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We consider the problem of approximating analytic functions with positive
coefficients by rational functions with positive coefficients. In the spirit of
investigations by Reddy, Newman, and Erdés [3, 6, 7], we show that for ¢* and
various classes of analytic functions on [0, 1], best uniform rational approxima-
tions with either positive coefficients or positive coefficiented denominators
reduce to polynomial approximations.

Let II, denote the algebraic polynomials with real coefficients of degree at
most zand let IT,,* denote those elements of I7,, that have nonnegative coefficients.
Let

Rum = {Pn/qm | Pn€ 11, , g, € I1,,},
R:,m == {pn/qm |pn € Hn yqdm € an+}s
‘ R:tn - {Pn/qm IPn € Hn+a dm € Hm+}'

Let|| - {ita.p) denote the uniform on [a, 4] and define
nn(f: [a’ b]) - pirellgln “f* Pn ‘;[n.b] .

Simularly, define I1,7(f: [a, 8]), R, ,.(f: [a, b]), R, (f: [a, b)), and R}, (f: [a, b)),
respectively, as the distances from f to I1,*, R, ., R}, , and R}* . When

n = m we contract R, , to R, , R, (f: [a, b]) to R,(f: [a, b)), etc.
THeorEM | (Reddy [7]).
Rym (x4 [0, 1) = ITy(x"': [0, 1]).
Treorem 2 (Newman and Reddy [6]). If | < & < n,

R{T(x" [0, 1)) = IT («"*": [0, 1]).
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RATIONAL APPROXIMATIONS 145

Thus, allowing positive coefficiented polynomials in the denominator does not
improve approximations to x®. We show that this interesting phenomenon
extends to the function . For example:

THEOREM 3. Suppose for each n =0 that f™(x) = fY(x) =0 for
x€ [0, 1]. Then

R.(f: 10, 1]) = IL(f: [0, 1]) = I1,"(f: [0, 1]) = R"(f: [0, 1]).

RaTIONAL APPROXIMATIONS WITH RESTRICTED COEFFICIENTS

An examination of the proof of Cheney’s characterization theorem for best
rational approximation allows us to reformulate this theorem in the following
two ways (1, p. 159]:

Tureorem 4. Suppose that A, B C I1, and suppose that f € Cla, bl and f¢ R,, .
Suppose plq, ¢ > 0 on [a, b] is a best uniform approximation to f from the rational
functions whose numerators are in A and denominators are in B. Then there exist no
pnell,, q,< 1, so that

(a) P, — (P/q)gn has the same sign as f — p[q on the set of points

Yoo Ay [ fO) — g = 1L f — p/q e

and

(b) for some ¢ > 0 and all 0 <X A < ¢,
p+Ap,ed and g+ X,eB

and as a characterization theorem for best approximations

THeoREM 5. An element plq € R}, (respectively R} ) is a best approximation

to f& Cla, bl, f¢ R}, (resp. i), if and only if no $ < I, — plg - IT,* (resp.
11t — plg - I1,7) has the same sign as f — plq on the set

Vo= v f() = PO = 1S = plgiharh

THEOREM 6. Suppose f(x) = Yo a;x', where a; = a,.; = 0 for all i. Then
for fixed k < nand 0 < a < b << | the rational function that satisfies

Pu(*)
[ — kT )

pnell, ireal [a,5]
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reduces to a polynomial (i.e., has A = 0), if and only if f is a polynomial of degree
at most n.

Proof. Assume f is not a polynomial of degree n. Let x, , x, ,..., X4 be any
n + 2 distinct points in [, b]. Since ) > 0 and (x%f)"*D) > 0 on (a, b], we
have

Lixy, ox™ f(x)
n
det !yxZ) *--)*?:2’ f(x2) :B#O
]’ Xnigseee x2+2 :f(‘xn+2)
and
Lz, ox® fla)x*
n k
det L’:‘zy ---,3_52 N CAEN — o #£ 0.
1: Knig yeeey Xny2 vf(xn+2) xl:z+2
Thus, there exists a polynomial s,, € IT,, so that
) ) (1

I — (Bfa) x;*
We show that 8/a << 1. Consider

(1 — (BJa) %) f(x) :i (a; — (Ble) ai_y) %

If Bjo 2= 1 then, foreachi = n,a, — (B/a)a,_, < Oand (unless f(x) = 1/(1 — x))
for some ¢, > n, a, — (Bla)a; . << 0. Thus, [(1 — (Bla)a®) f(x)]"*D < 0 and
$(%)/(1 — (Bla)x*) could not lnterpolatef(x) atn -+ 2 points. This contradicts (1).
Now, if a best approximation to f of the required form were a polynomial p, then
the set ¥ of Theorem 4 would consist of at most # + 2 points y, , Vo ssunc ieen
By the first part of this proof we can choose p, € IT, and 8 > —1 so that

%%%%:ﬂ%) for 1=1,.n+2.

We see that conditions (a) and (b) of Theorem 4 are satisfied with
=1 qu=1+&" A=I, B={\+A* A, real}
and hence, p cannot be a best approximation.

THEOREM 7.  Suppose f(x) = 3, ax', where a, = a; 11 =2 0 for all 1. Then,
if 0 << b <1,

R,(f:10,6]) = IT(f: [0, 8]).
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Proof. Suppose ||f— p/qll = R.*(f:[0,b]), where pell, and ¢(x) =
1 + bx* + -+ with b, 5= 0. Then, since (g - f)**? > 0 on (0, b], the set Y of
Theorem 4 contains at most n + 2 points ¥, ,..., ¥nie. As in the proof of
Theorem 6 we may find 8§ >> —1 and p,, € IT,, so that

TP_T—_(%};—)_k = f(:) for 7= 1,..,n42

and hence, conditions (a) and (b) of Theorem 4 are satisfied by p,,, ¢, p, g, =
1 4 8xk, A = II,, B — II,*, where we observe that for 0 << A <{ b,

g(x) + M1 + 8x*) e IT,*.
Thus p/q is not a best approximation unless g == 1.
Bernstein’s theorem [4, p. 38] can be stated in the following way:
THEOREM 8. Suppose that f and g are both n -+ 1 times continuously differen-
tiable on [a, b] and
|fri(x)] < gm(x)  for xela,b].

(a) If pyel, is the polynomial that interpolates g at the n + 1 points
Xy yeey Xy in [@, B], then there exists p, € IT,, so that

L f(x) = pa(@)] < | g(x) — po(x)]  for x€[a ]
(b) II,(f:[a, b]) < II(g: [a, B]).

We can extend Bernstein’s theorem to a result concerning approximations from

R,*.

THEOREM 9. Iffandgarebothn -+ 1 times continuously differentiable on [a, b],
a > 0and

| ()] < g™ (x), for xela,blandk =0,1,.,n+ L
Then
Ry w(f: [a, 8]) < R (g [a, b]).

Proof. Let p/q be a best approximation to g on [a, b] from the class R} ...
Since ¢ has nonnegative coefficients,

l(g(x) * F(x)+D | < Zzi: (n j; 1) | g(x)®) + f(x)inthsD)

n+1

ST (7 F ) g g = (g - gy

0

T

/

&
I
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We deduce from Theorem 5 that p — g - g must change sign at least n 4 1
times and hence, by Theorem 8, there exists p, € IT, so that for each x € [a, 8],

| 2a(x) — g(x) f(x)] < | p(x) — g(*) g(x)!.
Thus,

Ryl f: [a, 8]) < Ry (g [a, b))

CoroLrary 1. Suppose p,., € I} ,; then

Ry (Pniat [0, 1)) = I(pasa: [0, 1]).

Proof. Suppose p,,,(x) = ax™t! - ---. We observe that

1P [0, 1]) 2 Ry (pusa: [0, 1])-

By Theorem 1,
R, (o442 [0, 1]) = (o, 14 [0, 1]) = I (pria: [0, 1]).

By Theorem 9, since p,,, has positive coefficients,

Rn+(Pn+l: {0, l]) Z Ry t(axm+t: [0! ]])
Thus,

TP [0, 1) 2 Ry (Puias [0, 11) 2 o prsa: [0, 1]).

POLYNOMIAL APPROXIMATIONS WITH PoSITIVE COEFFICIENTS

Let I'(a) = {f | of ™(x) = f"+(x) = O for all x & [0, 1] for all n}. We show
that if fe I'(1), then the best uniform polynomial approximation to f on [0, 1]
has positive coefficients. This result, combined with the observation that if
f e I'(1) then f satisfies the conditions of Theorem 7, establishes Theorem 3. We
need the following straightforward lemma.

Lemma 1. Suppose o« > 0.
(a) If fe I(x) then f' € I'(a) for all n.
(b) fe (o) iff f(x) = oo @™, where ay > ((n + 1)/a) @y, = O.
(€) Iffe I(a) then f)(1) < ef™(0).
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THeorem 10. If fe I'(1) then

IL(f:10, 1)) = IL,*(f: 0, 1]).

Proof. Suppose f(x) = 3. _, byx" and suppose that p(x) = a,x" 4 a, a1
+ -+ ay is the best approximation to f on [0, 1] from IT,. Chebyshev’s
alternation theorem [1, p. 75] guarantees that f — p has at least n -+ | zeros on
[0, 1] and hence, f »+1-%) — pln+1-#) hag at least & zeros on [0, 1]. Since f»+1) = 0
on (0, 1] (if f is not a polynomial of degree n) it follows that f(n+1-%) __ pin+i—k)
has exactly k zeros at x;; ..., %, , and by the Lagrange mterpolation formula

[2, p. 56],

() — plrri-h(x) — (% — %) - k' %) f‘"“’(C)v (h

where min{x, x; ,} < { < max{x, x,,}. We note that f (1) < Fo(1) <
SR(1) < ef "11-9(0) and hence, by (1),

FOII0) = (4 = B g < g SO0 (2)

Since efk! < I for k = 3, we have a,,,_, > 0 for & > 3. By Descartes’ rule
of signs the coefficients of f - p must have n + 1 sign changes and it follows

that a,,a, ;,a,_,,... are all positive. To complete the proof we must show
that a,_, == 0. By (1),

fr2(x) — wlay —(n— la, | = (= mp)(x = 2y x“zf " (). (3)

We observe that f"(x, ) = p'")x;,) = n! a, and that Xpq < Xyg < Xy
Hence,

Fo Uy ) — 20, f%) — (r — DNa,, <0 (4)

and since f e I'(1), a,_, is positive.
We can derive precise estimates of I1,(f: [0, 1]) for fe I'(a). We use a
method developed by G. Meinardus;

Tueorem 11 (Meinardus [5]). Suppose fe C2[0, 1] and suppose there
exist y, and y, so that

0 < M(1/2) + (S — 1/2) + nlx — 1/2)
SO < FU12) + (FR(12))x — 1/2) + yolx — 12)2.
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Then, if {1 (1/2) > 0 and 12 | f+B(1/2)] < (n + 2) f1(1/2),

Fm0(1/2) l - Y1
22ty 4 1)1 (f(1/2)) 8(n + 2)

IL(f: [0, 1]) =
and

Fin(1/2) (f2(12))2(n + 1)
22 4 1)) O 2)) n(n + 2)%4

[yl (n+5)
Fo(1/2) 8(n + 2)(m + 3) 1

M 10,1) < 1+

+

Tueorem 12. If fe I'(a), « > 0, then

fe(172)

IL(f: 10, 1]) = et 1 )l

and

. fetn(1/2) a?f(n + 2) + «e*/2
Hn(f [0’ 1]) ‘< 22n+1(n + l)l (1 + 4n )'

Proof. Since ft1 is convex,
JFr ) = fOrO(L2) + frR(12) - (x — 1/2),
Also, since f"?) is convex,
FOR(x) < FEER(1[2) + 2FD(T) - (x — 1/2), for xe[1/2,1]

and

Fd(x) = f(1)2) + 2f 2 HD(1) - (x — 1/2), for x€e{0, 1/2].
Hence,
FOt(x) < FOD(12) 4 FOR(L)2) « (e — 1/2) -+ FO(1) - (x — 1)2)%

We now apply Theorem 11 with 4, = 0 and y, = f"+2(1). We note that by
(c) of Lemma 1, f*2(1) < evf ®+2(1/2) < ae®f*1(1/2). Thus,

IL(£:0, 1]) <

forf2) ( a2(n -+ 1) n ae*(n + 5) )
224 (n 4 1) n(n - 24 8(n 4 2)(n + 3)
f(1)2) ?/(n + 2) + cxe“/‘2)

< e T
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