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We consider the compound means arising as limits from the arithmetic-geometric
mean iteration and related iterations. Each of these iterations possesses a
logarithmic asymptote. We show that these limit means satisfy very precise
inequalities. These can be deduced in a quite uniform fashion from a “comparison
lemma” for compound means. € 1993 Academic Press. Inc.

1. INTRODUCTION

We follow the terminology for mean iterations as used in Chap. 8 of [4].
More explicitly: M{a, b) is a mean on the positive orthant in R? if

min{a, b} < M(a, b) <max{aq, b}

for each a>0, #>0. The mean is strict if M(a, b)=5 or a implies that
a=>b. Throughout we assume that all means are continuous and strict. Let
4:={(a,b){az=b>0}. We suppose that M and N are comparable means,
that is M(a, b) = N(a, b) on 4.

We are interested in the mean iteration:

an+l:=M(an’bn) bn+l:=N(an’bn) (11)
where a, :=a, b, := b for positive numbers a and &.
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INEQUALITIES FOR MEAN ITERATIONS 573

Then Theorem 8.2 in [4] insures that a, and b, converge to a common
limit, denoted by M ® N(a, b), which represents another continuous strict
mean. Also, M® N is positively homogeneous, symmetric, or isotone
whenever both M and N are.

It will also be convenient to recall the classical hypergeometric function

R Gl A
F(a,b,c,x).—”g‘0 ERET X

where (a), is the rising factorial a(a+1)---(a+n—1). We will also need
the following special case of (15.3.10) in [17]:

sin(na) & (a),-(1—a),
Eo (n!)?
x[2¢(n+1)—yY(n+a)—yY(n+1—a)—In(x)]x"
(1.2)

Fa1—a;1;1—x)=

Here y is the digamma function and satisfies

1 m— 1 k
()= —7, ¥(x+ 1)=¢(X)+;, Y(mx)=In(m)+ Y ¢ (x+——>.(1.3)
k=0 m

In each case we are satisfied to consider real x and positive a and b with
¢c=a+b=1. Related asymptotics for c=a+b, a>0 and b>0 can be
found in [2] and [11].

ExampLEs 1.1. (a) Let M,(a, b) := (a + b)/2 (:= A(a, b)) and
N,(a, b):=./ab (:=G(a,b)). Then AG,:=M,®N, is the arithmetic-
geometric mean of Gauss and Legendre and convergence is quadratic. This

is discussed at length in [4]. We record from [4, 5, 6] that, for 0<x <1,

1
TF(1/2,1/2; 1; 1 —x?)

(b) Let Ms(a, b):=(a+2b)/3 and N,(a, b):=.Yb(a*>+ab+ b*)/3.
Then AG;:=M,® N, is the limit of a cubically convergent iteration. As
was shown in [6,8], for 0<x <1

AG,(1, x)

1
(1/3,2/3; 1; 1 = x%)

AG4(1, x)=
3( ,X) F
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(¢) Let M,(a,b):=(a+3b)/4 and N,(a, b) \/b a+b)/2. Then
AG, :=M,® N, is the limit of a quadratically convergent iteration. As was
shown in [6], for 0<x <1

1
F(1/4,3/4;1;1 —x*)*

Gu(l, x)=

(d) Let M(a,b):=(a+3b)/4 and Ns(a, b) :=(b+\/ab)/2. Then
B, :=M;® N5 is Borchardt’s mean and is the limit of a quadratically
convergent iteration. As was shown in [7] and [9], B, has various
expressions in terms of hypergeometric functions.

In each of these four cases it is easy to verify directly that the limit exists
and that convergence is at the rate claimed, but identifying the limit is
much harder. Additionally, each limit mean is homogeneous so that we
have identified the limit on A. (In the case of AG, this extends by symmetry
to the entire orthant.)

Formula (1.2) allows us to write down the precise asymptotic behaviour
in cases (a) to (c) above.

PropPOSITION 1.2. For 0<x <1 we have

(a)  AG,(1,x)< 2/m (%)

2 3
(b)  A4Gy(1,x)< \%/m <;>

()  AG(1, x)< (%’/m (%))2

Moreover, in each case the two expressions are asymptotic as x decreases to
zero.

Proof. The hypergeometric expressions given in Example 1.1 can be
expressed in terms of (1.2). In each case the right-hand expression is the
leading term in (1.2). This follows on using the properties of the digamma
function listed in (1.3). Next, we observe that all other coefficients in (1.2)
are positive for x in [0, 1]. (This again uses (1.3) and some elementary
estimates.) |

The errors can be explicitly determined in each case. Thus

2
F(172,1/2;1; 1 —xz):;azz—l?)siln <§>+§;—[8+ln (%)] (1.4)
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as follows from [4, p. 11]. We have no need of corresponding estimates for
AG; or AG, which are of much the same form with the error of order
x?In(x) in the case of 4G;. Related inequalities can be found in [2].

2. INEQUALITIES BETWEEN MEANS

We now turn to a simple but powerful basic tool in establishing
inequalities between compound means. We recall that a mapping @: 4 —~ R
is diagonal if @(x, x)=x. All means are diagonal mappings.

LemMa 2.1 (Comparison Lemma). Let M = N be strict means on 4. Let
@: 4 - R be continuous and diagonal. Suppose that

®(M(a, b), N(a, b)) < D(a, b) (2.1)
for (a,b) in 4 with 1 > bjla>¢e=0. Then
M® N(a, b)< P(a, b)

for (a, b) in 4 with 1 >bla>¢e20.

Proof. In the notation of (1.1) it follows inductively, because M > N are
comparable means on 4, that 1>b,,,/a,,,>¢ whenever 1 >b,/a,>¢.
This in turn means that

P(a, .1, b, 1)< Pla,, b,) < P(a, b)

for all » in N. On moving to the limit we reach our conclusion because @
is diagonal. |

Remarks 2.2. (i) In most applications ¢ is zero. (ii) We may replace
‘<’ by ‘<’ in both hypothesis and conclusion. (iii) We observe that since
— @& is diagonal whenever @ is, we may apply the Comparison Lemma
with ‘2° or ‘=’ replacing ‘<. In the equality case, we recapture a well
known Invariance Principle ([4, Thm. 8.3]). We note that in the equality
case (2.1) characterizes the limit mean, but in the inequality case (2.1) is a
stronger inequality.

We illustrate this principle as follows: let L denote the logarithmic mean

Lla,b) = (a—b)/ln (g) (2.2)

extended continuously so that #(a, a) :=a.

409:177:2-18
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ExaMpLE 2.3. For |r| <1 we consider the means

a'(a—>)

b'(a—b
M(a, by i=r 2 blazb)
a —b

and N.a, b):=r———
a—b

We observe that M _, =N, and that lim, ,, M, (a, b)= L(a, b). We claim
that for 0<r<1

M,®N(a, b)=ZL(a, b) (23)
This is trivial for r=0. For strictly positive r, we verify that
ZL(M(a, b), Nla, b))=ZL(a, b),

and then may apply the Invariance Principle (the equality form of the
previous Comparison Lemma). This last equation holds since

o Mdab)_o
Vo Nk b

and
(i) M (a, b)y— N (a,b)=r(a—b).
Equation (i1) also shows that convergence is linear of order r”. For values

such as r:=1/2, 1/3, 2/3, the means simplify. In particular, for r=1/2 we
have

J b+ Jab
Ml,z(a,b):f'—%ib and N,,,‘z(a,b):=—+—2—a— (2.4)

and we rederive a well known iteration, see [4].
We are now ready to prove our main results. Where convenient we will
suppress variables.

THEOREM 2.4. The following inequalities hold for all x such that
O<x<:

4
gg(l, x)>12‘-/1n <;>>AG2(I, X)> L1, x)> AGa(1, x)> By(1, x).
Proof. (i) The first inequality is a simple calculus exercise.
(ii) The second inequality was established in Proposition 1.2(a).

(i) AG,(1, x)> Z(1, x): We will show that, in the notation of
Example 1.1(a),

L1, x)< L (M1, xj, No(1, x)). (2.5)
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This will establish the strict form of (2.1) because all the means involved
are positively homogeneous. To prove (2.5) we observe that on cross multi-
plying, substituting x := y and factoring out (y — 1}, it suffices to show
that

1—+—yZ
2

‘1
y ln(y)>—)—-2'———ln(

) O<y<l)

Let g(y):= yln{y). Now (1 + y?)/2> ((1 + y)/2)? so that

yAL TNyl N vy g(y) gl g(y)
41“<2><21“(2>‘g(2><2+2_2

since g is convex and g(1)=0.

(iv) Z(1, x)> AG4(1, x): Arguing as in (iii), we need to show that

L(1,x)> L(M(1, x), Ny(1, x)). (2.6)

1+3x /[ I+x
g(x).=3’(l,x)—-£”< R X 3 )

On rearranging, the numerator of g(x) can be written as

4(1—x-){ln(lﬂ)_[é___;}ﬂ__]ln(\_)_llnC+x>}
' 4 4 24 xixand 0 202 /)

Let

Let

ax) = XF2
4 2p Sax(x+ 1)

Thus it suffices to show that

1+3x 1 I+x
ln( 1 >~ac(x)ln(x)——2—ln< 3 >>0.

Since In is strictly concave increasing and since a(x)<1/2 on [0, 1] this
last inequality holds.

(v} AG,1, x)> B,(1, x): The Invariance Principle yields

AG,=AG{( M4, Nj)> AG (M5, Ns) (2.7)
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for 0 <b/a<1, since M,= M and N,> N while AG, is monotone. Then
the Comparison Lemma applies to (2.7). |

THEOREM 2.5. The following inequalities hold for all x such that
O<x<1:

AG,(1, x) > AG,(1, x) > AG,(1, x).

Proof. (i) AG4(1, x)> AG,4(1, x): This is very similar to the proof of
AG4(1, x)> B,(1, x). We observe, with a little manipulation that, for
O<b/a<l, My> M, and N;> N,. Thus

AGy=AG5(M;, N3) > AG, (M4, N,) (2.8)

and the Comparison Lemma applies again.

(i1) AG,(1, x)> AG,(1, x): This is a little more subtle. Two iterations
of AG, produce

AG,=AG,(A 152 Buz A

where

aV? 4 h12\2 atb
A pla, b) = (—-T—> and Byla, b):= [ /ab 7

[Inter alia, this shows that 4,,>AG,> B, for (a,b) in 4.] While
B;>N, for 0<b/a<]1, 4,,> M, holds exactly for 1/25 <b/a< 1. Thus,
for 1/25<b/a< 1

AG,=AG,(Ay;2, Bip)> AG,(M3, N;).

The Comparison Lemma applies with ¢:=1/25 and we deduce that
AG,(1, x)> AG,(1, x) for 1/25 < x < 1. By Examples 1(a), (b) it remains to
show that

F(1/2,1/2; 1; 1 —x*) < F(1/3, 2/3; 1; 1 —x%) (0<x<1/25). (29)
It will foliow that (2.9) and (ii) hold on the entire interval 0 < x < 1.

We establish (2.9) by observing that Proposition 1.2(b) implies that

3
F(1/3,2/3; 151 —x3)>3—\/——3]n (—)
2n X

while (1.4) shows

2
F(1/2, 12 11— x) <21 (4_) +3.x-[8 +in (l)]
T X b/ X
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Thus it suffices to verify that for 0 < x < 1/25,

3f (Z)"—l (i) 8; [g+1 (i)]>o. (2.10)

It is easy to check that this function decreases on 0 < x <1 and is positive
at 1/8. Thus (2.10) holds at least for 0 <x < 1/8. |

We observe that 4G; and ¥ are not comparable (they switch over
around 0.0063), so that the last two results are distinct. The implicit
inequality (n/2) £(1, x)> AG,(1, x) was first observed in [11], while the
inequality AG,(1, x)> #(1, x) was first established in [10]. The last
inequality also follows from the next inequality which is of interest in its
own right.

PropPoOSITION 2.6. For all x with 0<x < 1,

(1;)‘)A62(1,x)<,462(1,x2) (2.11)

or equivalently,

(1 12H> FO2, UL L1 =x) <F(2, 1/ k1 =x%). (212)

Proof. Example 1.1(a) establishes the equivalence of (2.11) and (2.12).
To prove (2.11) we observe that the Invariance Principle shows that
G,(1, x)=AG,((1 + x)/2, \/)—r) so we need to show that

(1 ;’x) AG, (1 =, \/}) < AG,(1, x*).

We now argue with theta functions. (See [4, Chap. 2], [3], or [12] for
the relevant definitions.) Let x :=805(q)/64(q) for 0 <|g] <1 so that (2.11)
becomes

) 8, 6 0
( __(q_)%__(@) 4G, (4@:;__(‘1_) 0:(2) 04(q))<AG2(93(61), 02(9)).

It is a fundamental property of AG, that the right-hand quantity is iden-
tically 1, [4, p. 35]. Moreover, (05(¢) + 04(¢))/2=0(¢") and 63(q) 6.(q) =
02(q%), [4, p. 34], and so the desired inequality is

AG,(83(g*), 0:(9%) 84(¢°)) < 1 = AG,(03(q"), 03(q°*)).
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This holds since 85(g*) 04(¢%) < 0:(¢*) 0,(g%)=02(q"), (because 0,(q)
increases with ¢) and since 4G, is monotone.

The Comparison Lemma may be applied to (2.11) to rederive
AGL(1, x)>2(1, x}). |

We recall (see [4, Chap. 8]) that for any mean
M,(a, b):=M(a”, b")'". (2.13)

Thus, if 4 denotes the arithmetic mean, 4, is (4),,,, the Holder mean of
exponent 1/2.

We finish with a proof of the following extremely sharp inequality
recently discovered experimentally by Vuorinen (private correspondence).

PROPOSITION 2.7, Z3,(1, x) > AG,(1, x) > L(1, x).
Proof. By now familiar arguments, it suffices to show that
Finll, x)> Z,(M,(1, x), Ny(1, x}) D<x<1)
and, on replacing x by x*°, we are finished if we show that
P(Ay(1, x), G, x))< L(1,x)  (O<x<1).

Written out explicitly, we wish to show that

In(x) 14 x23\¥2 1771 4 xR\ 32
X-_—_1<1n<( 2 ) /\/;>/(( 3 ) —\/;) (D<x<l) (214)

This we can only establish—by a somewhat unsatisfactory computa-
tional route—which we now sketch. Substitute x = y® and normalize to get
an equivalent inequality namely:

4 2
o) = {(1 ) B log (‘ ! )— 3log y] 6y logm}

1 AN 3
J;—‘ ) >0 ye(o 1) (2.15)

— (6 log(y))’ (

We write g(y) as a quadratic in log({1 + y*});2) and log( y) with coefficients
which are polynomial in y. On replacing —y*In(y) by —1/(ke) and the
like (most easily with a symbol manipulation system) we find that

lyg'(»)I<50  yel0,1] (2.16)
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and that
g(y)— x as y|l0. (2.17)
Indeed, easy estimates show g(y})>0 on [0, 1/1000]. Let y,:=1/1000 and
Vw1 =y, 1+ p,2(r,)/50]. (2.18)

It follows from (2.16) and the Mean Value theorem that by checking the
positivity of g(y,) until y,>3/4 we prove (with about 20,000 function
evaluations) that g(y)>0 on (0, 3/4].

Furthermore g expanded exactly (symbolically) at 1 is of the form

gy =121+ 0((y - 1)°). (2.19)

If we numerically evaluate the integral

g'(z) ) (.
dz ) /2 2.20
('[I:— =14 £(2) / m (2.20)

we discover that it is 8 to as many places as we compute. By the Argument
Principle, g can only have 8 zeroes inside the disc {|z—1| <1/4}. Thus
they all lie at 1. In particular g has no real zeros in [3/4,1] and so is
positive on [0, 1].

Finally, to validate the numerical evaluation of (2.20), it is necessary to
know that (i) g does not vanish on the contour and (ii) to have an estimate
for (g'(z)/g(z)). We estimate |g'(z)| <30 on the contour and obtain from
the Maximum Modulus Principle that |g(1+0.25¢°™)| has Lipschitz
constant less than 96 on [0, 1]. A similar calculation to (2.18) proves (very
tediously) that |g(z)| > 1/500,000 on the contour. We may also estimate
[g"(z)| and so get a derivative estimate for g'(z)/g(z). |

Of course, a self-contained proof of (2.15) would be desirable.

We note that the first four terms of the Taylor series, for x := 1, on each
side of (2.14) coincide (and the ratio remains very close for the first 50
terms):

() )

B l _ l B 2__1 . 3 Ez.s._ —

_1—2(x 1)+3(x D=z l)Jr10368( '
ln(x)_l__( —1)+ (x—1) __(,(_1 l(x—l)4+
x—1 3

This explains why, near 1, %;,(1, x)— AG,(1, x) is of very small order.
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