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Preface. The year 1987 was the centenary of Ramanujan’s ! birth. He died in
1920. Had he not died so young, his presence in modern mathematics might be more
immediately felt. Had he lived to have access to powerful algebraic manipulation
software, such as MACSYMA 2, who knows how much more spectacular his already
astonishing career might have been.

This article will follow up one small thread of Ramanujan’s work which has found
a modern computational context, namely, one of his approaches to approximating
7. Our experience has been that as we have come to understand these pieces of
Ramanujan’s work, as they have become mathematically demystified, and as we
have come to realize the intrinsic complexity of these results, we have come to
realize how truly singular his abilities were. This article attempts to present a
considerable amount of material and, of necessity, little is presented in detail. We
have, however, given much more detail than Ramanujan provided. Our intention
is that the circle of ideas will become apparent and that the finer points may be
pursued through the indicated references.

1 Introduction.

There is a close and beautiful connection between the transformation theory for
elliptic integrals and the very rapid approximation of 7. This connection was first
made explicit by Ramanujan in his 1914 paper “Modular Equations and Approxi-
mations to 7 [26]. We might emphasize that Algorithms 1 and 2 are not to be found
in Ramanujan’s work, indeed no recursive approximation of 7 is considered, but as
we shall see they are intimately related to his analysis. Three central examples are:

Sum 1. (Ramanujan)

o

1 Z [1103 + 263901
T 9801 39647

Algorithm 1. Let ap:=6— 42 and yp := v2 — 1. Let

1= {1 =g}

Untl = (IS gh)iA

and

_ 92n+3

nt1 = (14 yn+1)4an Ynr1 (1 + Yns1 + y12L+1)-

Then
0<an—1/m<16-4"e 24"

and a,, converges to 1/m quartically (that is, with order four). Example

1See http://www.cecm.sfu.ca/organics/papers/borwein/paper/html/local/ramanujan. html
for a scanned image of the bust of Ramanujan.

?When this article was published Mathematica did not exist as a commercial product. Its
spectacular growth and that of Maple, Axiom and many other packages such as Matlab show how
quickly these tools have established themselves throughout the sciences.

3See Appendix - ‘One Hundred Billion Digits of P’
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Algorithm 2. Let so := 5(v/5 — 2) and ag := 1/2. Let

25
Sn e,
+ (z+z/2+1)%s,
where
z:=5/sp—1 y:=(x—-1)247
and
j 1/5
7 e [Ez (y +y? - 4x3)] :
Let
5 s -5
Ont1 i= L0, — 5" { n2 + V50 (82 — 25, + 5)} .
Then

1 n
0<an—~<16-5"% %"
m
and o, converges to 1/m quintically (that is, with order five).

Each additional term in Sum 1 adds roughly eight digits, each additional itera-
tion of Algorithm 1 quadruples the number of correct digits, while each additional
iteration of Algorithm 2 quintuples the number of correct digits. Thus a mere thir-
teen iterations of Algorithm 2 provide in excess of one billion decimal digits of =.
In general, for us, pth-order convergence of a sequence {an) to a means that «,
tends to & and that

lon 41 — al < Clan, — a'p

for some constant C' > 0. Algorithm 1 is arguably * the most efficient algorithm
currently known for the extended precision calculation of 7. While the rates of
convergence are impressive, it is the subtle and thoroughly nontransparent nature
of these results and the beauty of the underlying mathematics that intrigue us most.
Watson([37], commenting on certain formulae of Ramanujan, talks of

a thrill which is indistinguishable from the thrill which I feel when I enter
the Sagrestia Nuovo of the Capella Medici and see before me the austere
beauty of the four statues representing “Day”, “Night”, “Fvening”, and
“Dawn” which Michelangelo has set over the tomb of Giuliano de’Medici
and Lorenzo de’Medici.

Sum 1 is directly due to Ramanujan and appears in (26]. It rests on a modular
identity of order 58 and, like much of Ramanujan’s work, appears without proof
and with only scanty motivation. The first derivation we know of appears in [11].
Algorithms 1 and 2 are based on modular identities of orders 4 and 5 respectively.
The underlying quintic modular identity in Algorithm 2 (the relation for s,,) is also
due to Ramanujan, though the first proof is due to Berndt and appears in [7].

One intention in writing this article is to explain the genesis of Sum 1 and of
Algorithms 1 and 2. It is not possible to give a short self-contained account without
assuming an unusual degree of familiarity with modular function theory. Also, parts
of the derivation involve considerable algebraic calculation and may most easily be

4See Appendix - ‘General Computational Update’
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done with the aid of a symbolic manipulation package MACSYMA, MAPLE, REDUCE,
etc.’ We hope however to give a taste of methods involved. The full details are
available in [11].

A second intention is very briefly to describe the role of these and related ap-
proximations in the recent extended precision calculations of 7. In part this entails
a short discussion of the complexity and implementation of such calculations. This
centers on a discussion of multiplication by fast Fourier transform methods. Of
considerable related interest is the fact that these algorithms for 7 are provably
close to the theoretical optimum.

2 The State of Our Current Ignorance.

7 is almost certainly the most natural® of the transcendental numbers, arising as
the circumference of a circle of unit diameter. Thus, it is not surprising that its
properties have been studied for some twenty-five hundred years. What is surprising
is how little we actually know.

We know that 7 is irrational, and have known this since Lambert’s” proof of
1771 (see [5]). We have known that 7 is transcendental® since Lindemann’s® proof
of 1882 [23]. We also know that 7 is not a Liouville number. Mahler proved this in
1953. An irrational number 3 is Liouville if, for any n, there exist integers p and g
so that
1
=

g P
q

0< <

Liouville showed these numbers are all transcendental. In fact we know that

1
q1463

(2.1)

for p, q integral with q sufficiently large. This irrationality estimate, due to Chud-
novsky and Chudnovsky [16] is certainly not the best possible '°. It is likely that
14.65 should be replaced by 2+ ¢ for any € > 0. Almost all transcendental numbers
satisfy such an inequality. We know a few related results for the rate of algebraic
approximation. The results may be pursued in [4] and [11].

We know that e” is transcendental. This follows by noting that e™ = (—1)™*
and applying the Gelfond-Schneider theorem [4]. We know that 7 +log 2+ Vv2log3
is transcendental. This result is a consequence of the work that won Baker a Fields

58ee Footnote 2.

8See Appendix - ‘Landmarks’

7See http://www.cecn.sfu.ca/organics/papers/borwein/paper/html/local/lambert.html for a
scanned image of Lambert’s proof.

83ee http://www.cecm.sfu.ca/organics/papers/borwein/paper/html/local/hilbert.html  for
Hilbert’s scanned proof

9See http://www.cecm.sfu.ca/organics/papers/borwein/paper/html/local/lindemann.  html
for a scanned image of Lindemann’s proof

10This estimate has now been improved to

by M. Hata (Acta Arithmetica 63 (1993))
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Medal in 1970. And we know a few more than the first two hundred million digits
of the decimal expansion for 7 (Kanada, see Section 3).

The state of our ignorance is more profound. We do not know whether such
basic constants as m + e, 7/e or log 7 are irrational, let alone transcendental. The
best we can say about these three particular constants is that they cannot satisfy
any polynomial of degree eight or less with integer coefficients of average size less
than 10% [3]. This is a consequence of some recent computations employing the
Ferguson-Forcade algorithm [17]. We don’t know anything of consequence about
the simple continued fraction of 7, except (numerically) the first 17 million terms,
which Gosper computed in 1985 using Sum 1. Likewise, apart {rom listing the first
many millions of digits of «r, we know virtually nothing about the decimal expansion
of m. It is possible, albeit not a good bet, that all but finitely many of the decimal
digits of 7 are in fact 0’s and 1's. Carl Sagan’s recent novel Contact rests on a
similar possibility. Questions concerning the normality of or the distribution of
digits of particular transcendentals such as 7 appear completely beyond the scope
of current mathematical techniques. The evidence from analysis of the first thirty
million digits is that they are very uniformly distributed [2]. The next one hundred
and seventy million digits apparently contain no surprises.

In part we perhaps settle for computing digits of w because there is little clse
we can currently do. We would be amiss, however, if we did not emphasize
that the extended precision calculation of 7 has substantial application as a test
of the “global integrity” of a supercomputer. The extended precision calculations
described in Section 3 uncovered hardware errors which had to be corrected before
those calculations could successfully run. Such calculations, implemented as in
Section 4, are apparently now used routinely to check supercomputers before they
leave the factory. A large-scale calculation of 7 is entirely unforgiving; ' it soaks

11

!1See Appendix - ‘Some Thoughts...’

12Bvery large calculation of digits of 7 that we have been involved in has uncovered some hard
ware or soft ware bug. Some of these were important, like parallel processors not communicating
with each other. Of course the best known example of large scal number theoretic computations
uncovering bugs is the Pentium story.

1.90216054... = (1/3 +1/5) + (1/5 4 1/7) + (1/11 + 1/13) + ...

The recent debacle concerning Intel’s faulty Pentium chip surfaced because of computations on
Brun’s constant performed by Thomas Nicely of Lynchburg College in Virginia. The Pentium
had a hardware flaw in its floating point arithmetic that causes certain divisions involving long
strings on ones to give incorrect answers that will surface once in every billion or so calculations of
reciprocals. (This one in a billion error cost Intel about a billion dollars.) Nicely was estimating
Brun’s constant, named after the Norwegian Mathematician Viggo Brun who investigated some
of its properties in 1909. This number is the sum of the reciprocals of prime pairs. That is

The current estimate of Brun’s Constant {1.90216054...) is based on a computation of all primes
up to 100 Billion and of the 224,376,048 pairs of twin primes that occur among them. This was
due to Richard Brent of the Australian National University. Prime pairs are quite mysterious and
little is known about them. It is not known, for example whether there are infinitely many though
it is conjectured that this is true.

In order to extend the estimates Nicely performed all his calculations twice by different algo-
rithms. (One using the Pentium chips floating point arithmetic and the other avoiding it.) This
is quite standard since there is a long history of bugs showing up in these kinds of very extensive
computations. Previously paging errors in the Cray supercomputers had shown up in large scale
computations of Pi and now Cray uses such calculations as pert of its testing procedures. The
two answers Nicely got differed after the tenth digit and this put a red flag. Eventually after con-
siderable detective work Nicely discovered that the Pentium chip was giving incorrect reciprocals
for the twin primes 824,633,702,441 and 824,633,702,443 and the rest, as they say, is history.
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into all parts of the machine and a single bit awry leaves detectable consequences.

3 Matters Computational

I am ashamed to tell you to how many figures I carried these calcula-
tions, having no other business at the time.

Isaac Newton

Newton’s embarrassment at having computed 15 digits, which he did using the
arcsinlike formula.

424 1 1 1 1
— . — e — — [
4 12 5-25 28.27 72.29

= 37\/5-{—24/4 vV — x%dz,
0

is indicative both of the spirit in which people calculate digits and the fact that a
surprising number of people have succumbed to the temptation [5).

The history of efforts to determine an accurate value for the constant we now
know as 7 is almost as long as the history of civilization itself. By 2000 B.C. both
the Babylonians and the Egyptians knew 7 to nearly two decimal places. The
Babylonians used, among others, the value 31/8 and the Egyptians used 313/81.
Not all ancient societies were as accurate, however — nearly 1500 years later the
Hebrews were perhaps still content to use the value 3 13 | as the following quote
suggests.

Also, he made a molten sea of ten cubits from brim to brim, round in
compass, and five cubits the height thereof; and a line of thirty cubits
did compass it round about.

old Testament, 1 Kings 7:23

Despite the long pedigree of the problem, all nonempirical calculations have
employed, up to minor variations, only three techniques.

13Bill No. 246, 1897. State of Indiana:

Be it enacted by the General Assembly of the State of Indiana: It has been found

that the circular area is to the quadrant of the circumference, as the area of an

equilateral rectangle is to the square on one side.

In further proof of the value of the author’s (E.J. Goodman, M.D.) proposed con-

tribution to education, and offered as a gift to the State of Indiana, is the fact of

his solutions of the trisection of the angle, duplication of the cube and quadrature

of the circle having been already accepted as contributions to science by the Amer-

ican Mathematical Monthly, the leading exponent of mathematical thought in this

country.
The above is part of Bill No. 246, 1897, of the State of Indiana. It passed three readings in the
Indiana House in 1897. (Introduced by the House Committee on Swamp Lands.) It also passed
first reading in the Indiana Senate, 1897. (Introduced by the Senate Committee on Temperance.)
The bill was viewed as having financial value:

The case is perfectly simple. If we pass this bill which establishes a new and correct

value of , the author offers our state without cost the use of this discovery and its

free publication in our school teztbooks, while everyone else must pay him a royalty.
By chance Professor C.A. Waldo of Purdue was in the Senate for a reading of the bill. He convinced
Senators that the bill was nonsense and it was tabled. (Presumably it is still tabled.)
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i) Archimedes Method The first technique due to Archimedes 4 of Syracuse
(287-212 B.C.) is, recursively, to calculate the length of circumscribed and inscribed
regular 6 - 2"-gons about a circle of diameter 1. Call these quantities a, and b,.
respectively. Then ag := 2v/3, by := 3 and, as Gauss’s teacher Pfaff discovered in
1800,

2a,b
Qpt+1 = +Z and b,y = v/a,41b,.
n

Qn
Archimedes, with n = 4, obtained
Warn< 3L

While hardly better than estimates one could get with a ruler, this is the first
method that can be used to generate an arbitrary number of digits, and to a non-
numerical mathematician perhaps the problem ends here. Variations on this theme
provided the basis for virtually all calculations of 7 for the next 1800 years, culmi-
nating with a 34 digit calculation due to Ludolph van Ceulen ( 1540-1610). This
demands polygons with about 2° sides and so is extraordinarily time consuming.

ii) Calculus Based Methods Calculus provides the basis for the second tech-
nique. The underlying method relies on Gregory’s series of 1671 13

Todt 3 2
arctanzz/0 H—tz:z——g—kg—-w lz] <1

coupled with a formula which allows small z to be used, like

3—4 t 1 — arctan 1
1= arctan 5 arc 739 ) -

This particular formula is due to Machin '® and was employed by him to compute
100 digits of 7 in 1706. Variations on this second theme are the basis of all the

'4See http://www.cecm.sfu.ca/organics /papers/borwein/paper/html/local/archimedes. html
for a scanned image of Archimedes’ Page

13See Appendix - ‘Frauds’

16Machin Variations: For positive integral u, v, and k and integral m and n,

km

1 1
(*) marctan(—) + narctan(~)
7 v 4

if and only if (1 ~4)*(u + i)™ (v + i)n is real. Thus
g (Machin, 1706)

1 1
= 4arctan(—) — arctan(—)
5 239

1
E_ arctan(l) +arctan(-) (Euler,1738)
4 2 3
w 1 1
rie 2arctan(§) - arctan(?) (Hermann, 1706)

1 1
g— = 2arctan(§) + arctan(?) (Hutton, 1776)

These are, in fact, all the nontrivial solutions of (*). This was a problem of Gravé’s solved by
Stormer in 1897. The problem can be reduced to finding integral solutions of 1 + x? = 2y4” or
1+ 22 =y™ n> 3, nodd.
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calculations done until the 1970’s including William Shanks’ 17 monumental hand-

calculation of 527 digits. In the introduction to his book [32], which presents this
calculation, Shanks writes:

Towards the close of the year 1850 the Author first formed the design
of rectifying the circle upwards of 300 places of decimals. He was fully
aware at that time, that the accomplishment of his purpose would add
little or nothing to his fame as a Mathematician though it might as
a Computer: mor would it be productive of anything in the shape of
pecuniary recompense.

Shanks actually attempted to hand-calculate 707 digits but a mistake crept in
at the 527th digit. This went unnoticed until 1945, when D. Ferguson, in one of the
last “nondigital” calculations, computed 530 digits. Even with machine calculations
mistakes occur, so most record-setting calculations are done twice — by sufficiently
different methods.

The advent of computers has greatly increased the scope and decreased the
toil of such calculations. Metropolis, Reitwieser, and von Neumann computed and
analyzed 2037 digits using Machin’s formula on ENIAC in 1949. In 1961, Dan
Shanks and Wrench calculated 100,000 digits on an IBM 7090 [31]. By 1973, still
using Machin-like arctan expansions, the million digit mark was passed by Guilloud
and Bouyer on a CDC 7600.

iii) Transformation Methods The third technique, based on the transforma-
tion theory of elliptic integrals, provides the algorithms for the most recent set of
computations. The most recent records are due separately to Gosper, Bailey, and
Kanada. Gosper in 1985 calculated over 17 million digits (in fact over 17 million
terms of the continued fraction) using a carefully orchestrated evaluation of Sum 1.

Bailey in January 1986 computed over 29 million digits using Algorithm 1 on a
Cray 2 [2]. Kanada, using a related quadratic algorithm (due in basis to Gauss and
made explicit by Brent [12] and Salamin [27]) and using Algorithm 1 for a check,
verified 33,554,000 digits. This employed a HITACHI S-810/20, took roughly eight
hours and was completed in September of 1986. In January 1987 Kanada extended
his computation to 227 decimal places of = and the hundred million digit mark had
been passed. The calculation took roughly a day and a half on a NEC SX2 machine.
Kanada’s most recent feat (Jan. 1988) was to compute 201,326,000 digits, which
required only six hours on a new Hitachi S-820 supercomputer. Within the next
few years '® many hundreds of millions of digits will no doubt have been similarly
computed!®. Further discussion of the history of the computation of m may be
found in [5] and [9].

17Gee  http://www.cecm.sfu.ca/organics/papers/borwein/paper/html/local/shanks.html  for
scanned images of Shanks’ pages.

18Gee Appendix - ‘General Computational Update’

19Yow Big is Ten Billion?: e 10 billion (12pt) digits stretch from Halifax to Vancouver three
times. e 10 billion (12pt) digits fill fourteen football fields. e 10 billion digits read off at 1
digit/second takes three centuries. e 10 billion digits fill roughly 2400 Bibles.
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4 Complexity Concerns

One of the interesting morals from theoretical computer science is that many fa-
miliar algorithms are far from optimal. In order to be more precise we introduce
the notion of bit complezity. Bit complexity counts the number of single operations
required to complete an algorithm. The single-digit operations are +, —, x. (We
could, if we wished, introduce storage and logical comparison into the count. This,
however, doesn’t affect the order of growth of the algorithms in which we are in-
terested.) This is a good measure of time on a serial machine. Thus, addition of
two n-digit integers by the usual method has bit complexity O(n), straightforward
uniqueness considerations show this to be asymptotically best possible.

Multiplication is a different story. Usual multiplication of two n-digit inte-
gers has bit complexity O(n?) and no better. However, it is possible to multiply
two n-digit integers with complexity O(n(logn)(loglogn)). This result is due to
Schénhage and Strassen and dates from 1971 [29]. It provides the best bound known
for multiplication. No multiplication can have speed better than O(n). Unhappily,
more exact results aren’t available.

The original observation that a faster than O(n?) multiplication is possible was
due to Karatsuba in 1962. Observe that

(a+010")(c+d10™) = ac — [(a — b)(c — d) — ac — bd]10™ + bd10*",

and thus multiplication of two 2n-digit integers can be reduced to three multiplica-
tions of n-digit integers and a few extra additions. (Of course multiplication by 10™
is just a shift of the decimal point.) If one now proceeds recursively one produces
a multiplication with bit complexity

O(n'oe=3),

Note that log, 3 = 1.58--- < 2.

We denote by M(n) the bit complexity of multiplying two n-digit integers to-
gether by any method that is at least as fast as usual multiplication.

The trick to implementing high precision arithmetic is to get the multiplication
right. Division and root extraction piggyback off multiplication using Newton’s
method. One may use the iteration

2
Tht+1 = 21‘k — XLy

to compute 1/y and the iteration

1 4 y
xr = - | T -
k+1 9 k i

to compute /y. One may also compute 1/ V¥ from

Tk (3 — yzi)

Lh+1 = 2

and so avoid divisions in the computation of VY. Not only do these iterations
converge quadratically but, because Newton’s method is self-correcting (a slight
perturbation in z; does not change the limit), it is possible at the kth stage to
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work only to precision 2%. If division and root extraction are so implemented,
they both have bit complexity O(m(n)), in the sense that n-digit input produces
n-digit accuracy in a time bounded by a constant times the speed of multiplication.
This extends in the obvious way to the solution of any algebraic equation, with
the startling conclusion that every algebraic number can be computed (to n-digit
accuracy) with bit complexity O(M (n)). Writing down n digits of v/2 or 3v/7 is
(up to a constant) no more complicated than multiplication.

The Schonhage-Strassen multiplication is hard {0 implement. However, a mul-
tiplication with complexity O((logn)2*<n) based on an ordinary complex (floating
point) fast Fourier transform is reasonably straightforward. This is Kanada’s ap-
proach, and the recent records all rely critically on some variations of this technique.

To see how the fast Fourier transform may be used to accelerate multiplication,
let = := (xo,T1, %2, **,Tn—1) and ¥ := (Yo, ¥1,¥2, - *» Yn—1) be the representations
of two high-precision numbers in some radix b. The radix b is usually selected
to be some power of 2 or 10 whose square is less than the largest integer exactly
representable as an ordinary floating-point number on the computer being used.
Then, except for releasing each “carry”, the product z := (20, 21,29, -, 2n_1) of ©
and y may be written as

Zy = $0y0
1 = Toy1+TiYo
z2 = ZoY2 +T1n + T2l
Zpn-1 = ZToYn—1t+ZTiYn—2+ -+ ZTpn_ 1Y

Zan—-3 = Tp—-1Yn—2 + Tn-—2Yn-1
2n—-2 = Tn—1Yn—-1
Zon—1 = 0.

Now consider z and y 1o have n zeros appended, so that z, y, and z all have length
N = 2n. Then a key observation may be made: the product sequence z is precisely
the discrete convolution C(z,y):

N-1
2 = C(@,y) = > 2%k
—

where the subscript & — j is to be interpreted as k — j + N if k — j is negative.

Now a well-known result of Fourier analysis may be applied. Let F(z) denote
the discrete Fourier transform of the sequence z, and let F~1(x) denote the inverse
discrete Fourier transform of z:

Z

~1
Fuz) = Y acjc_z"ijk/N

.

=]
7
—

2t~
™

<
il
o

Fil) = zje 2R/,



46 J.M. Borwein, P.B. Borwein, D.H. Bailey

Then the “convolution theorem”, whose proof is a straightforward exercise, states
that

F(C(z,y)] = F(z)F(y)

or, expressed another way,
C(z,y) = F~'{F(z)F(y)].

Thus the entire multiplication pyramid z can be obtained by performing two for-
ward discrete Fourier transforms, one vector complex multiplication and one inverse
transform, each of length N = 2n. Once the real parts of the resulting complex
numbers have been rounded to the nearest integer, the final mutiprecision product
may be obtained by merely releasing the carries modulo b. This may be done by
starting at the end of the z vector and working backward, as in elementary school
arithmetic, or by applying other schemes suitable for vector processing on more
sophisticated computers.

A straightforward implementation of the above procedure would not result in
any computational savings -— in fact, it would be several times more costly than the
usual “schoolperson” scheme. The reason this scheme is used is that the discrete
Fourier transform may be computed much more rapidly using some variation of the
well-known “fast Fourier transform” (FFT) algorithm [13]. In particular, if N = 27,
then the discrete Fourier transform may be evaluated in only 5m2™ arithmetic
operations using an FFT. Direct application of the definition of the discrete Fourier
transform would require 22™+3 floating-point arithmetic operations, even if it is
assumed that all powers of e=2™/N have been precalculated.

This is the basic scheme for high-speed multiprecision multiplication. Many
details of efficient implementations have been omitted. For example, it is possible to
take advantage of the fact that the input sequences x and y and the output sequence
z are all purely real numbers, and thereby sharply reduce the operation count. Also,
it is possible to dispense with complex numbers altogether in favor of performing
computations in fields of integers modulo large prime numbers. Interested readers
are referred to [2], 8], [13], and [22].

When the costs of all the constituent operations, using the best known tech-
niques, are totalled both Algorithms 1 and 2 compute n digits of © with bit com-
plexity O(M (n)logn), and use O(logn) full precision operations.

The bit complexity for Sum 1, or for 7 using any of the arctan expansions, is
between O((logn)?M(n)) and O(nM(n)) depending on implementation. In each
case, one is required to sum O(n) terms of the appropriate series. Done naively,
one obtains the latter bound. If the calculation is carefully orchestrated so that
the terms are grouped to grow evenly in size (as rational numbers) then one can
achieve the former bound, but with no corresponding reduction in the number of
operations.

The Archimedean iteration of section 2 converges like 1 /4™ so in excess of n
iterations are needed for n-digit accuracy, and the bit complexity is O(nM(n)).

Almost any familiar transcendental number such as e, v, ¢(3), or Catalan’s
constant (presuming the last three to be nonalgebraic) can be computed with bit
complexity O((log n) M (n)) or O((logn)2M(n)). None of these numbers is known to
be computable essentially any faster than this. In light of the previous observation
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that algebraic numbers are all computable with bit complexity O(M (n)), a proof
that 7 cannot be computed with this speed would imply the transcendence of .
It would, in fact, imply more, as there are transcendental numbers which have
complexity O{M(n)). An example is 0.10100100001 - - -.

It is also reasonable to speculate that computing the nth digit of 7 is not very
much easier than computing all the first n digits. We think it very probable that
computing the nth digit of 7 cannot be o(n).

5 The Miracle of Theta Functions

When I was a student, abelian functions were, as an effect of the Jaco-
bian tradition, considered the uncontested summit of mathematics, and
each of us was ambitious to make progress in this field. And now? The
younger generation hardly knows abelian functions.

Feliz Klein [21]

Felix Klein’s lament from a hundred years ago has an uncomfortable timelessness
to it. Sadly, it is now possible never to see what Bochner referred to as “the miracle
of the theta functions” in an entire university mathematics program. A small piece
of this miracle is required here [6], [L1], [28]. First some standard notations. The
complete elliptic integrals of the first and second kind, respectively,

(5.1)

K(k) = / —
o v1-—k2sin®t
and

E(k) = /0 ; V1 —k2sin’ tdt (5.2)

The second integral arises in the rectification of the ellipse, hence the name elliptic
integrals. The complementary modulus is

B o= \/—1——192
and the complementary integrals K’ and E’ are defined by
K'(k):= K(k') and E'(k):= E(K).
The first remarkable identity is Legendre’s relation 2° namely

E(R)K'(K) + E'(k)K (k) — K(K)K' (k) = =

= (5.3)

201, EGENDRE’S IDENTITY: A nice proof of this follows by

(i) differentiating both sides one gets zero and then

(ii) taking the limit at r — 0.

It is interesting to note that Legendre’s faith in and knowledge of limits precluded his developing
this proof, Instead he evaluated all quantities at (v/3 — 1)/2 (the third singular modulus) a
considerable tour de force!



48 J.M. Borwein, P.B. Borwein, D.H. Bailey

(for 0 < k < 1), which is pivotal in relating these quantities to 7. We also need to
define two Jacobian theta functions

Os(q) := Y g1/’ (5.4)
and -
Os(q):= Y ¢~ (5.5)

These are in fact specializations with (¢ = 0) of the general theta functions. More
generally

o0
Os5(t,q) = > g™  (im t > 0)
n=—o0o

with similar extensions of ©2. In Jacobi’s approach these general theta functions
provide the basic building blocks for elliptic functions, as functions of ¢ (see [11],
(39))-

The complete elliptic integrals and the special theta functions are related as
follows. For |g| < 1

K(k) = %eg(q) (5.6)
and —
E(k) = (k')? [K(k) + k%] ; (6.7)
where
— _6%) ... 63-q
and
q= e~ K (k}/ K (k) (5.9)

The modular function X is defined by

82(‘1)}4, (5.10)

A = Ma) = (a) = [ G

where
g = ™,

We wish to make a few comments about modular functions in general before
restricting our attention to the particular modular function A\. Modular functions
are functions which are meromorphic in H, the upper half of the complex plane,
and which are invariant under a group of linear fractional transformations, G, in
the sense that

flg(2)) = f(2) vgea.

[Additional growth conditions on f at certain points of the associated fundamental
region (see below) are also demanded.] We restrict G to be a subgroup of the
modular group T’ where T is the set of all transformations w of the form

at+b
ct+d’

w(t) =
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with a, b, ¢, d integers and ad ~bec = 1. Observe that I is a group under composition.
A fundamental region 2! Fg is a set in H with the property that any element in
H is uniquely the image of some element in Fg under the action of G. Thus
the behaviour of a modular function is uniquely determined by its behaviour on a
fundamental region.

Modular functions are, in a sense, an extension of elliptic (or doubly periodic)
functions — functions such as sn which are invariant under linear transformations
and which arise naturally in the inversion of elliptic integrals.

The definitions we have given above are not complete. We will be more precise
in our discussion of A. One might bear in mind that much of the theory for A holds
in considerably greater generality.

The fundamental region F we associate with A is the set of complex numbers

F:={imt>0} N [{lret/<1 and
|26 £ 1] > 1} U {re t = —1} U {|2t + 1| = 1}].

The A-group (or theta-subgroup) is the set of linear fractional transformations w
satisfying ;
at +
] o= c+d’
where a, b, ¢, d are integers and ad — bc = 1, while in addition a and d are odd and
b and ¢ are even. Thus the corresponding matrices are unimodular. What makes A
a \-modular function is the fact that A is meromorphic in {im ¢ > 0} and that

Aw(®)) = A2)

for all w in the A-group, plus the fact that A tends to a definite limit (possibly
infinite) as t tend to a vertex of the fundamental region (one of the three points
(0, 1), (0,0), (3,00)). Here we only allow convergence from within the fundamental
region.

Now some of the miracle of modular functions can be described. Largely because
every point in the upper half plane is the image of a point in F under an element
of the A-group, one can deduce that any A-modular function that is bounded on F
is constant. Slightly further into the theory, but relying on the above, is the result
that any two modular functions are algebraically related, and resting on this, but
further again into the field, is the following remarkable result. Recall that g is given
by (5.9).

Theorem 1 Let z be a primitive pth root of unity for p an odd prime. Consider
the pth order modular equation for X as defined by

Wp(z,A) i= (z — Ao} (@ — A1) -+ (T = Ap). (5.11)
where _
A= A7) i<p
and
Ap = A(@P).
Then the function W, is a polynomial in x and A (independent of q), which has
integer coefficients and is of degree p+1 in both z and A

21Gee http:/ /www.cecm.sfu.ca/organics/papers/borwein/paper/html/local/emodular.html on
Elliptic Modular Functions
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The modular equation for A usually has a simpler form in the associated variables
u:=z'/® and v := A/, In this form the 5th-order modular equation is given by

Q¢ (u,v) = u® — v + 5uv? (u? — v?) + duv(l — uiv?). (5.12)
In particular
©2(q") 2 ©2(q) 2
= nd =
B3(gP) M g T

are related by an algebraic equation of degree p + 1.

The miracle is not over. The pth-order multiplier (for A) is defined by

K(k(¢”)) [Gs(q”)r
M, (k(q), k(¢P)) = =
P DN = Faiq) = [eu@

and turns out to be a rational function of k(g?) and k(q).

One is now in possession of a pth-order algorithm for K /m, namely: Let k; :=
k(q?"). Then

(5.13)

2K (k
_%(_0) = M (ko, ko) M, (kv ko) M (kg k) - -

This is an entirely algebraic algorithm. One needs to know the pth-order modular
equation for A to compute k; ; from k; and one needs to know the rational multiplier
M, The speed of convergence (O(cP"), for some ¢ < 1) is easily deduced from (5.13)
and (5.9).

The function A(t) is 1—1 on F and has a well-defined inverse, A~!, with branch
points only at 0,1 and oo. This can be used to provide a one line proof of the “big”
Picard theorem that a nonconstant entire function misses at most one value (as
does exp). Indeed, suppose g is an entire function and that it is never zero or one;
then exp(A~!(g(z))) is a bounded entire function and is hence constant.

Littlewood suggested that, at the right point in history, the above would have
been a strong candidate for a ‘one line doctoral thesis’.

6 Ramanujan’s Solvable Modular Equations
Hardy [19] commenting on Ramanujan’s work on elliptic and modular functions
says

It is here that both the profundity and limitations of Ramanujan’s knowl-
edge stand out most sharply.

We present only one of Ramanujan’s modular equations.

Theorem 2

503(¢%) 1/5 | 1/5
NASCAY A R T 6.1
03(q) ! 2 (6.1)
where for i =1 and 2
1

ri = ST (y + /Y2 - 43:3)

with
— 5@3(q5)

-1 and y:=(z—-1)?%+7

O3(q)
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This slightly rewritten form of entry 12(iii) of Chapter 19 of Ramanujan’s Sec-
ond Notebook (see [7], where Berndt’s proofs may be studied). One can think
of Ramanujan’s quintic modular equation as an equation in the multiplier M, of
(5.13). The initial surprise is that it is solvable. The quintic modular relation for A,
Wi, and the related equation for A\1/%, (s, are both nonsolvable. The Galois group
of the sixth-degree equation Qs (see (5.12)) over Q(v) is As and is nonsolvable.
Indeed both Hermite and Kronecker showed, in the middle of the last century, that
the solution of a general quintic may be effected in terms of the solution of the
5th-order modular equation (5.12) and the roots may thus be given in terms of the
theta functions.

In fact, in general, the Galois group for W, of (5.11) has order p(p+ 1)(p — 1)
and is never solvable for p > 5. The group is quite easy to compute, it is generated
by two permutations. If

o int T

g:=¢€"% then 7—-7+2 and 7T— @r+1)
are both elements of the A-group and induce permutations on the A; of Theorem
1. For any fixed p, one can use the g-expansion of (5.10) to compute the effect of
these transformations on the )\;, and can thus easily write down the Galois group.
While W, is not solvable over Q(X), it is solvable over Q(), A\g). Note that Ag is a
root of Wy Tt is of degree p + 1 because W), is irreducible. Thus the Galois group
for W,, over Q(A, Xo) has order p(p — 1). For p = 5,7, and 11 this gives groups of
order 20, 42, and 110, respectively, which are obviously solvable and, in fact, for
general primes, the construction always produces a solvable group.

From (5.8) and (5.10) one sees that Ramanujan’s modular equation can be
rewritten to give A solvable in terms of Ag and A. Thus, we can hope to find an
explicit solvable relation for A, in terms of A and Xo. For p = 3, W, is of degree 4
and is, of course, solvable. For p = 7, Ramanujan again helps us out, by providing a
solvable seventh-order modular identity for the closely related eta function defined
by

(@) =q [J1—¢*)

The first interesting prime for which an explicit solvable form is not known is
the “endecadic” (p = 11) case. We consider only prime values because for nonprime
values the modular equation factors.

This leads to the interesting problem of mechanically constructing these equa-
tions. In principle, and to some extent in practice, this is a purely computational
problem. Modular equations can be computed fairly easily from (5.11) and even
more easily in the associated variables u and v. Because one knows a priori bounds
on the size of the (integer) coefficients of the equations one can perform these cal-
culations exactly. The coefficients of the equation, in the variables u and v, grow
at most like 2. (See [11].) Computing the solvable forms and the associated com-
putational problems are a little more intricate — though still in principle entirely
mechanical. A word of caution however: in the variables u and v the endecadic
modular equation has largest coefficient 165, a three digit integer. The endecadic
modular equation for the intimately related function J Klein’s absolute invariant)
has coefficients as large as

27090964785531389931563200281035226311920052227303 x 2°23'95°01153.
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It is, therefore, one thing to solve these equations, it is entirely another matter to
present them with the economy of Ramanujan.

The paucity of Ramanujan’s background in complex analysis and group theory
leaves open to speculation Ramanujan’s methods. The proofs given by Berndt are
difficult. In the seventh-order case, Berndt was aided by MACSYMA — a sophisti-
cated algebraic manipulation package. Berndt comments after giving the proof of
various seventh-order modular identities:

Of course, the proof that we have given 1s quite unsatisfactory because it
is a verification that could not have been achieved without knowledge of
the result. Ramanujan obviously possessed a more natural, transparent,
and ingenious proof.

7 Modular Equations and Pi

We wish to connect the modular equations 22 of Theorem 1 to . This we contrive
via the function alpha ?* defined by:

E'(k) T
K(k)  (2K(k))*’

(7.1)

a(r) =

where

k:=k(g) and q:=e "V",
This allows one to rewrite Legendre’s equation (5.3) in a one-sided form without
the conjugate variable as

2 =K [VFE - (VF —a(r)K]. (72)

We have suppressed, and will continue to suppress, the k variable. With (5.6) and
(5.7) at hand we can write a g-expansion for o, namely,

=

S (g’
% - \/,,745—(:’_"—
Y (—on?
alr) = w":_w 1 , (7.3)
LE

=-—00

and we can see that as r tends to infinity ¢ = e~™V7 tends to zero and a(r) tends
to 1/7. In fact

alr) — Lyor (f — %) eV, (7.4)

s

The key now is iteratively to calculate . This is the content of the next theorem.

228ee
http://www.cecm.sfu.ca/organics /papers/ borwein/paper/html/local /ramnotebook. htmlon Ra~
manujan’s Modular Equations

331t is very easy to compute & for 7 > 0. One uses the functional equation a(l/r) = (r)r_a(r)
for r < 1 and a truncation of theta expansion [7.3]. Two terms suffice to obtain 10 digits on r > 1.
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Theorem 3 Let ko := k(q), k1 := k(gP) and M, := My(ko, k1) as in (5.13). Then

a(r) k3 ,  Pkk M,
a(p’r) = —Vriss —pkit+t—— |,
M?2 M? M,

where * represents the full derivative of My, with respect to ko. In particular, o is
algebraic for rational arguments.

We know that K (ki) is related via M, to K (k) and we know that E(k) is related
via differentiation to K. (See (5.7) and (5.13).) Note that ¢ — ¢P corresponds to
r — p?r. Thus from (7.17) some relation like that of the above theorem must
exist. The actual derivation requires some careful algebraic manipulation. (See
(11]), where it has also been made entirely explicit for p := 2,3, 4 5, and 7, and
where numerous algebraic values are determined for Examples ?* a(r).) In the
case p := 5 we can specialize with some considerable knowledge of quintic modular
equations to get:

Theorem 4 Let s := 1/Ms(ko,k1). Then

a(25r) = s?a(r) — V7 [&2_—5) +/s(s2 — 25+ 5)] .

This couples with Ramanujan’s quintic modular equation to provide a derivation
of Algorithm 2.

Algorithm 2 results from specializing Theorem 3 with p := 4 and coupling it
with a quartic modular equation. The quartic equation in question is just two steps
of the corresponding quadratic equation which is Legendre’s form of the arithmetic
geometric mean iteration 25

In 1799, Gauss observed this purely numerically and wrote that this result ”will
surely open a whole new field of analysis.” , namely:

2vk
1+k
An algebraic p-th order algorithm for « is derived from coupling Theorem 3

with a pth-order modular equation. The substantial details which are skirted here
are available in [11].

k=

8 Ramanujan’s sum

This amazing sum,

4 n
™ 9801 & (nl) 3964

1 V8 i( n)! [1103 + 26390n)

is a specialization (N = 58) of the following result, which gives reciprocal series for
7 in terms of our function alpha and related modular quantities®®

24Gee  http://www.cecm.sfu.ca/organics/papers/borwein/paper/html/local /etable.html  for
some examples

25Gee Appendix - ‘The Arithmetic-Geometric Mean Iteration’

26Gee Appendix - ‘Ramanujan type series’
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Theorem 5
S IO NO NG RNC Y -
T (n1)3 N .
where,
_ kN (kN)? (g 492
N arR)? "( 2 ) :
with

_ o)zt VN, 9§ — g5

and
kn = k(e™™N), g = (Kiy)?/(2kw).
Here ™ is the rising factorial: ¢ := c(c+1)(c+2) -+ (c+n — 1).
Some of the ingredients for the proof of Theorem 5, which are detailed in [11],
are the following. Our first step is to write (7.2) as a sum after replacing the E
by K and dK/dk using (5.7). One then uses an identity of Clausen’s which allows

one to write the square of a hypergeometric function 5y in terms of a generalized
hypergeometric 3 F;, namely, for all k one has

2K (k)]* 131 2 2
2 —_— — T 5 T T
(1+k)l: - :' 3F2 (474’2’1,1’(9124‘9&12)

_ 5 0,0, 0), (i) n

(Dn()n n!

Here g is related to k by

4k(k')? B g2 4 g 12 -1
arer = (T7)
as required in Theorem 5. We have actually done more than just use Clausen’s
identity, we have also transformed it once using a standard hypergeometric substi-
tution due to Kummer. Incidentally, Clausen was a nineteenth-century mathemati-
cian who, among other things, computed 250 digits of 7 in 1847 using Machin’s
formula. The desired formula (8.1) is obtained on combining these pieces.
Even with Theorem 5, our work is not complete. We still have to compute

ksg := k(e_“‘/ﬁ) and asg = (58).

In fact
2 \/§§ +5
58 = 5

is a well known invariant related to the fundamental solution to Pell’s equation for
29 and it turns out that

(\/2_9+5
Q58 = 2

6
) (99v/29 — 444)(99v2 — 70 — 13,/(29)).
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One can, in principle, and for N := 58, probably in practice, solve for ky by directly
solving the Nth-order equation

W (k3,1 - k%) =0.

For N = 58 given that Ramanujan [26] and Weber [38] have calculated gsg for us,
verification by this method is somewhat easier though it still requires a tractable
form of Wsg. Actually, more sophisticated number-theoretic techniques exist for
computing kn (these numbers are called singular moduli). A description of such
techniques, including a reconstruction of how Ramanujan might have computed
the various singular moduli he presents in [26] is presented by Watson in a long
series of papers commencing with [36]; and some more recent derivations are given
in [11] and [30]. An inspection of Theorem 5 shows that all constants in Series 1
are determined from gsg. Knowing o is equivalent to determining that the number
1103 is correct.

It is less clear how one explicitly calculates ass in algebraic form, except by
brute force, and a considerable amount of brute force is required; but a numerical
calculation to any reasonable accuracy is easily obtained from (7.3) and 1103 ap-
pears! The reader is encouraged to try this to, say, 16 digits. This presumably is
what Ramanujan observed. Ironically, when Gosper computed 17 million digits of
7 using Sum 1, he had no mathematical proof that Sum 1 actually converged to
1/w. He compared ten million digits of the calculation to a previous calculation
of Kanada et al. This verification that Sum 1 is correct to ten million places also
provided the first complete proof that ass is as advertised above. A nice touch —
that the calculation of the sum should prove itself as it goes.

Roughly this works as follows. One knows enough about the exact algebraic
nature of the components of d,(N) and xy to know that if the purported sum (of
positive terms) were incorrect, then before one reached 3 million digits, this sum
must have ceased to agree with 1/m. Notice that the components of Sum 1 are
related to the solution of an equation of degree 58, but virtually no irrationality
remains in the final packaging. Once again, there are very good number-theoretic
reasons, presumably unknown to Ramanujan, why this must be so (58 is at least
a good candidate number for such a reduction). Ramanujan’s insight into this
marvelous simplification remains obscure.

Ramanujan [26] gives 14 other series for 1/, some others almost as spectacular
as Sum 1 — and one can indeed derive some even more spectacular related series.

Many related series due to Borwein and Borwein and to Chudnovsky and Chud-
novsky appear in papers in Ramanujan Revisited, Academic Press, 1988%7.

He almost gives no explanation as to their genesis, saying only that there are
“corresponding theories” so the standard theory (as sketched in section 5) from
which they follow. Hardy, quoting Mordell, observed that “it is unfortunate that
Ramanujan has not developed the corresponding theories”. By methods analogous
to those used above, all his series can be derived from the classical theory [11].
Again it is unclear what passage Ramanujan took to them, but it must in some
part have diverged from ours.

27See Appendix - ‘Ramanujan type series’.
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We conclude by writing down another extraordinary series®®of Ramanujan’s,
which also derives from the same general body of theory.

1 & 2n \*42n+5
;_; n 912n+4 *

This series is composed of fractions whose numerators grow like 2" and whose
denominators are exactly 16 - 2!?". In particular this can be used to calculate the
second block of n binary digits of 7 without calculating the first n binary digits.
This beautiful observation, due to Holloway, results, disappointingly, in no intrinsic
reduction in complexity.

9 Sources

References [7], [11], [19], [26], [36], and [37] relate directly to Ramanujan’s work.
References (2], [8], [9], [10], [12], [22], [24], [27], [29], and [31] discuss the computa-
tional concerns of the paper.

Material on modular functions and special functions may be pursued in (1], [6],
(9], [14], [15], [18], [20], [28], [34], [38], and [39]. Some of the number-theoretic
concerns are touched on in [3], [6], [9], [11], [16], [23], and [35].

Finally, details of all derivations are given in [11].
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10 Appendix: One Hundred Billion Digits of Pi

An Explicit Symbolic Representation of More Than 100, 000, 000, 000 Dig-
its of 7
1yt
Y1 = = Yiowt a1 = (L+3) a0 — 2y (1 + 91 +112)

14 3/1-yot
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y 1— 3/1-y12*

13 =
1+ 4/1—y12*
1- ¥/1-y13*

14 =
y 14 §/1-y13¢
1— 3/ 1-y14*

15 =
y 1+ 3/1-y14*
1— 4/ 1—y15*

e =
14+ y/1-y15t
1- 3/1-y16t

1 p=—=
T = T et
1- 41—yt

18 —
¥ 14/ 1-p7t

™= ag

11 Appendix: General Computational Update

ag = (1+12)" a1 — 2592 (1 + y2 + 12?)
ag = (1+ys3) a2 — 27ys (1 +y3 + 13?)
as = (1+vs)" as — 2294 (1 + ya + 0a®)
as = (1+ys)" aq — 2%ys (1 +y5 + v5%)
ag = (1+e) a5 — 2%y6 (1 + y6 + ¥6?)
a7 = (1+y7)" as — 2597 (L+yr + %)
ag = (1 +ys)" a7 — 217ys (1 + s + ys?)

ag = (1+y9)* as — 2'%s (1 + yo + yo?)

ato = (1 + y10)* ap — 221410 (1 + 10 + y10°)

a1 = (1+y11)" @10 — 2%y (L+yn +ynn?)
a1z = (1 +y12)" a1 — 2912 (14 v12 + 412?)
a3z = (1 + y13)4 a12 — 2*7y13 (1 + 3+ y132)
are = (1+ 114)* @13 — 2214 (1 + 14 + 114%)
a5 = (1 +115)" a1 — 25915 (14 m15 + 115%)
ate = (1+y16)* a15 — 23916 (1+y16 + y16°)
arr = (1 +y17)" aze — 2%y17 (1+ w7 +y17%)

as = (1+ t1s)" @17 — 257y1s (1 + y1s + 15%)

59

Since the publication of our article our predictions have been matched and more.
All these calculations have been performed using methods described within the
paper. We detail the most interesting:
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11.1 BILLIONS

In 1989, The Chudnovsky Brothers computed 1,011,196,961 digits of pi using

- lo1
}_:122(__1)n (6n)! 13591409+ n545140134

™ (n1)3(3n)! (6403203)n+1/2

n=0

This used an IBM3090/VF for 120hrs and a CRAY? for 28hrs) In short order
Kanada then computed 1,073,741,799 digits (23° — 25) with a verification run in
under 161 hours. He used the [quartic algorithm] and the related Gauss-Salamin-
Brent algorithm [11] . In 1991 the Chudnovskys then computed in excess of 2.16
billion digits (Many details of their largely home -built computer are given in The
Mountains of pi, March 2 (1992) issue of the New Yorker, pp. 36-67). Early in
1995, Kanada computed in excess of 3 billion digits after which the Chudnovskys
reported (personal communication) that in 1994 they had passed the 4 billion mark:

Thank you very much for your message.

If it really matters, the "latest” round of calculations of pi was con-
ducted last year as a part of testing of an upgrade to our machine.
The actual end computation date was May 18, 1994 (as tapes and file
dates indicate). The method used was still our favorite identity (from
h(-163)=1). The core of bignum codes was the combinations of severa)
"fast” convolution algorithms, applied depending on the length. The
number of decimal digits of pi computed in that calculations was over
4,044,000,000.

We will send you a reprint from Grosswald volume that touches on some
techniques in our approach. Among amusing issues in this computa-
tions was the break of 32-bit addressing limit in file/array sizes. All
computations were run instead in 64-bit (virtual) address space (and
that required some tinkering with storage and tape devices).

We would be happy to get preprints of your projects.
With best wishes, David and Gregory

11.2 Kanada

The two most recent record computations were performed by Yasumasa Kanada and
his colleagues during 1995. It is worth emphasizing that each of his computations
effectively performs the equivalent of a few hundred full precision multiplications.
A single such multiplication performed on the same machine but without using
FFT ideas would take several years.

The details follow. More is available at the pi site including more analysis of
the digits.

232 Digits: Two independent calculations based on two different algorithms gen-
erated 4,294,967,296 (= 23%) decimal digits of pi and the two generated sequences
matched 4,294,967,286 decimal digits, e.g., 10 decimal digits difference. Then we
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are declaring 4,294,960,000 decimal digits as the new world record.

Main program run
Job start (1 — st)
Job end (1 — st)
Elapsed time (1 — st)
Vector CPU (1 — st)
Job start (2 — nd)
Job end (2 — nd)
Elapsed time (2 — nd)
Vector CPU (2 — nd)
Main memory

ES memory

Disk storage
Algorithm

Verification program run
Job start (1 -- st)

Job end (1 — st)
Elapsedtime (1 — st)
VectorCPU (1 — st)
Job start (2 — nd)
Job end (2 — nd)
Elapsed time (2 — nd)
Vector CPU (2 — nd)
Main memory

ES memory

Disk storage
Algorithm

28th Julyl199522 : 59

31st.July199507 : 42

56 :44:24

67:33:04

04th Aug.199520 : 38

075t Aug.1995056 : 35

56 :57:11

66 : 15 : 37

1792.75M B

25120M B

2GB * 2 = 4G B(as for inter. data storage)
Borweins' 4 — th order convergent algorithm

11th Aug.199521 : 31

145t Aug.199515 : 54

66 : 23 : 29

77:14:59

25th Aug.199523 : 12

985t Aug.199515 : 09

63 :57:22

75:10:29

1792.75 M B

26152 M B

2GB * 3 = 6GB(as for inter. data storage)
Gauss — Legendre algorithm

11.3 October 12, 1995

And then:

3 % 231, Qur latest record was established as follows:

Declared record:

6,442,450,000 decimal digits. Two independent calculations based on two dif-
ferent algorithms generated 6,442,450,944 (= 3 = 2%') decimal digits of pi and the
two generated sequences matched to 6,442,450,938 decimal digits, e.g., 6 decimal
digits difference. Then we are declaring 6,442,450,000 decimal digits as the new

world record.

Main program run
Job start

Job end

Elapsed time
Vector CPU

Main memory

ES memory
Algorithm

19th September 1995 20 : 54

24th September 1995 17 : 32

116:38:12

112:36 : 06

1856.75 M B

32764 M B

Borwein's 4 — th order convergent algorithm
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4,000,000,000-th digits of = and 1 /m: Note :Not updated because of disk storage
problem.

T 94375 34306 22684 47216 (4,000,000,000 — th digit)
1/m . 71480 70425 69013 58924 (4,000, 000, 000 — th digit)

Note: First digit '3’ for = or "0’ for 1/ is not included in the above count.
Frequency distribution for 7 — 3 up to 6,000,000,000 decimal places:

‘0" . 599963005; ‘1’ : 600033260, ‘2 - 599999169; ‘3’ : 600000243
‘4" . 599957439; 5 : 6000171 76; ‘6" : 600016588; 7' : 600009044
‘8’ : 599987038; 'Y : 600017038; x? = 9.00

Frequency distribution for 1/ up to 6,000,000,000 decimal places:

‘07 599978305, ‘1’ : 600024329; ‘2’ 600007880; ‘3" : 600006529
‘4" . 599976720; 5 . 599986534; ‘6’ : 600012285; ‘7’ : 600023761
‘8’ : 599975659; 'Y - 600007998; x? =5.44

4,294,960,000-th digits of 7 and 1/; Note: Not updated because of disk storage
problem.

™ 55675 13149 35865 45528(4,294,960,000 — th digit)
I/m : 96350 29339 14953 51156(4,294,960,000 — th digit)

Note :First digit ’3’ for = or '0’ for 1/7 is not included in the above count.

Programs were written by Mr. Daisuke TAKAHASHI, a member of Kanada
Lab. CPU used was HITAC S-3800/480 at the Computer Centre, University of
Tokyo. Two CPUs were definitely used through single job parallel processing for a
total of four programs run.

Yasumasa KANADA Computer Centre, University of Tokyo Bunkyo-ku Yayoi
2-11-16 Tokyo 113 Japan Fax : +81-3-3814-7231 (office)

12 Appendix: Landmarks

Francois Viete (1540-1603)

z_ﬁ 1+1\ﬁ L1111
m V2V2T2V2\2"2V2T3V3
———————————————— (1593)
John Wallis (1616-1703)
m_2:2-4.4.6-6-8-8--
2 1.-3.3.5-5-7-7-9.-
—————————————————————— (1655)
William Brouncker (1620-1684)
4
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James Gregory (1638-1675), Gottfried Wilhelm Leibnitz (1646-1716)

7r_1 1+1 1_'_
4 3 5 7

13 Appendix: Some Thoughts...

a certain impression I had of mathematicians was ... that they spent
immoderate amounts of time declaring each other’s work trivial.

(Richard Preston)

It’s about as interesting as going to the beach and counting sand. I
wouldn’t be caught dead doing that kind of work.

(***********)

The universe contains at most 10°! grains of sand.

(Archimedes)

14 Appendix: Frauds

Gregory’s series for , truncated at 500,000 terms gives to forty places

500,000 (—1)+-1
4 A
2 G-
k=1
= 3.141590653589793240462643383269502884197.

Ouly the underlined digits are wrong. This is explained by the following Theo-
rem.

14.1 Theorem

For integer N divisible by 4 the following asymptotic expansion holds:

N/2 o0
i (—1)F 1 E,,
5_22 %k—1 ZN;"“
k=1,
1 5 61

mtw Nt

where the coefficients are the even Euler numbers 1, -1, 5, -61, 1385, -50521.

Gregory’s series Tequires more terms than there are particles in the universe to
compute 100 digits of .

However, with N = 200,000 and correcting using the first thousand even Euler
numbers gives over 5,000 digits of 7.

See "Pi, Euler numbers and asymptotic expansions” by J. Borwein, P. Borwein
and K. Dilcher in the MAA Monthly Gold (1989) 681-687.
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14.2 Excessive Fraud

Sum. (correct to over 42 billion digits)

2

oo
2

1 n
— T 1ol0 -
105 Z e To = .
The sum arises from an application of Poisson summation or equivalently as a
modular transformation of a theta function.

14.3 Conjecture
No one will ever know the 10'°th digit of 7 (or the 10°1th).

15 Appendix: The Arithmetic-Geometric Mean

Iteration
If
iy s T O bn =1
n+l ‘= 2 ap =
and
b1 7= Vanbnby := V2 (or z).
Then
lim a, = lim b, = —. /2
n—oo n—oo
dt
Vi—i2

/2
dé
: V1-(1—z2)sin26

In 1799, Gauss observed this purely numerically and wrote that this result ”will
surely open a whole new field of analysis.”

15.1 Equivalent Modular Parametrization

This is equivalent to the identities

03((12) - 03((1) ‘;‘04(Q)
and

04(¢%) = v/05(q)04(q)
where

03(q) = Z g~
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and
e 2
ba(g) = > (~a)"
These are modular forms. So for example

NZY (e—”) =03 (e_"/s)

15.2 A Cubic Analogue of the AGM
Let
_an t2b, 1
Ap+1 = T ag ‘=

and

2 b2
bn+1 = 3\/bn(a" + C;nb” + n) bO =

then the common limit is

1 1
F -
N P (5 5 )
Z—m) o (1 — 2)"

The convergence is cubic.
Proof: The proof is opaque. It works because 2Fy(1/3,2/3;1; ) satisfies

1 1 4
" 4 P ®
i +(x+z—1)y 9x(1—w)y 0

In the above notation.

3 lim a2
n—od

™=

oo

1— Y 37+ (af — a2, y)

n=0

V3 —

gives a cubically convergent algorithm. Twenty one terms gives three billion digits.
The underlying cubic transformation is beautiful:

12
F(3 31x>
3 12 1—-2\°
— __.1.
1+2x2F1(3’3’ ’<1+2z))

1
. Taking k + 1 terms of the sum and limit

where a,, is, as above, with, by :=
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15.3 Equivalent Modular Parametrization

If -

Lg) = 3 g’
and

M(q) = 3L(q3)2— L(g)
Then

L) = 1) +2M()
and

3
M) = 3\/M(Q) (L*(q) + L(?:I)M(Q) + M?(q))
Note that if R(q) := M(q)/L(q)then

_ 9R(q)(1 + R(q) + R(q%))
(R(¢*))* = T+ 2R(q) :

This is a cubic modular equation for R.
See Some cubic modular identities of Ramanujan by J. Borwein, P. Borwein F.
Garvan in Trans. A.M.S. 343 (1994) 35-47.

15.4 Some Explanations

2 F1(a, by ¢; 1) = i M

n=0

where (a), :==a(a+1)---(a+n—1)..

Let 1 q
Fi(z):= 2F1(§ =83 +s,1,2%)
Gs(x) = 2F1(—% -3, % + s, 1,$2).
Then
Gs(@)Fs(V1—22) + Fy(2)Gs(V1 — x2)
“R@R(VI=) = L ()
and

z(1 —z?) d Fy ()
1+ 2s dx

Go(z) = (1~ ) Fy(z) +
With z := 1/\/5 we get

T NN N

cos(ms)
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If we can compute F iteratively we can compute Fy and i/ by a second iter-
ation. These are four particularly interesting cases.

s=0 Gaussian AGM.

s=1/6 Cubic AGM.

s=1/3 The absolute invariant J.
s=1/4 Borchardt type iteration

Inverting the ratios F(z)/Fs(v1 — z%) gives elliptic modular finctions. Which
reduces much of this to an algebraic theory. Finding and proving these iterations
can ( at least in principal) be effected entirely computationally.

15.5 The Quadratic s = 1/4 Iteration

Let
an + 3b,
Ap1 1= 1 ay =1

{brp(an + by
bn+1 = _(—2_)b0 =2x.

Then the common limit is

and

1
2 F2(1/4,3/4;1;1 — 2?)

15.6 Caveat Emptor:

Let
arn, + by
An41 = —"8—, agp = 1
and
Vanby, + 3by,
bn+1 = ———"4 b —

Then the common limit g(z) is not differentially algebraic.

16 Appendix: Ramanujan Type Series

Ramanujan’s remarkable series for 1/m include

1 Z (4n)! [1103 + 26390n]
™ 9801 — (n!)t  (4%99)'"
This series adds roughly eight digits per term. Gosper in 1985 computed 17
million terms of the continued fraction for 7 using this.
Such series exist because various modular invariants are rational (which is more-
or-less equivalent to identifying those imaginary quadratic fields of class number 1).
The Chudnovskys’ series with d = —163 is

i(fl)n (6n)!  13591409+n545140134
(n1)3(3n)!  (6403203)n+1/2
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Quadratic versions correspond to class number two imaginary quadratic fields.
The largest example has d = —427 and

1 2 (-1)™*(6n)! (A +nB
2 =12 ((n!))3((3:))! (Cn+?/2)

n=0

where

212175710912v/61 + 1657145277365
13773980892672v/61 + 107578229802750
[5280(236674 + 30303v/61)]°.

A
B
C

1

This series adds roughly 25 digits per term. These series are of the form

= 6n) 1 V=i
> (a®) ) e GO = =

n=0

where

bt) = 11728 = j(1))

0 = (-5 (0 2)

. 17283 (1)
i) = e
4(t) — E3(t)
0 ng®
Ex(q) = 1“2421_ -
n=1 q
oa nSqn
Euq) = 1+24oz1 .
n=1 —4q
o0 n5qn
Bo(a) = 1-540) ——
n=1 q
g = —e ™

Here t is the appropriate discriminant, J is the “absolute invariant”, and F,,
Ey and Eg are Eisenstein series. There is an unlimited number of such series with
increasingly more rapid convergence. The price is that one must deal with more
complicated algebraic irrationalities.

A class number p field will involve pt" degree algebraic integers as the constants
A =a(t), B=10(t) and C = ¢(t) in the series.

The largest class number three example with d = —907 gives 37 or 38 digits per
term.

The largest class number four example with d = —1555 is

V-C3 & (6n)! A+ nB
22(( ) +

T In)l(nl)3 C3n
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where

C

This

—  —214772995063512240 — 96049403338648032 * 52
1296 * 5'/2(10985234579463550323713318473
4912746253692362754607395912 « 51/2)1/2

+

63365028312971999585426220 + 28337702140800842046825600 * 5'/2
384 + 5'/2(10891728551171178200467436212395209160385656017
4870929086578810225077338534541688721351255040 * 51/2)1/2

+ |l

7849910453496627210289749000 + 3510586678260932028965606400 * 5'/2
2515968 * 3110'/2? (6260208323789001636993322654444020882161
2799650273060444296577206890718825190235 * 51/2)1/2

+ 4+ 1

gives 50 additional digits per term.

This is discussed in Class number three Ramanujan type series for 1/Pi in J.

Com

p. and Applied Math. 46 (1993) 281-290.

Deriving the Series

The absolute invariant, and so the coefficients A, B, and C satisfy polynomial
equations of known degree and height.

Thus the problem of determining the coefficients of each series reduces to
algebra and can be entirely automated.

From the expressions for j(t), a(t), b(t) it is easy to compute their values to
several hundred digits.

The lattice basis reduction algorithm now provides the minimal polynomials
for each quantity.

In addition, a higher precision calculation actually provides a proof of the
claimed identity.

This last step requires knowing a priori bounds on the degrees and heights.
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An Introduction to Organic Mathematics

Mathematics is more important now than it has ever been. More
mathematics is done both inside universities and outside, in
industry, than ever before. Admittedly not all of it is called
mathematics—it might be called robotics, or financial analysis,
or operations control, or engineering, or whatever—but when we
look closely there is no doubt that we are living in the greatest
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Mathematics has fundamentally affected technology, notably in
computers. It is now clear that the reverse is also true. Technology,
falling into 4 major categories, has already changed mathematics
dramatically, and the pace of change is accelerating.



