma 4), for every 0<é' <1 we have

max  |q,(x)|<n(e)

0=sx=1-¢

where 7(¢') is a constant depending only on ¢. Therefore {qm}2_, is a sequence of
uniformly bounded equicontinuous functions on every closed subinterval of [0, 1), hence
by the Arzela-Ascoli Theorem there is a subsequence of {qm}2-1 (without loss of
generality we may assume that this is {g,,}_, itself) which converges to a function F
uniformly on [0, 1—¢/2]. Then, by the Clarkson-Erdds Theorem of the Introduction, F
is analytic on (0, 1—e¢/2). On the other hand

|F(x)|£4,!, xe[l—g¢1—¢/2]
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and since A4,,— o0, we have
F(x)=0, xe[l—¢ 1—¢/2]
which implies that F=0 on [0,1—¢/2], a contradiction, since maXo<,<1-¢2 |F(x)|=1.

When 0<A, <1 the scaling x—x"/* gives the desired result from the already proved
case. 0

Inequality 2 (Remez-type Inequality for Lacunary Systems). If Pespan{l,x‘,x“,...},
A>1, and A < [0,1] is a closed set of measure at least >0, then

|PO)] <ce, al| P(¥)] 4
where c, ; depends only on ¢ and A.

Proof. The extremal polynomial from M,=span{l,x*x",...,x""} is, by a simple
perturbation argument, just the Chebyshev polynomial T, on A. By Lemmas 8 and 9
this polynomial is bounded on an interval of length c; ,>0 (independently of A and n)
in [0, 1]. The rest now follows from Inequality 1 in the Interval Case. O

4. Comparison theorems

The following comparison theorem holds and shows that the Remez constant gets
smaller as the Miintz system gets sparser.

Theorem 2. Suppose {4;} and {y;} are increasing sequences of positive real numbers. If
LiZyi Ao=70=0
and A is a compact set in (p, o), where p>0. Then

”Z?:o aixl.-H[M HE:LO bix””[O ;
o :Pl=>su P
(af HZLoaixl"”A {bf ”2 s b.-xv"HA

Proof. A simple perturbation argument shows that the extremal polynomial for

Z?=o b;x" [0, 4]
max .
o |1 2r=0bix" |4

is just the Chebyshev polynomial T, on 4 from span{1,x",...,x™}. If not, it would be
possible to increase the value of p(y):=)7-oa;y* for every fixed 0=y=p without
increasing || p(x)||,- Now observe that for T,
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Now let R,espa
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|| Tn”w,p] = | T,,(0)|

because T, and hence T, has no zeros on (0, p).

Now let R,espan{l,x*,...,x*} interpolate T, at the zeros of T, and be normalized
so that R,(0) = T,(0). Theorem 1 of [15], now gives

RS To(x)], xe4

and the result follows. O

Proofs of Theorem 1 and Inequality 1. Inequality 1 is immediate from the above
theorem and Inequality 2, while Theorem 1 with the remark right after it now follows
from Inequality 1 and the results of Clarkson and Erdos given in the Introduction.

S. An example

Theorem 3. Let {A;} be an arbitrary sequence of distinct positive real numbers. Then
there exists a non-empty perfect set E c[0,1] and Miintz polynomials P, e span
{x*,x*,...} such that ||P,||s<1 and | Pu(0)| > 00 when m— oo.

Proof. Let M,:=span {x*,x*,...,x*}. Choose two distinct points X;,; and x, , in
(0, 1), By interpolating we can find a P, € M, such that

Py(xy,1)=Py(x;,,)=0 and P,(0)=1.
Choose two disjoint closed intervals E, ; and E, ,so that x, ;€E, , x; ,€E, , and
|Pi(x)|<1 forevery x€E, UE,,.

Assume that a sequence of Miintz polynomials {P;}7_, and closed intervals E ik
(1=j=m, 1=k<2)) have already been constructed so that the intervals E;, (1=k<2)
are pairwise disjoint for every fixed j (1<j<m), Ej11,2i-1<E;; and E;,y 5, E;,
(Isj=m—1, 1<i<2™"), |P(x)|<1 on each E,, (i<jsm, 1<k<?’) and Py(0)=2/
(1=j=m). Take two distinct points Xm+1,2i—1 and X, 1 ,; from each E,, ; (1<i<2™). By
interpolating we can find a P,,, ; € M,m+: such that

Pm+1(xm+1,k)=09 1§k§2m+1 and Pm+1(0)=2m+1'

For every i (1<i<2™) choose two disjoint closed intervals E,i1,2i-1 and E,_ ., ,; such
that x,,. (2, €Eni1 31 XnirucEL: 1,26 Em+1,2i-1Y Emy1.2i < E, ; and

om+1

|Pms1(®)|S1 forevery xe |J Enyis.
k=1



372 PETER BORWEIN AND TAMAS ERDELYI

Now let E:=()2=; J#Z1 En, i Obviously E is perfect, P,eM,. and P,(0)=2". Thus
the theorem is proved. O

6. Countable sets

Some of the subtleties of Miintz’s theorem on subsets are illustrated by the following
pair of theorems.

Theorem 4. Let {1;} be an arbitrary sequence of distinct positive real numbers. Then
there exists a closed infinite set (a convergent sequence with its limit) S = [0,1] such that
span{1,x*,x*, ...} is dense in C[S] in the uniform norm.

Proof. Let y,=1/2 and assume that {y;}}-; =(0,1) has already been constructed.
We choose a y, ., such that

(1) Yn<yn+1<1a
Q) 1=(m+) "' <yurs,
?3) |px)|m+1)~" for every peM,:=span{1,x*,...,x*} satisfying lp(y))| £1,
j=1,2,...,n, and p(1)=0, and for every 1o ==l
The existence of such a y,.; follows from the following argument. In M, we define the
norms

lellii= ¥ o] and [lpll:=lpD]+ X [p0)]

of a Miintz polynomial p(x)=a0+235=1ajx“ which are equivalent to each other. If
peM,, |p(y;)|<1 (j=1,2,...,n) and p(1)=0, then ||p|l»<n, hence ||p||; <K with some
constant K depending only on n. Therefore there is a constant K'=K'(n)=1 such that
max, ;<< |P(X)|SK' for every peH,, which, together with the Mean Value Theorem

and p(1)=0, implies

()| =|p(1) = p(x)| =1 —0)[P(O)| S —0K'S(+1)"", peM,

if 1—x<((n+1)K’)"'. Hence

y,,+1:=max{y,,+1_2y", 1—((n+ l)K’)‘l}

is suitable. Obviously lim,.,y,=1. Let S:={y,}i= v {l}. We show that span{l,
x*,x%,...} is dense in C[S]. Let f be continuous on S, without loss of generality we
may assume that f(1)=0. Let L:=max, s|f(x)|. Choose p,eM, (n=1,2,...) such that

) =f(y;) (=
space). Then, fron
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py)=1(y)) (G =1,2,...,n) and p,(1)=0 (this is the interpolation property of a Haar
space). Then, from the choice of {y;}721 we easily deduce that

max (9 —p,(9)] L.
which proves the theorem. &l

Our next theorem, together with Miintz’s and Tietze’s theorems, will show that if {4}
IS a sequence of real numbers satisfying  inf(4,, , —4)>0, then span{1,
x’“,x'“,...} is dense in C[S] in the uniform norm for every countable closed S = [0, 1] if
and only if Y'® | 1/],= oo.

Theorem 5. Let {A:}21 be a sequence of positive real numbers such that Y£ it/
and inf(A;;,—2)>0. Then there is q countable closed subset S of [0,1] so that
Sl xx* ) fails to be dense in C[S] in the uniform norm.

Proof. For every neN, let E, be the collection of the n+1 extreme points of the nth
Chebyshev polynomial L=Ta400,4,-... L 1:[0, 17} of M, and let E=0 | E,. Since
Y2, 1/ki<o0, Lemma 4 gives 0<c:=inf {E\{0}}, hence we can choose three points
O0<y,<y,<ys<c. Now let S=Eu {y1,¥2,¥3}. By an observation of [1] we have
E"={1}, where E’ denotes the collection of the limit points of E. Therefore S”={1} as
well, hence S is a closed countable set. Now let f be continuous on S, f(x)=0 on [c, 1],
f1)=f(y3)=2 and S(y2)=—2. Assume that there is a Pe M, such that maxxes[p(x)-
f(x)]§1/2. Then it is easy to check that p—T,eM, has at least n+1 zeros in 0,1),
which is a contradiction. This finishes the proof. E

We remark that if {4;} is an arbitrary sequence of distinct positive real numbers then
there is a non-empty perfect set § — [0,1] such that span{x*',x*2 ..} is dense in C[S]

in the uniform norm. This can be obtained by straightforward modifications of the
proof of Theorem 3.
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